sonyps4.ru

Как разогнать озу на ноутбуке. Разгон оперативной памяти

Оперативная память является важным компонентом компьютера или ноутбука, который частично определяет его быстродействие и возможности. Немногие знают о том, что производительность устройств можно существенно повысить, не прибегая к замене основных элементов. Делается это путем «разгона» установленных микросхем, в том числе и ОЗУ. Процесс разгона отличается от повышения мощности процессора или видеопамяти. Мы расскажем вам, как сделать это правильно, не допуская ошибок.

Многие IT-специалисты указывают на то, что производители зачастую устанавливают ограничение на возможность искусственного увеличения производительности . Кроме этого, повышение скорости работы ОЗУ зачастую проводится после разгона установленного процессора. Отдельно обе важные составляющие компьютера разгоняются крайне редко, так как их работа отвечает за основные функции. Что касается видеокарты, то ее подвергают разгону и отдельно - все зависит от того, для обработки каких данных проводится увеличение производительности.

Одной из основных характеристик ОЗУ считают объем, который принято измерять в гигабайтах. Однако на производительность оказывает влияние частота работы, пропускная способность и другие характеристики, которые редко указываются в кратком описании компьютера. Под «разгоном» понимают включение особых режимов работы за счет:

  1. Увеличения показателя тактовой частоты . Как правило, этот параметр изменяется при разгоне процесса, что позволяет использовать его всю вычислительную мощность.
  2. Изменения количества таймингов, которые возникают при одном цикле . При уменьшении этого показателя обмен электрическими сигналами будет проходить гораздо чаще, за счет чего повышается пропускная способность установленных планок.

Некоторые IT-специалисты выделяют метод повышения производительности, который связан с изменением показателей электрического напряжения в установленной микросхеме.

Оптимальные методы разгона

При изготовлении микросхемы рассматриваемого типа могут использоваться самые разные архитектуры, в большинстве случаев можно только максимально повысить тактовую частоту или пропускную способность - обе сразу не получится. Некоторые выбирают компромиссное сочетание устанавливаемых настроек.

  1. При повышении тактовой частоты придется замедлить тайминг, в противном случае компьютер не будет работать стабильно и есть вероятность потери информации.
  2. При ускорении тайминга показатель тактовой частоты рекомендуют оставить на заводском уровне.

Кроме этого, после проведения работы по разгону компьютера можно заметить, что он начинает работать медленнее. Это связано с тем, что не каждый процессор и ОЗУ предназначены для разгона. В некоторых случаях с заводскими настройками они работают куда лучше и стабильнее.

Что следует знать о частоте ОЗУ

Разгон оперативной памяти ddr3 или другого типа многие проводят для увеличения тактовой частоты . Ее показатель определяет, сколько операционных тактов производит установленная микросхема в секунду. С увеличением данного значения микросхема начинает работать быстрее, время между действием пользователя и откликом устройства снижается.

Производители ОЗУ типа DDR указывают два типа тактовой частоты:

  1. Реальная.
  2. Эффективная.

Показатель эффективной, как правило, в два раза больше реальной. Показатель реальной тактовой частоты редко можно встретить в описании оперативной памяти, для ее определения приходится искать подробную спецификацию или использовать программу мониторинга производительности компьютера.

Рабочее напряжение

Все части компьютера работают исключительно под своим напряжением, для некоторых оно может быть переменчивым . Этот момент следует учитывать при рассмотрении процесса разгона. Ранее распространенный тип памяти DDR 2 работает при 1,8 вольта.

На сегодняшний день распространенная память типа DDR 3 при 1,5 вольта. Специалисты утверждают, что эти пороги можно несущественно превысить. Для DDR 2 выставляется значение 2,2 вольта, для DDR 3 показатель составляет 1,65 вольта.

При превышении этих значение микросхема начнет работать неправильно, могут появиться существенные сбои. Кроме этого, IT-специалисты утверждают, что даже самая качественная микросхема от известного производителя может плохо воспринять повышение напряжения. Поэтому если в этом нет особой надобности, то лучше всего оставлять заводские настройки.

Использование тестов

Точного способа разогнать оперативную память ddr3 нет . Это связано с тем, что существует огромное количество планок ОЗУ, каждая может отреагировать по-разному на изменение заводских параметров. Именно поэтому выходом из ситуации становится подбор наиболее подходящих настроек при тестировании каждого изменения. Для этого можно использовать специальные программы, которые существенно упрощают поставленные задачи.

При выборе программ для тестирования работы компьютера рекомендуется уделить внимание следующим:

  1. PC Mark.
  2. Everest.

Выделить лучшую программу с двух вышеприведенных сложно, так как каждая имеет свои достоинства и недостатки. Почему именно эти две программы при огромном выборе? Ответ довольно прост - они не только делают мониторинг основных показателей при нагрузке или простое устройства, но и имеют функцию отслеживания стабильности работы многих моделей ОЗУ. Подобным образом снижают вероятность того, что проведенные изменения приведут к потере стабильности работы оперативной памяти.

Инструменты изменения показателей

Выставить необходимые значения можно при использовании самых различных инструментов. Выделяют два основных метода:

  1. Использование интерфейса БИОСа.
  2. Установка и использование сторонней программы.

Многие специалисты в рассматриваемом вопросе рекомендуют воспользоваться первым методом, так как стороннее ПО может работать некорректно , быть несовместимым с конкретными типами ОЗУ. Кроме этого при использовании БИОСа разгон осуществляется на низком уровне взаимодействии с аппаратными компонентами, за счет чего можно достигнуть лучших результатов.

Среди ключевых нюансов отмечают следующие моменты:

  1. К изменению показателя частоты работы устройства следует относиться с осторожностью , так как правильная корректировка заключается не только во введении одной цифры. Частота зависит от произведения двух основных значений: FSB и BCLK. Получаемое значение принято считать «опорной частотой». Если будет проводиться изменение только множителя, то увеличить производительность будет невозможно.
  2. Принято уделять внимание особенностям процессора при разгоне модулей ОЗУ , так как этот элемент более важен в системе. Часто наблюдается ситуация, что одинаковые значения тайминга и тактовой частоты при различных процессорах дают разный результат. При этом точные рекомендации сложно найти, производители и вовсе не рекомендуют проводить изменение устанавливаемых настроек.
  3. Результат проведения работы по разгону зачастую непредсказуемый, но увеличить шансы на успех можно при изучении специализированных форумов, где можно найти пример похожего сочетания процессора и планок памяти.

Процессоры Intel и AMD

Тесты, которые проводятся при разгоне оперативной памяти, указывают на то, что процессоры Intel, построенные на современной архитектуре, плохо поддаются корректировке в отношении параметра BCLK. Если провести его изменение, то велика вероятность возникновения серьезных сбоев.

Эта информация определяет то, что изменить «опорную частоту» будет довольно сложно. Поэтому единственный выход из сложившей ситуации - изменение показателя множителя, что обычно приводит к незначительному повышению мощности .

