sonyps4.ru

Как из постоянного тока сделать переменный? Какой ток опаснее - постоянный или переменный.

Использование в повседневной жизни различных электрических приборов и устройств, работающих благодаря электроэнергии, обязывает нас иметь минимальные познания в области электротехники. Это знания, которые сохраняют нам жизнь. Ответы на вопросы о том, как из постоянного тока сделать переменный, какое напряжение должно быть в квартире и какой современный человек должен знать, чтобы избежать поражения и гибели от него.

Способы получения электричества

Сегодня невозможно представить свою жизнь без электроэнергии. Ежедневно все население нашей планеты использует миллионы ватт электричества для обеспечения нормальной жизнедеятельности. Но очередной раз, включая электрочайник, человек не задумывается о том, какой путь пришлось проделать электричеству, чтобы он смог заварить себе утреннюю чашку ароматного кофе.

Существует несколько способов получения электричества:

  • из тепловой энергии;
  • из энергии воды;
  • из атомной (ядерной) энергии;
  • из ветровой энергии;
  • из солнечной энергии и др.

Для того чтобы понять природу возникновения электрической энергии, рассмотрим несколько примеров.

Электричество из энергии ветра

Электрический ток - это Самый простой способ его получения - энергия природных сил.

В данном примере от энергии ветра. Природный феномен дующего с различной силой ветра люди научились использовать давно. Укрощает ветер простой ветряк, оборудованный приводом и соединённый с генератором. Генератор и вырабатывает электрическую энергию.

Излишки тока при постоянном использовании ветряка можно накапливать в аккумуляторных батареях. Выработанный постоянный экологически чистый ток в быту и производстве не применяется.

Полученный и преобразованный в переменный ток, он идет для бытового использования. Накопленные излишки электричества хранятся в аккумуляторных батареях. При отсутствии ветра запасы электричества, хранящиеся в аккумуляторах, преобразуются и поступают на нужды человека.

Электроэнергия из воды

К большому сожалению, этот вид природной энергии, дающий возможность получать электричество, не везде имеется. Рассмотрим там, где воды много.

Простейшая ГЭС, сделанная из дерева по принципу мельницы, размер которой порядка 1,5 метров, способна обеспечить электричеством, используемым и на отопление, частное подсобное хозяйство. Такую бесплотинную ГЭС сделал русский изобретатель, уроженец Алтая - Николай Ленев. Он создал ГЭС, перенести которую могут два взрослых мужчины. Все дальнейшие действия аналогичны получению электричества от ветряка.

Вырабатывают электричество и крупные электростанции и гидростанции. Для промышленного получения электричества применяют огромные котлы, дающие пар. Температура пара достигает 800 градусов, а давление в трубопроводе поднимается до 200 атмосфер. Этот перегретый пар с высокой температурой и огромным давлением поступает на турбину, которая начинает вращаться и вырабатывать ток.

То же самое происходит и на гидроэлектростанциях. Только здесь вращение происходит за счёт больших скорости и объема воды, падающей с огромной высоты.

Обозначение тока и применение его в быту

Постоянный ток обозначается DC. На английском языке пишется как Direct Current. Он в процессе работы со временем не меняет своих свойств и направления. Частота постоянного тока равна нулю. Обозначают его на чертежах и оборудовании прямой короткой горизонтальной черточкой или двумя параллельными черточками, одна из которых пунктирная.

Используется постоянный ток в привычных нам аккумуляторах и батарейках, используемых в огромном числе различного типа устройств, таких как:

  • счетные машинки;
  • детские игрушки;
  • слуховые аппараты;
  • прочие механизмы.

Все ежедневно пользуются мобильным телефоном. Зарядка его происходит через блок питания, компактный преобразователь DC/AC, включаемый в бытовую розетку.

Электрические приборы потребляют переменный однофазный ток. Электроприборы заработают только с подключением трансформатора и Многие производители устанавливают преобразователь DC/AC непосредственно в сам агрегат. Это намного упрощает эксплуатацию электрооборудования.

Как из постоянного тока сделать переменный?

Выше говорилось, что все аккумуляторы, батарейки для фонариков, пультов телевизоров имеют постоянный ток. Чтобы преобразовать ток, существует современное устройство под названием инвертор, он с легкостью из постоянного тока сделает переменный. Рассмотрим, как это применимо в повседневности.

