sonyps4.ru

Как подключить солнечные. Сборка и подключение солнечной батареи

Альтернативный источник энергии на базе солнечных батарей – отличный вариант для организации независимого энергоснабжения. Он обеспечит высокую энергетическую эффективность не только в знойные деньки, но и в пасмурную погоду. Было бы неплохо иметь такое устройство у себя дома, не так ли?

Для этого нужно лишь грамотно подобрать технические компоненты и произвести монтаж. Сделать это может каждый, зная схемы и способы подключения солнечных батарей. Мы расскажем, как сооружается производительная система, перерабатывающая «зеленую энергию» в электричество, необходимое для питания бытового оборудования.

Кроме того, вы узнаете, как выбрать место для установки гелиопанелей и как совместить их со стационарной электросетью. Полезные советы и важные рекомендации окажут действенную помощь домашним мастерам. Для упрощения восприятия приведены тематические фотографии, схемы и видеоролики.

Планируя выполнить подключение солнечных панелей собственноручно, необходимо иметь представление, из каких элементов состоит система.

Солнечные панели состоят из комплекта , основное предназначение которых – преобразовывать солнечную энергию в электрическую. Сила тока системы зависит от интенсивности света: чем ярче излучения, тем больший ток генерируется.

Помимо солнечного модуля в устройство такой электростанции входят фотоэлектрические преобразователи — контроллер и инвертор, а также подключенные к ним аккумуляторы

Основными конструктивными элементами системы выступают:

  • Солнечная батарея – преобразует солнечный свет в электрическую энергию.
  • Аккумулятор – химический источник тока, который накапливает сгенерированную электроэнергию.
  • Контроллер заряда – следит за напряжением аккумуляторов.
  • Инвертор , преобразующий постоянное электрическое напряжение аккумуляторной батареи в переменное 220В, которое необходимо для функционирования системы освещения и работы бытовой техники.
  • Предохранители , устанавливаемые между всеми элементами системы и защищающие систему от короткого замыкания.
  • Комплект коннекторов стандарта МС4 .

Помимо основного предназначения контроллера – следить за напряжением аккумуляторов, устройство по мере необходимости отключает те или иные элементы. Если показатель на клеммах аккумулятора в дневное время достигает отметки в 14 Вольт, что указывает на их перезарядку, контроллер прерывает зарядку.

В ночной период, когда показатель напряжения аккумуляторов достигает предельно низкой отметки в 11 Вольт, контроллер останавливает работу электростанции.

Где лучше установить панели?

Первое, что необходимо сделать перед тем, как установить и подключить солнечную батарею – определиться с местом размещения агрегата.

Для установки фотоэлектрических модулей удобно использовать стационарные конструкции, выполненные из металлических профилей, либо же более модернизированные поворотные аналоги

Солнечные батареи можно размещать практически в любой хорошо освещаемой точке:

  • на крыше загородного коттеджа;
  • на балконе многоквартирного дома;
  • на прилегающей к дому территории.

Главное – обеспечить необходимые условия для получения максимальной выработки электроэнергии. Одним из таковых является ориентация и угол наклона относительно горизонта. Так светопоглощающая поверхность агрегата должна быть направлена в южную сторону.

В идеале солнечные лучи должны падать на нее под 90°. Чтобы добиться этого эффекта, необходимо подобрать оптимальный угол уклона в зависимости от климатических условий региона. Для каждого региона этот показатель свой.

Чтобы обеспечить максимальную производительность солнечных батарей, угол наклона устройств рекомендуется менять 2-4 раза в год: 18 апреля, 24 августа, 7 октября и 5 марта

К примеру, в московском регионе угол наклона размещения поверхности солнечных батарей для летних месяцев составляет 15-20°, а в зимние месяцы изменяется до отметки в 60-70°.