Некоторые из процессоров рассматриваемого производителя хорошо реагируют на подобные эксперименты. Примером назовем Core i7−8. При их производстве используется архитектура Lynnfield.

На результаты проводимых экспериментов может оказать влияние и тип материнской памяти . Данный элемент компьютера также имеет чипсет, который отвечает за обработку некоторой информации.

Процессоры, выпускаемые под брендом AMD, постепенно уходят с рынка. При этом они ведут себя более предсказуемо при увеличении производительности оперативной памяти, что позволяет снизить вероятность возникновения ошибок.

В заключение отметим, что повышение производительности всегда приводит к выделению большего количества тепла. Поэтому при недостаточном охлаждении системного блока следует провести установку более мощной системы отвода тепла, так как велика вероятность перегрева.

Видео

Из этого видео вы узнаете, как правильно настроить и разогнать оперативную память вашего ПК.

Не получили ответ на свой вопрос? Предложите авторам тему.

19.02.2013

Несмотря на то, что оверклокерская оперативная память с отменными характеристиками, оригинальными системами охлаждения и большим разгонным потенциалом доминирует на страницах профильных изданий, в реальных продажах значительно большую долю имеют обычные, недорогие модули. Мы решили проверить, на что способны эти скромные планки DDR3 в разгоне.


После теста о влиянии частоты оперативной памяти на игровую производительность , мы невольно задумались о том, насколько оправданной может быть покупка дорогих и быстрых модулей памяти? После этого мысли ушли немного в другую сторону, и появился новый вопрос, а нельзя ли взять более доступную память и разогнать? Насколько вообще возможно повышение частоты для обычных, весьма скромных по внешнему виду, и доступных по цене решений? Чтобы ответить на все эти вопросы, мы взяли на тест четыре пары модулей памяти от разных производителей – Kingston, Silicon Power, Team, и Transcend. Самых простых и доступных, то есть тех, что выбирает большинство покупателей.


Кроме того, все больше и больше недорогих модулей памяти имеет частоту 1600 мегагерц, благодаря тому, что JEDEC одобрила этот стандарт как номинальный, а цены на более быстрые чипы памяти опустились до минимального уровня. Это породило некоторые сомнения в том, что есть какие-либо разумные доводы в пользу покупки более дорогой оверклокерской памяти с частотой 1866 мегагерц, ведь даже дешевые модули вполне могут “дотянуться” до этой частоты. А быть может им по силам и 2 гигагерца? Будем проверять. Но для начала давайте познакомимся с нашими “подследственными” в алфавитном порядке.

Kingston KVR16N11/4


Безусловно, самые оригинальные по внешнему виду модули данного теста. Как видно на фотографиях, их высота заметно ниже, чем у других модулей. Удивительно, почему другие производители не переходят на платы уменьшенной высоты, ведь по большому счету, никаких причин использовать привычные, высокие планки нет, так как они были рассчитаны на чипы памяти старого типа (TSOP), в то время как DDR3 выпускается только в корпусах BGA. Впрочем, это не дает никакого преимущества памяти Kingston, так как по характеристикам она абсолютно идентична с конкурентами. Объем модуля – 4 гигабайта, максимальная частота – 1600 мегагерц, тайминги на данной частоте – 11-11-11-28, и рабочее напряжение 1,5 вольта. Самое что ни есть стандартные и обычные на сегодняшний день характеристики. На планках установлено 16 чипов памяти емкостью 2 гигабита, собственного производства с маркировкой Kingston NO6296-01.



Отдельно отметим то, что память Kingston, в отличие от других модулей памяти в тесте поставляется в индивидуальной упаковке, и снабжено инструкцией. Насколько этот момент критичен для оперативной памяти сказать сложно, но это, безусловно, приятно, тем более, что по цене модули Kingston не отличаются от конкурентов. А учитывая эти данные, и магическое имя, годами являющиеся символом качественной и быстрой памяти, понятно, что это главный претендент на кошелек покупателя. Посмотрим, как он покажет себя в тесте.

Silicon Power SP004GBLTU160V02


Тоже отнюдь не самое неизвестное имя, но все же весьма узнаваемое. Silicon Power давно закрепил за собой солидную долю рынка бюджетной памяти, благодаря высокой надежности и действительно доступной цене. В принципе в ассортименте Silicon Power есть и решения для энтузиастов и оверклокеров под собственным именем X-Power, но они не получили большой известности, всегда оставаясь в тени “продвинутых” решений от той же Kingston, Geil, Corsair и прочих. Поэтому, если бы это был тест супер-памяти, то Silicon Power был бы на вторых ролях, но мы-то тестируем бюджетные решения, а здесь продукты этой компании явные претенденты на победу.



Впрочем, исходные характеристики модулей Silicon Power вполне стандартны. Объем 4 гигабайта, базовая частота 1600 мегагерц, тайминги 11-11-11-28,и рабочее напряжение 1,5 вольта. Как и Kingston, Silicon Power использует чипы памяти собственного производства с маркировкой S-Power 20YT5NG. Всего таких чипов 16, а емкость каждого из них равна 2 гигабитам. Никакой упаковки и комплектации к эти модулям памяти не предусмотрено.

Team Elite TED34G1600HC11BK


Компания Team относительно новый игрок на рынке оперативной памяти, и ей пока трудно бороться за покупателя с именитыми конкурентами. Впрочем, на рынке быстрых модулей к Team уже относятся достаточно серьезно, благодаря весьма приличным сериям Vulkan и Extreem. Стремясь выделить и свои бюджетные решения на фоне конкурентов, компания нашла оригинальное решение. Взгляните на фотографию. Несмотря на то, что память Team Elite стоит не дороже конкурентов, она облачена в алюминиевый радиатор. Фактически этого не требовалось, так как тепловой режим современных модулей DDR3 с частотой 1600 мегагерц более чем приемлем. Но какой эффект! Да, безусловно, любой ценитель, да и значительная часть тех, кто не совсем понимает в модулях памяти, выберет ее. Просто потому, что она выглядит солиднее, нежели конкуренты. В нашем случае радиаторы на памяти могут помочь Team Elite при разгоне, хотя эффект этот вряд ли будет сильно заметен.


К сожалению, посмотреть на чипы памяти, установленные в модулях Team Elite, нам не удалось, так как радиаторы “насмерть” приклеены к ним термоклеем. Впрочем, это не критично. К тому же все спецификации указаны на наклейке. А они вновь те же, что и у двух предыдущих моделей. Объем памяти 4 гигабайта, частота 1600 мегагерца, стандартные тайминги 11-11-11-28, и напряжение 1,5 вольта. Никакой комплектации или упаковки для модулей Team Elite производителем не предусмотрено.