Бывает, что во время нахождения в автомашине человеку необходимо срочно распечатать на ксероксе документ. Ксерокс имеется, машина работает и, включив в прикуриватель переходник на инвертор, он может подключить к нему ксерокс и распечатать документы. Схема преобразователя достаточно сложна, особенно для людей, которые имеют отдаленное понятие о работе электричества. Поэтому в целях безопасности лучше не пытаться самостоятельно соорудить инвертор.

Переменный ток и его свойства

Протекая, переменный ток в течение одной секунды меняет направление и величину 50 раз. Изменение движения тока - это его частота. Обозначается частота в герцах.

У нас частота тока 50 герц. Во многих странах, например США, частота равна 60 герц. Также бывает трёхфазный и однофазный переменный ток.

Для бытовых нужд приходит электричество, равное 220 вольтам. Это действующее значение переменного тока. Но амплитуда тока максимального значения будет больше на корень из двух. Что в итоге даст 311 вольт. То есть фактическое напряжение бытовой сети составляет 311 вольт. Для изменения постоянного тока на переменный применяются трансформаторы, в которых используются различные схемы преобразователей.

Передача тока по высоковольтным линиям

Все электрические наружные сети несут по своим проводам переменный ток различного напряжения. Оно может колебаться от 330000 вольт до 380 вольт. Передача осуществляется только переменным током. Данный способ транспортировки - самый простой и дешёвый. Как из переменного тока сделать постоянный, давно известно. Поставив трансформатор в нужном месте, получим необходимое напряжение и силу тока.

Схемы преобразователей

Самая простая схема решения вопроса о том, как из постоянного тока сделать переменный 220 В, не существует. Это может сделать диодный мост. Схема преобразователя DC/AC имеет в своём составе четыре мощных диода. Мост, собранный из них, создает движение тока в одном направлении. Мостик срезает верхние границы переменных синусоид. Диоды собираются последовательно.

Вторая схема преобразователя переменного тока - это на выход с моста, собранного из диодов, конденсатора или фильтра, который сгладит и исправит провалы между пиками синусоид.

Отлично преобразует постоянный ток в переменный инвертор. Схема его сложна. Используемые детали не из дешевого порядка. Потому и цена на инвертор немаленькая.

Какой электрический ток опаснее - постоянный или переменный?

В повседневной жизни мы постоянно сталкиваемся на работе и в быту с электроприборами, подключенными в розетки. Ток, бегущий от электрического щита до розетки, однофазный переменный. Происходят случаи поражения электрическим током. Меры безопасности и знания о поражении током необходимы.

В чем принципиальная разница между попаданием под напряжение переменным током и постоянным? Имеется статистика, что переменный DC однофазный ток в пять раз опаснее постоянного AC тока. Поражение током, вне зависимости от его типа, само по себе отрицательный факт.

Последствия от поражения током

Небрежность в обращении с электроприборами может, мягко говоря, негативно сказаться на здоровье человека. Поэтому не стоит экспериментировать с электричеством, если на то нет специальных навыков.

Действие тока на человека зависит от нескольких факторов:

  • сопротивления тела самого потерпевшего;
  • напряжения, под которое попал человек.
  • от силы тока на момент контакта человека с электричеством.

С учетом всего перечисленного можно сказать, что действие переменного тока намного опаснее, чем постоянного. Имеются данные экспериментов, подтверждающие факт, что для получения равного результата при поражении сила постоянного тока должна быть в четыре - пять раз выше, чем переменного.

Сама природа переменного тока отрицательно сказывается на работе сердца. При поражении током происходит непроизвольное сокращение сердечных желудочков. Это может привести к его остановке. Особенно опасно соприкосновение с оголенными жилами людям, имеющим сердечный стимулятор.

У постоянного тока частота отсутствует. Но высокие напряжение и сила тока могут привести также к летальному исходу. Выйти из под контакта с постоянным электрическим током проще, чем из-под контакта с переменным.

Этот небольшой обзор природы электрического тока, его преобразования должен быть полезен людям, далеким от электричества. Минимальные познания в области происхождения и работы электроэнергии помогут понять суть работы обычных бытовых приборов, которые так необходимы для комфортной и спокойной жизни.