При размещении солнечных батарей на прилегающей к дому территории, панели лучше приподнять над поверхностью почвы как минимум на полметра – на случай выпадения большого количества снега. Такое решение правильно и в том плане, что обеспечивает достаточное расстояние для циркуляции воздуха.

Стоит помнить, что даже небольшая тень пагубно влияет на выработку электричества агрегатом. Панели нужно размещать лишь в местах, которые не подвержены даже малейшему затенению.

Некоторые «умельцы» с целью защиты батарей устанавливают сверху панелей дополнительное стекло, но даже при видимой прозрачности стеклянная прослойка способна снизить КПД панелей на 30%

Существует несколько способов фиксации панелей:

  • посредством задействования прижимных фиксаторов;
  • путем болтового соединения через сквозные отверстия, расположенные в нижней части рамки.

Опорная конструкция должна быть выполнена из корозионностойких материалов. Независимо от способа монтажа в конструкцию панелей нельзя самостоятельно вносить изменения и просверливать дополнительные отверстии.

Задача домовладельца – поддерживать панели в чистом виде. Скопления на экране пыли, снега и птичьего помета как минимум на 10% уменьшает количество электроэнергии, произведенной системой.

Варианты соединения гелиобатарей

Солнечные батареи состоят из нескольких отдельных панелей. Чтобы увеличить выходные параметры системы в виде мощности, напряжения и тока, элементы присоединяют друг к другу, применяя законы физики.

Соединение нескольких панелей между собой можно выполнить, применив одну из трех схем монтажа солнечных батарей:

  • параллельная;
  • последовательная;
  • смешанная.

Параллельная схема предполагает подключение одноименных клемм друг к другу, при котором элементы имеют два общих узла схождения проводников и их разветвления.

При параллельной схеме «плюсы» соединяются с «плюсами», а «минусы» с «минусами», в результате чего выходной ток увеличивается, а напряжение на выходе остается в пределах 12 Вольт

Величина максимально возможного тока на выходе при параллельной схеме прямо пропорциональна . Принципы расчета количества приведены в рекомендуемой нами статье.

Последовательная схема предполагает подключение противоположных полюсов: «плюс» первой панели к «минусу» второй. Оставшийся незадействованный «плюс» второй панели и «минус» первой батареи подключают к расположенному дальше по схеме контроллеру.

Такой вид соединения создает условия для протекания электрического тока, при котором остается единственный путь для передачи энергоносителя от источника к потребителю.

При последовательной схеме подключения напряжение на выходе увеличивается и достигает отметки в 24 Вольт, чего бывает достаточно для запитки портативной техники, светодиодных ламп и некоторых электроприемников

Последовательно-параллельную или смешанную схему чаще всего используют при необходимости соединения нескольких групп батарей. Посредством применения этой схемы на выходе можно увеличить и напряжение и ток.

Такой вариант выгоден и в том плане, что в случае выхода из строя одного из конструктивных элементов системы, другие связующие цепи продолжают функционировать. Это существенно повышает надежность работы всей системы.

При последовательно-параллельной схеме подключения напряжение на выходе достигает отметки, характеристики которой наиболее подходят для решения основной массы бытовых задач

Принцип сборки комбинированной схемы построен на том, что устройства внутри каждой группы соединяются параллельно. А подключение всех групп в одну цепь осуществляется последовательно.

Комбинируя разные типы соединений, не составит труда собрать батарею с необходимыми параметрами. Главное – число соединенных элементов должно быть таким, чтобы подводимое к аккумуляторам рабочее напряжение с учетом его падения в зарядной цепи превышало напряжение самих , а нагрузочный ток батареи при этом обеспечивал необходимую величину зарядного тока.

Схема сборки солнечной электросистемы

Подключение солнечных панелей осуществляется посредством задействования встроенных соединительных проводов сечением в 4 мм 2 . Лучше всего для этой цели подходят одножильные медные провода, изоляционная оплетка которых устойчива к ультрафиолетовому излучению.