Transcend 640216-4610


У модулей Transcend, равно как и у Silicon Power не удалось выявить никаких оригинальных особенностей. Все просто, скромно, и максимально экономично. Впрочем, так выглядят 90 процентов всех планок памяти данного ценового сегмента. Данная компания вообще никогда не отличалась особой оригинальностью при производстве внутренних компонентов для ПК. Ее память всегда проста и дешева, а видеокарты, которыми Transcend также когда-то занималась, были полностью референсными. Тем не менее, она является таким же полноправным претендентом на покупку, хотя и уступает по известности бренда всем конкурентам. Впрочем, как известно из истории, победить может и тот, от кого этого совсем не ждешь.



Тем более что по базовым характеристикам модули Transcend не отличаются от остальных. Частота 1600 мегагерц, тайминги 11-11-11-28, напряжение 1,5 вольта, и объем 4 гигабайта. Учитывая, что сама Transcend чипы памяти не производит, совсем не удивительно было обнаружить на ее планках чипы производства компании Elpida с маркировкой J2108BDBG-GN-F. Их емкость равна 2 гигабитам, и как следствие, для достижения общего объема в 4 гигабайта их распаяно 16 штук.

Методика тестирования

Учитывая, что тестировать их на равных частотах бессмысленно, главной задачей данного теста было раскрытие скрытого потенциала с целью выявить лучший комплект модулей. Для этого мы пытались найти максимальную стабильную частоту работы при повышении напряжения до 1,65 вольта, то есть максимального безопасного уровня. Также мы попытались выяснить на каких минимальных таймингах способна работать память при своей номинальной частоте, которая для всех модулей составляет 1600 мегагерц. Ведь, как известно, базовые модули выставляются с запасом, и всегда есть вероятность получить чуть большую производительность снижая тайминги. Так же минимальных таймингов мы пытались добиться и на самой высокой достигнутой частоте.


Учитывая, что наш тестовый стенд использует процессор Intel с фиксированной частотой опорной шины, разгон памяти мы могли осуществлять только с помощью множителей, что несколько ограничило наши возможности фиксированными частотами в 1600, 1866, 2000, и 2133 мегагерца. Тем не менее, достаточно объективные данные о потенциале модулей благодаря этому мы получим. К тому же ранжировать память с одинаковой максимальной частотой должны помочь тайминги. Если при равных частотах, один из модулей сможет работать на более низких таймингах, то он, безусловно, будет более предпочтителен. Кстати, обладатели процессоров AMD, благодаря возможности регулировки частоты передней шины, имеют больше возможностей по поиску предельной частоты, и естественно смогут добиться от тех же модулей памяти большего.

Разгон

Если честно, то в глубине души мы надеялись на то, что хоть одна пара моделей достигнет заветной планки в 2000 мегагерц, но эти надежды разбились о суровую действительность. Тем не менее, назвать результаты “огорчающими” нельзя, так как три из четырех решений отлично работали на частоте 1866 мегагерц. И только модули от Transcend совершенно отказались делать этот шаг, так и оставшись на уровне 1600 мегагерц. Обидно. Тройка лучших после повышения частоты начала бороться за минимальные тайминги, чтобы выявить однозначного лидера. Им оказались модули производства Silicon Power, которые при повышенной частоте смогли стабильно работать на великолепных таймингах 8-9-8-24. Это вполне достойный показатель не только для бюджетной, но и для оверклокерской памяти. А вот модулям Team Elite и Kingston такое повышение не далось малой кровью, и функционировать они смогли лишь на таймингах 12-12-12-32, что трудно назвать хорошим результатом. А модули Silicon Power, в итоге довершили разгром соперников, тем, что смогли работать при указанных таймингах и частоте на номинальном напряжении в 1,5 вольта, а не 1,65, как предполагалось по условиям теста. Однозначная и безоговорочная победа.


Вторая дисциплина по достижению минимальных таймингов на базовой частоте в 1600 мегагерц и без повышения напряжения также покорилась именно модулям Silicon Power, хотя и с небольшим перевесом. Впрочем, тайминги 8-9-8-21 можно назвать отменными для такой частоты. Вторая группа состоящая из модулей производства Team и Kingston вновь продемонстрировала одинаковые результаты “согласившись” на тайминги 9-9-9-21. А вот Transcend вновь проявил упорство достойное лучшего применения, отказавшись работать даже на 10-10-10-26, так и оставшись истинным приверженцем своей базовой частоты и таймингов.

Тесты

Итак, результаты разгона ясны, но перед тем как переходить к заключению, давайте проверим, к каким результатам привело это повышение частот и снижение таймингов. Большое количество тестов использовать бессмысленно, так как большинство приложений практически не заметит такие изменения в конфигурации, да и потребность в пропускной способности памяти у каждого приложения разная, а потому мы решили обойтись синтетикой. AIDA 64 покажет нам какой прирост в чистой пропускной способности мы получили, и как изменились задержки. А PCMark 7, а точнее входящий в него тест Video Transcoding Downscaling оценит реальный эффект от этих изменений, так как именно к пропускной способности памяти он очень критичен.





Как видите, AIDA 64 оценила все изменения более чем адекватно, продемонстрировав большую любовь к более высоким частотам, нежели к низким таймингам. Впрочем, пара модулей Silicon Power, благодаря сочетанию минимальных таймингов и максимальной частоты, все же оказывается впереди, да и задержки он демонстрирует минимальные. Удивительно выглядят результаты модулей от Transcend, которые местами демонстрируют неплохие результаты. Видимо AIDA решила накинуть им немного “за стабильность”…


В PCMark 7 разброс результатов выше, и здесь Transcend делать уже нечего. При этом, что интересно, модули Team Elite при работе на минимальных таймингах оказались лучшими, опередив даже Silicon Power. А вот Kingston заметно отстал. Зато на максимальной частоте реванш берет Silicon Power, опережая Kingston, а модули Team оказываются лишь на третьем месте. Кстати, отметим, что этот тест явно показал, что он предпочитает меньшие задержки, нежели более высокую частоту.

Выводы

Назвать однозначного победителя теста несложно – это модули от Silicon Power, которые показали более чем достойные результаты, особенно это относится к минимальным таймингам. По своим характеристикам после разгона они оказались лучше чем большая часть оверклокерских решений одно- двухлетней давности. И это при вполне бюджетной цене. Такие модули мы, безусловно, рекомендуем к покупке.

Середняками, которые также не стоит списывать со счетов, стали Team Elite и Kingston. Причем их главным достоинством является возможность снизить тайминги на номинальных частотах. Это дает хороший эффект. Значительно лучший, чем повышенная частота при более высоких таймингах. Они также вполне достойны покупки… в том случае, если нет возможности купить Silicon Power.

  • Бесплатно добиться от системы дополнительного быстродействия всегда приятно — именно поэтому люди занимаются разгоном. Однако в первую очередь оверклокеры разгоняют процессор и видеокарту, поскольку опыты над этими компонентами дают наибольший прирост скорости. Память обычно оставляют на десерт или не трогают вовсе. Одних останавливает тот факт, что разгонять оперативку сложно, других - что процесс этот дарует совсем незначительный бонус к производительности. Случается даже, что разгон памяти виден в бенчмарках и некоторых приложениях и абсолютно не виден в играх. Но для тех, кто в любом случае хочет выжать из своей системы все соки, «Игромания» публикует ликбез по разгону памяти.

    Многогранная

    Как и в случае с другими компонентами системы, процесс разгона оперативной памяти заключается в изменении рабочих параметров устройства. Добиться максимальной производительности от ОЗУ помогают шаманские пляски с тремя основными характеристиками - частотой, напряжением и задержками (таймингами).

    Что можно сказать о частоте? Чем она больше - тем лучше! Фактически ее значение показывает, сколько полезных тактов могут совершить модули памяти за секунду реального времени. Однако и здесь есть свои нюансы. Дело в том, что для памяти типа DDR, которая используется в современных компьютерах, существует две разных частоты - реальная и эффективная, причем вторая ровно в два раза выше первой. Производители модулей всегда указывают эффективную частоту своих творений, в то время как в различных диагностических утилитах, а также в BIOS материнских плат нередко отображается именно реальная частота.

    В чем подвох? Название DDR - это сокращение фразы DDR SDRAM, которая расшифровывается как Double Data Rate Synchronous Dynamic Random Access Memory, то есть синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных. Ключевые слова здесь - удвоенная скорость. В отличие от простой SDRAM (предшественницы DDR), рассматриваемая память взаимодействует с шиной данных не только по фронту, но и по спаду тактового сигнала, то есть одному такту шины соответствуют два такта микросхемы памяти. Соответственно, одни разработчики программного обеспечения предпочитают считать именно такты шины (реальную частоту), в то время как другие указывают частоту работы самих чипов (эффективную частоту). Так что если во время разгона вы вдруг обнаружите, что частота памяти ровно в два раза ниже, чем должна быть, то не удивляйтесь, это нормально.

    Рабочее напряжение модулей оказывает существенное влияние на их стабильность. В соответствии со стандартами, для плашек DDR2 штатным является напряжение 1,8 В, а для DDR3 - 1,5 В. Медленные модули, как правило, придерживаются этих значений, а вот оверклокерские наборы почти всегда работают с повышенными вольтажами: разогнанным чипам не хватает питания, и его приходится увеличивать. Естественно, это ведет к более интенсивному тепловыделению, но если на микросхемах памяти есть радиаторы, то небольшое увеличение напряжения не создает особых проблем. Тем не менее определенные границы лучше не пересекать, иначе модули могут выйти из строя. Для DDR2 разумным максимумом можно считать напряжение в 2,2 В, а для DDR3 - 1,65 В.

    Третий ключевой параметр оперативной памяти - задержки (тайминги), и это, определенно, тема для отдельной главы.

    Без спешки

    Итак, задержки - или тайминги. Прежде чем объяснить, что это такое, не помешает ознакомиться с архитектурой памяти DDR.

    Для хранения простейшей единицы информации (бита) в чипах DDR используется ячейка, представляющая собой сочетание транзистора и конденсатора. Подобных ячеек в каждой микросхеме памяти огромное множество. Они выстраиваются в строки и столбцы, которые в конечном счете образуют массивы, называемые банками. Поскольку чипы DDR относятся к динамическому типу памяти, их содержимое необходимо периодически обновлять (подзаряжать), иначе записанная в них информация будет утеряна.

    Взаимодействием с ОЗУ занимается так называемый контроллер памяти. Получив от процессора команду на чтение или запись бита данных с логическим адресом, он определяет, в каком банке/строке/столбце располагается нужная ячейка и что с ней следует делать. Проблема заключается в том, что ячейка не может быть обработана мгновенно - должно пройти определенное время (читай: число тактов памяти), прежде чем нужная операция будет выполнена. Задержки, возникающие на определенных этапах чтения/записи битов, и именуются таймингами.

    Существует большое количество таймингов, однако ключевое влияние на производительность памяти оказывают лишь некоторые из них. Конкретно - CAS Latency, RAS-to-CAS Delay, Row Precharge Time и Row Active Time. Именно таков их порядок по степени значимости, и именно в такой последовательности они располагаются в BIOS материнских плат и в описаниях к модулям памяти. Например, в технических характеристиках плашек Kingmax DDR3 2400 MHz Nano Gaming RAM есть строка «10-11-10-30» - так вот, это и есть тайминги. Первая цифра показывает значение CAS Latency, вторая - RAS-to-CAS Delay и так далее.

    Чтобы понять, за что отвечают те или иные задержки, следует разобраться, как происходит считывание данных из ячеек. Для начала чип памяти должен подготовить к обработке нужную строку и столбец в банке. Для этого им отсылается соответствующая команда, после чего происходит процесс активации строки, занимающий определенное время. Количество тактов, необходимое для «пробуждения» строки, как раз и зовется RAS-to-CAS Delay.

    Далее контроллер отправляет нужной последовательности ячеек (ее длина зависит от типа памяти и дополнительных настроек) команду на считывание, однако на шину данных первая порция информации поступает не сразу, а спустя несколько тактов - эта задержка именуется CAS Latency и считается ключевой для модулей памяти. После того как все необходимые данные считаны, контроллером отдается команда на закрытие и подзарядку строки.

    А где же два других тайминга? Первый, Row Precharge Time, вступает в силу сразу после закрытия строки. Дело в том, что последующий доступ к этой строке становится возможным не сразу, а лишь после подзарядки, которая отнимает определенное число тактов - за этот интервал и отвечает Row Precharge Time. Ну а тайминг Row Active Time показывает период активности строки, то есть количество тактов, прошедших от момента ее активации до момента поступления команды подзарядки. Фактически эта задержка зависит от параметров RAS-to-CAS Delay, CAS Latency и длины считываемой строки, однако обычно ее значение подбирают простым сложением трех других таймингов. Это не совсем корректно, зато позволяет гарантированно избежать проблем со стабильностью работы при минимальных потерях производительности.

    Запись данных в ячейки памяти осуществляется схожим образом, так что рассматривать этот процесс подробно мы не станем. Также не будем акцентировать внимание на дополнительных настройках памяти вроде длины строки и вторичных таймингов - слишком уж незначительно их влияние на общее быстродействие системы. Эти параметры будут интересны оверклокерам, идущим на рекорд, а вовсе не простым пользователям.

    Многие начинающие сборщики нередко допускают следующую ошибку: стремясь вооружить системник по максимуму, они устанавливают в материнскую плату модули DDR3 с запредельной рабочей частотой (скажем, 2400 МГц) и остаются в счастливой уверенности, что память в их компьютере уже работает на заявленной скорости. Однако без дополнительных манипуляций со стороны пользователя подобные плашки будут работать в том же режиме, что и их дешевые собратья. Объясняется это тем, что базовые настройки памяти материнская плата черпает из специального чипа SPD (Serial Presence Detect), коим в обязательном порядке оснащается каждый DDR-модуль. Прописанные в SPD частоты и тайминги, как правило, далеки от максимально возможных - это сделано для того, чтобы модули могли стартовать даже в очень слабой системе. Соответственно, такую память приходится дополнительно разгонять.