В случае использования провода, изоляция которого не устойчива к воздействию УФ-лучей, его наружную прокладку рекомендуется выполнять гофрорукаве.

Конец каждого провода соединен с разъемом стандарта МС4 посредством пайки или обжима, благодаря чему обеспечивается герметичное соединение

Независимо от выбранной схемы перед в обязательном порядке необходимо проверить правильность электромонтажа.

При подключении панелей не рекомендуется превышать технические требования по допустимому току и максимальному напряжению других устройств. Важно придерживаться указанных производителем технических требований контроллера заряда и инвертора.

Стандартная схема сборки самой простой солнечной электростанции выглядит следующим образом.

Схема подключения панелей к аккумулятору, инвертору и контроллеру имеет простое исполнение, а потому особых сложностей в подключении не вызывает

Подключение разнонаправленных элементов

Применяя последовательную схему монтажа солнечных батарей, чтобы не снизить эффективность работы устройств, все панели общей цепи следует размещать под одним углом и на одной плоскости.

Если же панели будут располагаться в различных плоскостях, это может привести к тому, что ближняя или более освещенная станет работать мощнее расположенных чуть дальше.

Это значит, что ближняя панель будет генерировать электричество, часть которого будет отходить для нагрева дальних панелей. И причина кроется в том, что ток течет по пути наименьшего сопротивления. Чтобы минимизировать потери, для каждой панели лучше задействовать отдельный контроллер.

Основные требования при задействовании контроллера – мощность подключаемых панелей свыше 1 кВт и удаленность между батареями на достаточно большое расстояние

Решить вопрос можно и путем установки отсекающих диодов. Их размещают внутри между пластинами. Благодаря этому, выдавая максимальный показатель мощности, пластины не перегреваются.

Немаловажное значение имеет и падение напряжения в соединениях, а также самих проводах низковольтной части системы.

Таблица несоответствия передаваемой мощности сечению провода, красным указывающая параметры, при которых возникает риск сильного пожароопасного нагрева

В качестве примера может служить тот факт, что на метровый отрезок кабеля сечением 4 мм 2 при прохождении тока показателем 80А (напряжение 12 В) значения падают на 3,19%, что составляет 30,6 Вт. При задействовании скруток падение напряжения может варьироваться в пределах от 0,1 до 0,3 В.

Совмещение гелиоэнергии и стационарной сети

Планируя использовать электроэнергию от солнца параллельно с обустроенной централизованной стационарной сетью, схему подключения делают несколько иной. И основная причина такого решения в том, что у частного потребителя нет возможности «сбрасывать» оставшуюся энергию.

А это может спровоцировать перепады напряжения длительностью до одной секунды.

При совмещении солнечной электроэнергии со стационарной централизованной сетью руководствуются все тем же правилом: чем больше источников подключается, тем сложнее становится схема

Согласно выше приведенной схеме, напряжение от гелиополя первым делом направляется в сторону АКБ, а уже оттуда и передается на нагрузку.

Проектируя такой вариант монтажа в расчет стоит брать два вида нагрузки:

  • не резервируемая – свет в доме, бытовая техника и пр.;
  • резервируемая – аварийное освещение, холодильник, электрический котел.

Учитывайте: чем больше емкость аккумулятора, тем больше проработают в автономном режиме резервируемые электроприборы.

Выбирая такой способ генерации энергии в сеть, будьте готовы к тому, что придется оформлять разрешение в местных энергосетях.

Несмотря на то, что вырабатывают напряжение, качество которого порой выше того, что в централизованной сети, местные энергосети не дают добро на то, чтобы электросчетчик вращался в обратную сторону.

По этой причине согласно схеме солнечные инверторы прекращают работу в момент пропадания напряжения в сети. А резервируемая нагрузка начинает «запитываться» от АКБ.