    К счастью, иногда этот процесс можно существенно облегчить. Так, компания Intel уже не первый год продвигает особое расширение для чипа SPD, известное как XMP (Extreme Memory Profiles). Оно записывает в модули памяти информацию о дополнительных настройках системы, которая может быть считана материнскими платами с поддержкой этой технологии. Если материнке удастся подхватить нужный профиль XMP (он выбирается через BIOS), то она автоматически выставит заявленную в нем частоту памяти, подкорректировав ради этого другие параметры системы, - произойдет автоматический разгон. Правда, при этом крайне желательно, чтобы память была сертифицирована для той платформы, на которую она установлена, иначе профиль либо не сработает, либо сработает, но не так, как надо. Кроме того, никогда не лишне перепроверить выставленные автоматикой значения, поскольку некоторые производители памяти умудряются прописывать в профиле XMP такие настройки, от которых система может скоропостижно скончаться. В целом же технология эта очень полезна, но дружит она только с процессорами Intel.

    Стоит отметить, что еще до появления XMP компании NVIDIA и Corsair продвигали аналогичную разработку, известную как EPP (Enhanced Performance Profiles), но она не прижилась.

    Соковыжималка

    С тем, как работает оперативная память, мы разобрались. Теперь осталось понять, как добиться от нее большей производительности, - и вот с этим дело не просто. Существует два разных способа разгона памяти. Первый подразумевает повышение частоты модулей, второй - понижение таймингов. Другими словами: можно либо увеличивать количество тактов в секунду, либо делать сами такты более продуктивными. В идеале, конечно, следует использовать оба метода одновременно, но улучшение одного параметра всегда ведет к ухудшению другого, и подобрать оптимальный баланс нелегко. Нельзя сказать заранее, что окажется полезнее вашей системе - высокочастотная память с ослабленными таймингами или модули, функционирующие на более низкой частоте, но обладающие минимальными задержками.

    Если вы готовы драться за каждый лишний балл в каком-нибудь PCMark, то мы рекомендуем перепробовать несколько различных соотношений частоты и таймингов и выбрать тот, что дает наилучший результат конкретно для вашей системы. В противном случае будет разумнее сначала увеличить тайминги, потом найти частотный потолок для используемых модулей памяти, а затем попытаться вновь снизить задержки - как показывает практика, такой подход чаще оказывается выигрышным. При этом на протяжении всего пути не стоит сильно отклоняться от базового соотношения таймингов: первые три задержки должны быть примерно одинаковыми, а для четвертой желательно выставлять значение равное сумме этих таймингов или чуть ниже.

    При разгоне памяти нельзя обойтись без помощи тестов, измеряющих производительность системы, - именно они позволят оценить, насколько велик прирост быстродействия вследствие ваших манипуляций и есть ли он вообще. Может показаться парадоксальным, но порою понижение таймингов или увеличение частоты оперативки может негативно сказаться на скорости работы компьютера - случаются такие сюрпризы нечасто, но отмахиваться от них не стоит. В общем, без бенчмарков никуда. Какое ПО лучше всего использовать? Мы советуем джентльменский набор из PCMark , Everest и WinRAR (встроенный тест), но вообще список диагностических утилит для памяти обширен - выбирайте то, что больше по душе. Кстати говоря, бенчмарки полезны еще и потому, что позволяют проверить память на стабильность работы. А после того, как разгон будет считаться завершенным, не помешает дополнительно помучить компьютер стресс-тестами вроде OCCT и S&M , дабы окончательно убедиться в стабильности системы.

    Проводя эксперименты, не стоит забывать о повышении напряжения, причем речь идет не только о самих модулях, но и о контроллере памяти - нередко именно он мешает раскрыть весь потенциал разгоняемых плашек. Ранее на платформах Intel этот важный элемент системы располагался в северном мосту чипсета, однако с недавних пор он окончательно переселился в центральные процессоры, поэтому на современных платформах увеличение напряжения на контроллере негативно сказывается на температуре ЦП. Таким образом, иногда для эффективного разгона памяти приходится дополнительно усиливать охлаждение процессора, а не самих модулей. Предостережем: не повышайте напряжение на контроллере более чем на четверть, это может привести к печальным последствиям.

    Наконец, стоит заранее определиться, каким образом будет осуществляться разгон. Можно либо воспользоваться специальной утилитой, либо изменять необходимые параметры непосредственно в BIOS. Мы настоятельно рекомендуем взять на вооружение второй вариант, поскольку ни одна программа не в состоянии раскрыть все возможности, предоставляемые системной платой. Соответственно, перед проведением опытов не помешает внимательно изучить инструкцию к материнке - это позволит понять, что именно скрывается под тем или иным пунктом в BIOS. Так уж сложилось, что каждый производитель стремится ввести в обиход свои собственные обозначения, и даже такие, казалось бы, общепринятые термины, как названия таймингов, могут варьироваться от платы к плате.

    И еще: не стоит сразу впадать в панику, если на определенном этапе разгона система вдруг напрочь откажется стартовать. Как правило, это означает лишь, что материнская плата не может автоматически сбросить неприемлемые для нее настройки BIOS. Встречается данная болезнь не так часто и лечится она банальным выниманием батарейки из платы. А вот если это не поможет - тогда уже можно и паниковать.

    Индивидуальный подход

    Когда дело доходит непосредственно до ковыряния в многочисленных меню, становится понятно, что изменять тайминги куда проще, чем частоту памяти. Это в видеокартах все элементарно: потянул в специальной утилите ползунок вправо - получил нужную прибавку к частоте. С полноценными DDR-модулями все намного сложнее.

    Основные проблемы связаны с тем, что скорость работы оперативки зависит сразу от двух параметров - опорной частоты (FSB, BCLK) и множителя. Перемножая эти значения, мы получаем итоговую частоту ОЗУ. Однако простое увеличение первого параметра почти наверняка приведет к непредвиденным результатам, ведь это неизменно скажется на производительности других компонентов системы. Можно, конечно, не трогать опорную частоту, но добиться впечатляющего разгона с помощью одних лишь модификаций множителя в большинстве случаев невозможно.

    На разных платформах изменение опорной частоты приводит к разным последствиям. Кроме того, нередко ради повышения скорости работы памяти требуется изменить рабочие параметры других исполнительных блоков системы. Словом, к каждой платформе нужен свой подход, так что мы постараемся разобрать основные нюансы для каждого случая. Рассматривать все возможные конфигурации мы, разумеется, не станем - сосредоточимся на десктопных платформах, появившихся в последние несколько лет. У всех них контроллер памяти располагается в процессоре, так что можно сказать, что особенности разгона зависят от того, какой именно кусок кремния является сердцем системы. Итак, хит-парад самых актуальных на сегодняшний день процессоров...