Выводы и полезное видео по теме

Видео #1. Пример сборки и монтажа системы заводского образца:

Видео #2. Как правильно установить панели:

Ничего сложного в процессе соединения нескольких панелей с другими элементами системы нет. Но для начинающего мастера процесс может стать затруднительным. Поэтому при отсутствии опыта в расчетах и навыков монтажа стоит обратиться к специалисту, владеющему необходимыми знаниями.

Хотите рассказать, как собирали собственную солнечную электростанцию для дачи или загородного дома? Возможно, вам известны тонкости процесса, не описанные в статье? Пишите, пожалуйста, комментарии в находящемся ниже блоке, задавайте вопросы, делитесь мнением и фото по теме статьи.

Подключение солнечных батарей не должно вызывать сложностей. Ничего экстраординарного в этой процедуре нет. Но поскольку то и дело я продолжаю получать вопросы по схеме подключения солнечных батарей, я решил написать эту статью и привести иллюстрации, чтобы раз и навсегда снять эти вопросы.

Из физики школьного периода нам известны понятия последовательного, параллельного и последовательно-параллельного (или смешанного) подключения. Ничего в солнечных батареях нет такого, что бы выводило их подключение за рамки понятий школьной физики. Я прекрасно понимаю, что люди задают эти вопросы не потому, что не знают что такое последовательное или параллельное соединение. Знают. Их “пугает” новый предмет рассмотрения - солнечные батареи.

Так вот, скажу ещё раз: ничего такого в солнечных батареях нет. Это всего лишь такой же составной из солнечных модулей прибор, как и все другие, а значит и схемы соединений группы модулей в батареи осуществляются по тем же принципам. После сказанного мною вы воскликните: “Вот в чем дело! А я-то думал!”, и продолжать статью необходимости уже, как бы, и нет.

Тем не менее я продолжу, чтобы уничтожить всякие сомнения, плюс попутно вы получите полезную практическую информацию. Я с бОльшей симпатией отношусь к тем, кто, не боясь показаться глупым, задают вопросы. Это помогает им двигаться вперед, а не казаться умными и стоять на месте.

Три варианта схем подключения

Как мы уже говорили выше, существует три варианта соединений солнечных модулей в солнечные батареи. Давайте посмотрим на первый из них - вариант параллельного соединения (рис. 1):

Рисунок 1.

В этом варианте мы соединяем клемму (+) одного модуля с клеммой (+) второго модуля, так же соединяем и клеммы (-) обоих модулей. От клеммы (+) и клеммы (-) любого из модулей мы выводим концы (жилы) для подключения получившейся группы (батареи) из двух модулей для подключения к, например, контроллеру заряда, если он предусмотрен в нашей солнечной электростанции или к аккумуляторным батареям, в случае, если контроллер заряда батарей не предусмотрен.

Если есть необходимость соединить три модуля в единую батарею, мы поступаем точно также. Соединяем все три клеммы (+), затем - все три клеммы (-) и также выводим концы от клемм (+) и от клемм (-). Не важно сколько батарей приходится соединять, все повторяется точно также.

Вариант два. Последовательное соединение (рис. 2):

Рисунок 2.

В этом случае клемму (+) первого модуля соединяем с клеммой (-) второго модуля. От клеммы (-) первого модуля и от клеммы (+) второго модуля выводим концы для подключения к контроллеру заряда или аккумуляторным батареям. Так же не важно какое количество модулей будете соединять, принцип тот же. Клемма (+) первого на клемму (-) второго, клемма (+) второго на клемму (-) третьего, клемма (+) третьего на клемму (-) четвертого и т. д., ровно столько, сколько модулей вам необходимо соединить.

Ну и, третий вариант. Последовательно-параллельный (рис. 3):

Рисунок 3.

Действительно, иногда приходится прибегать и к этому варианту соединения. Для простоты понимания - вы собираете сначала две группы модулей параллельно, на рисунке левый верхний и левый нижний это первая группа. Правый верхний и правый нижний - вторая группа. После этого соединяете эти две группы последовательно так, как если бы это были не группы, а два модуля. В группе может быть не два модуля, а три и четыре, а таких групп может быть тоже и три и четыре и больше.