    Intel Sandy Bridge

    Новейшие процессоры Intel , представленные двухтысячной линейкой Core i3/i5/i7 , придутся по душе оверклокерам-новичкам. Матерые адепты разгона считают, что с приходом Sandy Bridge разгонять систему стало слишком скучно. Все дело в том, что в этих процессорах опорная частота (у Intel она зовется BCLK), от которой пляшут все основные исполнительные блоки, практически не поддается изменению - стоит отклонить ее на какие-то 6-7 МГц, и система начинает вести себя неадекватно. Соответственно, старые добрые приемы в случае с Sandy Bridge не работают, поэтому единственный способ разогнать оперативку (как, впрочем, и процессор) - увеличивать соответствующий множитель. Благо контроллер памяти, встроенный в новые процессоры, вышел довольно шустрым, и частота в 2133 МГц ему покоряется без проблем. Поскольку трогать BCLK настоятельно не рекомендуется, итоговая опорная частота памяти в любом случае должна быть кратна 266 МГц, то есть не любой набор DDR3 удастся завести именно на той частоте, что заявлена его производителем. Скажем, модули DDR3-2000, встретившись с новыми процессорами Intel, будут работать как DDR3-1866.

    Заметим, что одного лишь процессора Sandy Bridge для эффективного разгона ОЗУ недостаточно - нужна еще и подходящая материнская плата. Все дело в том, что Intel искусственно ограничила оверклокерские возможности не только процессоров (множитель можно увеличить лишь у моделей с индексом «К»), но и чипсетов. Так, младшие наборы логики память разгонять не умеют, поэтому в системных платах на их основе даже самые скоростные модули будут работать как DDR3-1333. А вот чипсет Intel P67 Express , позиционирующийся как решение для энтузиастов, поддерживает режимы вплоть до DDR3-2133, поэтому к выбору материнской платы под Sandy Bridge стоит подходить со всей основательностью.

    Как определить, подходят ваши конкретные модули для разгона или нет? Если плашки изначально не относятся к оверклокерскому классу (то есть их частота не превышает рекомендованных создателями процессоров значений), то отталкиваться стоит прежде всего от их производителя, рабочего напряжения и системы охлаждения.

    Про производителя, думаем, объяснять не стоит: именитые компании используют проверенные чипы, возможности которых, как правило, не до конца исчерпаны, а вот от китайского нонейма ожидать выдающегося разгонного потенциала не стоит. Рабочее напряжение также позволяет определить, насколько микросхемы близки к пределу своих возможностей: чем меньше вольт подается на чипы по умолчанию, тем сильнее можно будет увеличить напряжение самостоятельно и тем выше будет частотный потенциал. Ну а качественные радиаторы позволяют эффективнее отводить тепло от чипов, что позволяет выжать из плашек чуть больше производительности.

    Intel Bloomfield

    Любимцы энтузиастов - процессоры Core i7 девятисотой серии - обладают феноменальной вычислительной мощностью, однако с их помощью очень сложно заставить память работать на запредельных частотах. Отчасти это компенсируется тем, что контроллер памяти у Bloomfield может работать в трехканальном режиме, недоступном другим рассматриваемым платформам.

    При работе с Core i7-9хх возможности оверклокерских модулей, как правило, упираются в недостаточную производительность процессорного блока Uncore. Последний состоит из контроллера памяти и L3-кэша, а скорость его работы напрямую зависит от BCLK. При этом существует правило, что частота этого блока должна быть как минимум в два раза выше частоты работы памяти, то есть, например, для нормального функционирования плашек в режиме DDR3-1800 придется завести Uncore на 3600 МГц. Проблема заключается в том, что этот самый блок получился большим и горячим. Работу в нештатном режиме он не любит, и подаваемое на него напряжение необходимо существенно увеличивать (но не выставлять выше 1,4 В!). В итоге, даже если не разгонять вычислительные блоки процессора, Uncore с частотой 4000 МГц разогреет кристалл так, что не всякий кулер справится. Поэтому пересечь черту в 2000 МГц для памяти, не применяя серьезное охлаждение, крайне сложно. А поскольку разгонять память, не повышая частоту процессора, не очень разумно, можно констатировать, что среднестатистическому компьютеру на базе Bloomfield скоростная память вообще не нужна - какой-нибудь DDR3-1600 хватит с лихвой.

    Любопытно, что модели семейства Core i7-9хх предоставляют в распоряжение пользователя внушительный набор множителей для памяти - они покрывают диапазон от 6х до 16х с шагом 2х. Для Uncore множитель так и вовсе можно выкручивать до 42х. Ну а поскольку штатная частота BCLK у Bloomfield равна 133 МГц, к максимально возможным для памяти значениям частоты можно подобраться, даже не трогая тактовый генератор. Впрочем, играясь и с BCLK, и с множителем, опытный оверклокер в любом случае сможет выжать из плашек еще немного бонусных мегагерц.

    Intel Lynnfield

    Процессоры линеек Core i7-8хх и Core i5-7хх , построенные на архитектуре Lynnfield, - это, пожалуй, лучший выбор для тех, кто хочет поставить рекорд частоты модулей памяти. Чтобы убедиться в этом, достаточно взглянуть, какие процессоры используются нынешними рекордсменами.

    Секрет успеха Lynnfield в том, что для стабильной работы оперативки частота Uncore у этих кристаллов необязательно должна быть в два раза больше частоты памяти. Intel решила вообще заблокировать множитель ненавистного оверклокерами блока: для восьмисотых моделей Core i7 он зафиксирован на отметке 18х, а для семисотых - на 16х. Максимальные множители памяти для этих процессоров равны 12х и 10х соответственно. Таким образом, Uncore больше не выступает в роли бутылочного горлышка при разгоне памяти, поэтому «набор высоты» проходит легко и непринужденно.

    Процессор из линейки Core i7-8хх без труда сможет выжать максимум из любого набора памяти: до 1600 МГц (133х12) можно добраться, не трогая BCLK, ну а дальше в ход идут эксперименты с опорной частотой. У семисотых Core i7 возможности чуть скромнее, но и их рядовому пользователю должно хватить с лихвой. Конечно, при значительном увеличении BCLK блок Uncore хорошенько разогреется (его рабочее напряжение придется усилить), однако к тому времени модули уже будут работать на пределе возможностей. Вообще же в таких случаях крайне желательна мощная система охлаждения процессора.

    Intel Clarkdale

    Бюджетные процессоры Intel со встроенной графикой, представленные семействами Core i5-6хх , Core i3 и Pentium G , плохо дружат с памятью. Увы, в целях экономии в этих моделях контроллер памяти вместе с графическим ядром вынесен на отдельный кристалл, который соединен с вычислительными ядрами шиной QPI. Использование шины плохо сказывается на производительности контроллера, так что от скоростной памяти в системе с Clarkdale особого толка не будет.