На практике это выглядит следующим образом. Так выглядит солнечный модуль с лицевой стороны, т. е. со стороны рабочей его поверхности:

Это его тыльная сторона с расположенной на ней клеммной коробкой. Как раз в ней и следует подключать к клеммам жилы кабеля:

Это его тыльная сторона с расположенной на ней клеммной коробкой. Как раз в ней и следует подключать к клеммам жилы кабеля:

Это сама клеммная коробка с подключенными жилами кабеля. Обратите внимание на то, чтобы жилы кабеля были либо опрессованы наконечником-кольцо, либо, как в моем случае облужены припоем:

А это опрессованные жилы кабеля, предназначенные для подключения в клеммных зажимах уже под крышей дома:

Третья жила у меня резервная. Пока она не задействована, поэтому и не опрессована.

Какая необходимость соединять модули по разным схемам

Смотрите. Мы знаем, что нам необходима мощность солнечной электростанции 160 Вт, а приборы, контроллер заряда, инвертор - на 12 В входного напряжения. Мы приобретаем два 12-ти вольтовых солнечных модуля, каждый по 80 Вт и соединяем их как? Правильно. Параллельно. Тем самым обеспечиваем напряжение схемы 12 В и суммарная мощность модулей будет 160 Вт.

Т. е. мы воспользовались первой параллельной схемой соединения. Если бы нам понадобилась мощность 240 Вт и напряжение 12 В, мы опять бы прибегли к первой схеме, только модулей уже было бы три.

Бывают случаи, когда есть необходимость собрать схему не на 12 В, а на 24 В, 36 В и выше. Для чего это нужно? Дело в том, что чем больше модулей мы устанавливаем, тем больше суммарная мощность солнечных модулей. Это в свою очередь приводит к повышению токов в цепях. Мы же помним закон Ома.

Мощность деленая на напряжение равняется силе тока. Мощность мы увеличиваем, напряжение остается прежним, значит ток увеличивается. Увеличение тока вынуждает нас увеличивать сечение провода. Так вот представьте, количество модулей увеличивается, значит увеличивается площадь покрываемая ими, следовательно увеличивается и длина проводов.

Не забывайте про рекомендацию, которою я давал о коммутации солнечных модулей под крышей дома, в статье . А мы еще и сечение этих проводов должны увеличить. Т. е. следует неизбежное удорожание проводов. Чтобы избежать лишних затрат и перестраивают систему на более высокое напряжение.

Этого можно добиться соединив модули последовательно. Предположим, на рисунке 2 изображены два 12-ти вольтовые модуля. Благодаря последовательной схеме соединения, мы добились, что их можно включить в 24-х вольтовую схему. Что касается смешанного соединения, оно необходимо, когда обе задачи приходится решать одновременно.

Заключение

При использовании разных вариантов схем, следует иметь ввиду некоторые важные вещи влияющие на результирующие электрические характеристики, получающиеся при коммутации модулей в солнечные батареи.

Это важно!

Так, к примеру, в прошлой статье мы говорили, что при последовательном соединении напряжение соединяемых модулей суммируется. Если вы соединяете два 12-ти вольтовые модуля, то результирующим напряжением будет 24 Вольта. Я не беру сейчас во внимание такие понятия, как напряжение холостого хода, ток короткого замыкания и т. д., чтобы не морочить вам голову теорией.

Но мы не говорили о том, что будет с токами, а ведь это важно для вас при выборе, например, контроллера заряда солнечных батарей. На какой входной ток контроллер вам выбирать.

Так вот, необходимо знать: в последовательной схеме результирующий ток будет равен току модуля с наименьшим его значением, т. е. наименьшему току из всех соединяемых последовательно модулей. Именно поэтому рекомендуется последовательно соединять модули с одинаковыми характеристиками, чтобы из-за одного “слабого” модуля не терять мощность, которую могли бы обеспечить модули, будь они все одинаковы.