    Разгон памяти, работающей в тандеме с обозначенными процессорами, осуществляется самым обычным образом: увеличиваем множитель, подкручиваем частоту BCLK (по умолчанию она равна 133 МГц). Никаких подводных камней нет, разве что при сильном разгоне придется понизить множитель QPI и увеличить напряжение, подаваемое на L3-кэш (пресловутый Uncore). Старшие Clarkdale, как правило, могут завести оверклокерскую память на частотах около 2000 МГц, что не так уж и плохо. Другое дело, что прирост быстродействия системы от увеличения скорости работы плашек будет совсем уж мизерным. Что касается максимального множителя для памяти, то он зависит от конкретной модели процессора: для «пентиумов» он равен 8х, а у Core i5-6хх и Core i3 - 10х. Кроме того, существует еще Core i5-655K , созданный специально для разгона, - он поддерживает множитель 16х, но лишь немногие материнские платы знают о его возможностях.

    AMD Phenom II/Athlon II

    В последние годы каждая новая процессорная архитектура от Intel привносит какие-то новые особенности, связанные с разгоном. С AMD все иначе - алгоритм раскочегаривания этих кристаллов уже давно практически не претерпевает изменений. Вероятно, что вместе с выходом процессоров Llano , оснащенных встроенным графическим ядром, этой стабильности придет конец, ну а пока что мы рассмотрим, каким образом разгоняется память, работающая в тандеме с нынешними решениями AMD - Phenom II и Athlon II .

    В качестве опорной частоты для памяти в данном случае выступает частота системной шины (HT Clock по терминологии AMD), которая по умолчанию равна 200 МГц. Изменение этого параметра сказывается на режиме работы процессора, контроллера памяти (этот блок обычно обозначается как CPU NB) и шины HyperTransport Link. По этой причине в поисках частотного потолка вашего ОЗУ следует понизить множители для процессора и HT Link, а вот контроллер памяти, напротив, глушить не стоит. Его частота должна быть по крайней мере в три раза выше, чем реальная частота памяти (и, соответственно, в полтора раза выше, чем частота эффективная), иначе стабильность системы не гарантируется. Вместе с тем чем быстрее работает контроллер, то тем больше шансов выдавить из модулей памяти лишние мегагерцы или понизить их тайминги. Можно даже слегка задрать напряжение CPU NB, чтобы достичь лучшего результата, но сильно увлекаться не стоит.

    Следует отметить, что на платформах AMD память разгоняется хуже, чем на платформах Intel и, как правило, отметку в 2000 МГц оверклокерам покорить не удается. Таким образом, покупать для такой системы сверхбыстрые планки DDR3 нет особого смысла. Учтите, что режимы работы до DDR3-1600 МГц включительно можно активировать изменением множителя, однако при дальнейшем разгоне в любом случае придется мучить тактовый генератор.

    * * *

    Как видно, изменять опорную частоту при более-менее серьезном разгоне памяти приходится практически всегда (а если бы на свете не существовало Sandy Bridge, это высказывание было бы еще более категоричным). Да, порою серьезных частот можно достичь посредством одних лишь множителей, однако шаг между доступными для активации значениями частоты в этом случае оказывается слишком велик, поэтому для более точного нахождения частотного потолка все равно приходится шаманить с тактовым генератором. Ну а это, как известно, приводит к изменению частоты процессора.

    Мораль такова: если уж заниматься разгоном памяти серьезно, то параллельно стоит разгонять и процессор. В самом деле, зачем выжимать все соки из плашек и одновременно пытаться сдерживать рабочую частоту процессора, если даже незначительный разгон ЦП даст куда больший эффект, чем все опыты над памятью? Таким образом, прежде чем браться за разгон памяти, будет неплохо узнать, какие частоты способен покорить ваш процессор. Ну а после придется искать баланс между скоростью работы кристалла и частотой/таймингами оперативки, ведь обычно выставить максимально привлекательные значения обоих компонентов разом не получается.

    Сложно? Что ж, никто не мешает вам просто слегка подкрутить тайминги или увеличить множитель памяти, а после наслаждаться свалившимся из ниоткуда быстродействием, не углубляясь в дальнейший разгон компьютера. Не хотите раскрывать весь потенциал системы - не надо. Ну а господам энтузиастам мы желаем удачи в этом нелегком, но интересном деле.

    Несмотря на то, что некоторые источники предлагают скачать специальные программы для разгона разных типов процессоров (Intel или AMD), правильнее всего повышать тактовую частоту CPU через BIOS. Проверенного софта, который бы смог разогнать процессор, не существует. Это связано с техническими ограничениями и тем, что для каждого «камня» есть свои нормы повышения частоты. Они могут меняться в зависимости от типа используемого охлаждения. Мы рекомендуем узнать допустимую нагрузку для установленной модели чипа и постепенно изменить значения с помощью инструкции, написанной конкретно для вашей версии BIOS.

    Превышение максимально допустимого порога разгона может привести к поломке оборудования.

    Программы для разгона видеокарт

    Программы для разгона видеокарт помогут изменить основные показатели работы на аппаратной графической карте вашего ПК или ноутбука - напряжение, допустимую температуру, частоту работы процессора и памяти адаптера, а также скорость вращения кулера. Кроме редактирования параметров эти утилиты позволяют просматривать основные сведения об установленном оборудовании.

    Акцентируем внимание на том, что подобные программы следует применять с внешними графическими устройствами, которые не интегрированы в процессор или материнскую плату. Только в этом случае вы сможете получить измеримый эффект от изменения настроек.

    Среди предложенных инструментов выделим прежде всего из-за совместимости с наибольшим количеством устройств.

    Программы для разгона оперативной памяти (ОЗУ)

    Как и в случае с процессором, не существует стабильных утилит, которые смогут изменить частоту работы оперативки с помощью операционной системы. Редактировать данные параметры нужно через BIOS, более того, важно, чтобы новая частота поддерживалась не только памятью, но и материнской платой. Ознакомиться с инструкцией по изменению частот можно в руководстве пользователя к вашей материнке.

    Можно встретить мнение, что существуют программы для разгона оперативной памяти «старых» образцов (DDR) на ноутбуках, однако нам не удалось найти рабочих версий таких утилит.

    Программы для улучшения работы дисков

    Основные факторы, влияющие на быстродействие жестких дисков - его текущее состояние и схема размещения файлов.

    Проверить текущее состояние путем S.M.A.R.T.-анализа и при необходимости «правильно» отформатировать устройство можно с помощью утилиты HDD Low Level Format Tool, она набрала больше всего балов в нашем тематическом .

    Кроме того, быстродействие классических жестких накопителей зависит от того, насколько равномерно распределены данные по поверхности. Множество различных системных утилит содержат функцию структуризации файлов (дефрагментации). Среди специализированных решений выделим и .

    Программы для оптимизации Windows

    Утилиты, которые помогут оптимизировать операционную систему, мы ранее рассматривали в отдельной .

    Другие факторы, влияющие на производительность

    Если вы используете внешние устройства, не забывайте, что скорость обмена данными зависит от используемого протокола. Например, современные телефоны и флешки лучше подключать в USB-порт, который совместим с протоколом 3.0, он имеет синий цвет.