При параллельном соединении, мы говорили, результирующее напряжение будет равно напряжению одного модуля, независимо от того, сколько вы их соединяете параллельно. А вот результирующий ток будет собой представлять сумму токов всех модулей соединенных параллельно.

Чтобы у вас не вызывало трудностей смешанное (или последовательно-параллельное соединение), смело, образно конечно, дробите всю группу на более мелкие и выяснив ток и напряжение по отдельности каждой мелкой группы, рассматривайте эти мелкие группы как отдельный модуль.

Как видите, ничего сверхзаумного в схеме подключения солнечных батарей нет. Все просто. К стати, этот же принцип соединения касается и аккумуляторных батарей, но это уже отдельная песня. Там есть свои нюансы.

Если вам помогла эта статья нажмите на одну из кнопок социальных сетей, чтобы статья могла помочь и другим.


В связи с резким повышение стоимости электроэнергии, образованные люди стают все больше интересоваться подключением экономных . Неограниченное количество запасов экологически чистой энергии сегодня стало интересовать все большее количество населения планеты. Задача каждого человека заключается лишь в умении эффективно преобразовать солнечную энергию в необходимую, к примеру, электрическую или тепловую.

Получение электрической энергии стало реальной возможностью благодаря изобретению которой основан на специфических свойствах самого проводника: вырабатывать электрический ток под воздействием света.

Устройство и принцип действия системы

Базовой составляющей солнечной батареи являются фотогальванические ячейки, которые производятся из кремниевых пластин. Сама панель, на которую крепятся в дальнейшем кремниевые пластины, состоит из алюминиевой рамы со вставленным закаленным, ударопрочным, сверхпрозрачным стеклом. Поверх стекла, напоминающего по конструкции матрицу, аккуратно укладываются фотогальванические ячейки, которые соединяются между собой методом пайки.

Следует отметить, что величина солнечной батареи, которую устанавливают на поверхность здания, напрямую зависит от необходимого количества потребляемой мощности. В конце сборки всей батареи остаются 2 выхода «+» и «-».

В дальнейшем, набор полученных ячеек подвергается принудительной инкапсуляции, то есть тщательной герметизации при помощи специальной пленки или двухкомпонентного компаундома.

Далее, под воздействием солнечной энергии на кремниевых пластинах образуется разность потенциалов, которая в результате последовательного крепления ячеек между собой суммируется. Таким образом, получается сбор солнечной энергии и преобразование ее в электрическую.

Следует заметить, что напряжение солнечной батареи будет стационарно изменчиво. Такая изменчивость напрямую зависит от интенсивности светового потока, то есть времени суток и года.

Для обеспечения эффективного использования преобразованной электроэнергии, необходимо правильно осуществить подключение солнечной батареи в схеме взаимодействия с иными обслуживающими устройствами.

Реализация подключения устройства

Наибольшей популярности и распространенности, на сегодняшний день, получили 12-вольтовые системы с прямым преобразованием в 220 В переменного напряжения. Базовая схема такой батареи зачастую состоит из:

  1. Солнечной батареи. Возможно нескольких, в зависимости от потребляемой мощности всего электрического оборудования.
  2. Контроллера заряда-разряда аккумулятора.
  3. Аккумуляторных батарей.
  4. Инвертора.

Для более внятного представления работы всей схемы необходимо разобраться в работе и задаче каждого элемента.

  • Диод Шоттки. Зачастую этот диод схематически не обозначается на схемах, так как считается изначально вмонтированным элементом системы. Главным предназначением таких диодов является препятствие протеканию обратного тока в ночное время суток и мало солнечную погоду.
  • Контролер заряда АКБ. Является электронным устройством, способным автоматически управлять процессами зарядки и разрядки аккумулятора, а также защитить его от чрезмерной зарядки и разрядки.

Работа АКБ происходит следующим образом: в светлое время суток, когда аккумулятор осуществляет зарядку от солнечной батареи, контроллер следит за напряжением на клеммах аккумулятора, и как только оно достигает верхнего предела, процесс зарядки работа по приему энергии прекращается и ток перенаправляется к нагрузке.

В темное время суток солнечная панель не осуществляет работу, а питание всех составляющих системы осуществляется исключительно за счет предварительно заряженного аккумулятора. Как только, напряжение на клеммах аккумулятора достигло нижнего предела – контроллер производит отключение работы схемы.

Дополнительными функциями, которые контроллер осуществляет для защиты элементов реализованной схемы, являются: короткое замыкание и гроза.

  • Аккумуляторная батарея. В реализации такой схемы работы системы является накопителем электрической энергии, вырабатываемой солнечной батареей на протяжении всего светового дня. Такая реализация схемы дает возможность осуществлять обслуживание электрических приборов в темное время суток.

В качестве аккумуляторной батареи можно использовать: автомобильные аккумуляторы (только на открытом пространстве), необслуживаемые аккумуляторы (специально предназначены для осуществления многократных и частых циклов зарядки-разрядки).

Монтаж системы

Солнечные батареи устанавливаются на открытых участках под углом 45 градусов к горизонту по направлению в южную сторону. Только в таком положении можно поглотить наибольшее количество электрической энергии.

Если панель поместить на поворотное устройство, которое будет осуществлять движение по направлению светила в автоматическом режиме, то можно накопить большее количество энергии для личного пользования.

Разновидности систем

Следует отметить, что небольшие помещения, такие как частные дома и квартиры снабдить необходимым запасом электроэнергии гораздо проще, нежели большие предприятия. Поэтому для частных случаев установку системы можно осуществлять своими руками, чего не скажешь о больших и мощных производствах, на которых площадь панелей может достигать километров.

Использование солнечных батарей сегодня является отличной альтернативой рационального вложения капиталов в прогрессивную технику, которая помогает сохранить не только бюджет, но и окружающий мир.

Солнечные батареи – очень выгодный способ стать независимым от плохой работы общей электросети. Кроме этого, созданная ими электрическая энергия является абсолютно бесплатной.

Особенности подключения

  1. Солнечная панель.
  2. Устройство, которое контролирует заряд.
  3. Аккумулятор.
  4. Инвертор.
  5. Электрическая сеть дома.

Обязательно в эту схему входят предохранители от короткого замыкания и лампочка , которая показывает уровень нагрузки. Предохранители устанавливаются на провода с положительным зарядом перед аккумулятором, лампочкой, инвертором.

Лампочку и аккумуляторы подключают к контроллеру заряда.

Эта схема предусматривает наличие одной солнечной панели или нескольких, работающих с одинаковой нагрузкой.

Несколько батарей соединены одним проводом, площадь поперечного сечения которого всегда больше 4 мм². Если планируется установить на крыше дома несколько солнечных панелей, и часть из них будет наклонена под другим углом, то схема подключения предусматривает наличие контроллера для каждой панели.

Практика показала:

  • Монокристаллические способны генерировать ток в течение 3 десятков лет и даже больше.
  • Более дешевые поликристаллические будут работать на протяжении 20 лет.
  • Гибкие панели имеют срок службы 7-20 лет. Наиболее короткую «жизнь» имеют изделия первого поколения, наиболее длинную – изделия второго поколения. Главным минусом является быстрая деградация. В течение первых 24 месяцев работы их мощность падает на 10-40%.

Используемые на больших солнечных станциях модули смогли работать с одинаковой мощностью в течение 25 лет. Заявленные в описании характеристики выполнялись на 100%. Это говорит об отсутствии деградации. Некоторые из панелей уменьшили выработку на 10%. Производители гарантировали уменьшение выработки на 20%.