    Также не забывайте, что из-за наличия вредоносного ПО компьютер может заметно «тормозить». Для защиты системы рекомендуем использовать программы-антивирусы, им мы также посвятили отдельный .

    Ускорение работы ПК может потребоваться по самым разным причинам. Одни пользователи задумываются о том, как разогнать компьютер, потому что мощности не хватает для игр, другие просто хотят добиться максимальной производительности. Для устаревшей техники разгон является практически единственным способом продлить её срок службы.

    О том, как разогнать компьютер, задумались одновременно с его появлением. В процессорах 8088 с тактовой частотой 8 МГц радиолюбители заменяли тактовый генератор, после чего он мог работать на частоте 12 МГц, а значит, на 50% быстрее. В современных компьютерах процесс разгона значительно облегчён, его можно произвести через изменение настроек BIOS.

    Существует и соответствующее программное обеспечение, которое позволяет ускорить работу компонентов компьютера прямо из среды Windows. Решение того, как разогнать старый компьютер, кроется в изменении положения специальных джамперов (переключателей) на материнской плате.

    Определение параметров компьютера

    Разгон оперативной памяти

    На быстродействие компьютера оказывает воздействие как объём установленной оперативной памяти, так и скорость её работы. Скорость задаётся таймингами, которые отражают выполнение операций в наносекундах. Соответственно, чем ниже тайминги, тем выше быстродействие памяти. Также на скорость обмена данными влияет и частота системной шины: чем она выше, тем больше операций может быть произведено за секунду времени.

    Решения того, как разогнать оперативную память компьютера, разделяются по двум направлениям: через BIOS или программное обеспечение можно попробовать понизить тайминги памяти. Но добиться успеха в этом случае можно, если модули рассчитаны производителем на низкие значения либо когда в BIOS установлены в автоматическом режиме.

    Программы для разгона оперативной памяти

    Большинство программ очищают и оптимизируют оперативную память. Но есть и такие, которые позволяют производить изменения прямо из среды Windows. К их числу можно отнести RamSmash, Turbo Memory, MemMonster и некоторые другие. Кроме изменения настроек памяти они позволяют контролировать и её физические параметры, что сильно упрощает разгон.

    Увеличение частоты работы памяти происходит обычно при разгоне процессора, но в этом случае тайминги приходится повышать, чтобы добиться стабильной работы модулей. Нужно иметь в виду, что при увеличении частоты работы памяти увеличивается и тепловыделение. Поэтому нужно позаботиться об охлаждении, установив радиаторы или более мощные вентиляторы в системный блок.

    Разгон видеокарты

    Как разогнать компьютер на максимум? В этом случае не обойтись без ускорения работы видеокарты. Для этого используют различные приложения, поставляемые производителями или сторонними разработчиками. Современные видеокарты немногим уступают по производительности процессору и материнской плате.

    Они тоже имеют центральный процессор, оперативную видеопамять и внутреннюю шину передачи данных. Поэтому в них разгоняют как графический процессор, так и увеличивают частоту работы видеопамяти. Для обеспечения стабильной работы при этом может потребоваться замена штатной системы охлаждения на более мощную.

    Программный разгон видеокарт

    Для разгона карт nVidia производителем поставляется программное обеспечение RivaTuner. Для карт семейства Radeon также существует приложение, поставляемое разработчиком - AMD Catalyst. Но существует множество других программ, позволяющих оценить производительность конкретной видеокарты и раскрыть её потенциал.

    Дело в том, что производители зачастую используют один и тот же чип, но при этом на младших моделях урезается тактовая частота и некоторые функции по обработке графики. К таким программам можно отнести GF123clk, NVMax, Raid-on Tuner, PowerStrip. Они позволяют настроить параметры обработки графики и производить плавное увеличение частоты работы процессора и памяти.

    Ускорение работы жёсткого диска

    Перед тем как разогнать компьютер для игр, следует уяснить, что огромное значение имеет быстродействие жёсткого диска. Современные игры активно загружают и обмениваются данными с диском, поэтому медленный жёсткий диск может стать узким местом в производительности компьютера.

    Скорость накопителей с вращающимся диском значительно ниже скорости передачи и обработки данных оперативной памятью и процессором. Хорошее решение представляет собой установка в систему твердотельного (SSD) диска. Он способен в 2-3 раза ускорить загрузку-выгрузку данных. При этом цены на эти устройства по мере увеличения объёмов производства продолжают снижаться.

    Ускорение работы в Интернете

    Одним из решений того, как разогнать компьютер безопасным способом, является ускорение работы в Интернете. В последнее время всё больше приложений и игр работают в онлайн-режиме, поэтому эта задача становится всё более актуальной. Для ускорения используется оптимизация браузера и настройка сетевого соединения.

    Вручную изменять настройки браузера и параметров соединения можно при наличии соответствующих знаний и опыта. На помощь обычным пользователям приходят специальные приложения для ускорения работы Интернета. К наиболее распространённым из них относятся:

    • Ashampoo Internet Accelerator;
    • SpeedyFox;
    • Speed Connect;
    • Active Speed;
    • cFosSpeed.

    Контроль разгона компьютера

    Огромное значение для того, как правильно разгонять компьютер, имеет постоянный контроль параметров всех связанных с разгоном комплектующих. Это достигается путём мониторинга в BIOS, а также с помощью специальных приложений. Наиболее продвинутые из них дают исчерпывающую информацию о температуре, подаваемом напряжении, а также скорости вращения вентиляторов всех компонентов системы.

    Мало знать, как разогнать компьютер, еще требуется определить стабильность его работы при нагрузке. Такие функции тоже доступны во многих программах. Для этого используются либо сложные математические функции, либо проигрывание отрывков из компьютерных игр. К наиболее популярным относятся следующие:

    • CPU-Z;
    • 3DMark;
    • AIDA 64;
    • PCMark

    Многие производители материнских плат комплектуют свою продукцию соответствующими программами мониторинга физических параметров.

    Приложения для общего разгона компьютера

    Одним из лучших решений того, как разогнать компьютер безопасным способом, является применение утилит для очистки и оптимизации работы компьютера. Они могут как очищать и настраивать операционную систему, так и вносить изменения в настройки комплектующих для увеличения их производительности.

    К недостаткам таких комплексных программ можно отнести высокую продолжительность их работы. Но это объясняется тем, что производится скрупулёзный анализ всех составляющих системы, а некоторые операции, например дефрагментация жёсткого диска, занимают продолжительное время.

    Зато в результате действия таких программ можно получить существенный прирост производительности, не внося изменений в работу оборудования. А изменения, приводящие к работе компонентов во внештатном режиме, в любом случае снижают их срок службы. К наиболее известным комплексным утилитам относятся AVG PC Tuneup, Ashampoo Win Optimizer, Glary Utilities и многие другие.



  • Загрузка...