Независимо от срока использования светочувствительные элементы никогда не теряют своей производительности. То есть может пройти 50 лет, и они могут производить такое же количество электроэнергии. На ухудшение выработки влияет разрушения защитных пленок, которые позволяют влаге проникать внутрь панели и вызывать коррозию всех соединений. Этот минус приводит к увеличению сопротивления, чрезмерному нагреву, разрушению соединений. Аккумуляторы могут работать 2-15 лет, силовая электроника – 5-20 лет.

Подключение солнечных панелей разной мощности - как это сделать правильно? - Кстати, внизу вас ждет подарок!
Очень часто при расширении системы с солнечными батареями возникает вопрос: как подключить солнечные панели разной мощности и разного напряжения - последовательно или параллельно?
Рассмотрим решение этой задачи на конкретном примере.
Допустим, у вас уже есть система с ,

к которому подключена единственная (рабочее напряжение 20В и максимальный ток 5А). И вы приобрели еще одну (рабочее напряжение 24В и выходной ток 5,4А).
Необходимо помнить, что последовательно соединять панели можно до тех пор, пока суммарное напряжение холостого хода панелей не достигнет максимального допустимого входного напряжения контроллера (для данного примера - это 75В, на что указывает первая цифра в названии контроллера). При этом надо ОБЯЗАТЕЛЬНО учитывать, что напряжение ХХ выбирается для самых низких температур вашего региона. Эта информация всегда представлена в справочной документации на солнечную панель. Напоминаем, что повреждение MPPT-контроллера высоким напряжением не является гарантийным случаем. Будьте внимательны при подборе оборудования.

Видео обзор небольшого и недорогого инвертора для дома.
Газовый котел, освещение и телевизор работает всегда! Гарантия на оборудование 5 лет.
Бесплатная установка и доставка. Заполните анкету и мы вам перезвоним.

Забегая вперед, скажем, что возможны оба способа подключения панелей. Но для каждого из них существуют свои достоинства и недостатки. Рассмотрим иллюстрацию, поясняющую наш пример.


На рисунке представлены оба варианта подключения панелей.
Как видно из приведенных внизу рисунка расчетов, в нашем случае большую мощность мы получим при последовательном соединении солнечных батарей, так как в этом случае напряжение складывается, а максимальный ток системы ограничен модулем с меньшим током. В этом случае эти значения составляют, соответственно, 44В и 5А, и при этом получается выходная мощность порядка 220 Вт.
При параллельном подключении расчет ведется по-другому. Здесь уже суммируются токи 2-х панелей, а максимальное выходное напряжение будет ограничено панелью с меньшим напряжением на выходе. В нашем случае это будет солнечная батарея с выходным напряжением 20В, а суммарный ток массива составит 10,4А. Таким образом, максимальная мощность системы получится равной 208 Вт, т.е. немного меньше, чем в случае с последовательным подключением солнечных батарей. Но у такого варианта подключения панелей есть и свое достоинство - если при параллельным соединении суммарный выходной ток панелей превысит максимальный входной ток MPPT контроллера, это не приведет к выходу из строя последнего. Контроллер просто ограничит зарядный ток до своего максимального допустимого уровня. В контроллере из нашего примера он равен 15А (на это указывает вторая цифра в названии).
Теперь, мы надеемся, вы сможете правильно оценить варианты наращивания вашей системы.

И еще одно необходимое напоминание, относящееся к правилам безопасности: НИКОГДА НЕ ПРОВОДИТЕ НИКАКИХ ПОДКЛЮЧЕНИЙ К РАБОТАЮЩЕЙ СИСТЕМЕ!!! Обязательно отсоедините АКБ и сами панели от контроллера и, если необходимо, от нагрузки перед подключением дополнительных панелей. Помните, что при последовательном соединении солнечных батарей в системе появляется опасное для жизни высокое напряжение!!!



Загрузка...