Переменный ток выгодно отличается от постоянного тока тем, что он хорошо поддается трансформированию, т. е. преобразованию тока относительно высокого напряжения в ток более низкого напряжения, или наоборот. Трансформаторы позволяют передавать переменный ток по проводам на большие расстояния с малыми потерями энергии. Для этого переменное напряжение, вырабатываемое на электростанциях генераторами, с помощью трансформаторов повышают до напряжения в несколько сотен тысяч вольт и «посылают» по линиям электропередачи (ЛЭП) в различных направлениях. С повышением напряжения уменьшается сила тока в ЛЭП при одной и той же передаваемой мощности, что и приводит к снижению потерь и позволяет применять провода меньшего сечения. В городах и селах на расстоянии сотен и тысяч километров от электростанций это напряжение понижают трансформаторами до более низкого, которым и питают лампочки освещения, электродвигатели и другие электрические приборы.

Трансформаторы широко применяют и в радиотехнике.

Схематическое устройство простейшего трансформатора показано на рис. 1. Он состоит из двух катушек из изолированного провода, называемых обмотками? насаженных на магнитопровод, собранный из пластин специальной, так называемой трансформаторной стали. Обмотки трансформатора изображают на схемах так же, как катушки индуктивности, а магнитопровод - линией между ними.

Рис. 1.Трансформатор с магнитопроводом из стали:
а - устройство в упрощенном виде; б - схематическое изображение

Действие трансформатора основано на явлении электромагнитной индукции. Переменный ток, текущий по одной из обмоток трансформатора, создает вокруг нее и в магнитопроводе переменное магнитное поле. Это поле пересекает витки другой обмотки трансформатора, индуцируя в ней переменное напряжение той же частоты. Если к этой обмотке подключить какую-либо нагрузку, например лампу накаливания, то в получившейся замкнутой цепи потечет переменный ток - лампа станет гореть.

Обмотку, к которой подводится переменное напряжение, предназначаемое для трансформирования, называют первичной , а обмотку, в которой индуцируется переменное напряжение - вторичной .

Напряжение, которое получается на концах вторичной обмотки, зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке приблизительно равно напряжению, подведенному к первичной обмотке. Если вторичная обмотка трансформатора содержит меньшее число витков, чем первичная, то и напряжение ее меньше, чем напряжение, подводимое к первичной обмотке. И наоборот, если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подводимого к первичной обмотке. В первом случае трансформатор будет понижать, во втором повышать переменное напряжение.

Напряжение, индуцируемое во вторичной обмотке, можно довольно точно подсчитать по отношению чисел витков обмоток трансформатора: во сколько раз она имеет большее (или меньшее) число витков по сравнению с числом витков первичной обмотки, во столько же раз напряжение на ней будет больше (или меньше) по сравнению с напряжением, подводимым к первичной обмотке. Так, например, если одна обмотка трансформатора имеет 1000 витков, а вторая 2000 витков, то, включив первую обмотку в сеть переменного тока с напряжением 220 В, мы получим во второй обмотке напряжение 440 В - это повышающий трансформатор. Если же напряжение 220 В подвести к обмотке, имеющей 2000 витков, то в обмотке, содержащей 1000 витков, мы получим напряжение 110 В - это понижающий трансформатор. Обмотка, имеющая 2000 витков, в первом случае будет вторичной, а во втором случае - первичной.

Но, пользуясь трансформатором, не стоит забывать о том, что мощность тока (Р = U·I), которую можно получить в цепи вторичной обмотки, никогда не превышает мощности тока первичной обмотки. Это значит, что получить от вторичной обмотки одну и ту же мощность можно, повышая напряжение и уменьшая ток, либо потребляя от нее пониженное напряжение при увеличенном токе. Следовательно, повышая напряжение мы проигрываем в значении тока, а выигрывая в значении тока, обязательно проигрываем в напряжении.

Для питания радиоаппаратуры от сети переменного тока часто используют трансформаторы с несколькими вторичными обмотками с различным числом витков. С помощью таких трансформаторов, называемых сетевыми, или трансформаторами питания, получают несколько напряжений, питающих разные цепи.

Наибольшая мощность тока, которая может быть трансформирована, зависит от размера магнитопровода трансформатора и диаметра провода, из которого выполнены обмотки. Чем больше объем магнитопровода, тем большая мощность тока может быть трансформирована. Практически же в трансформаторе всегда бесполезно теряется часть мощности. Поэтому мощность в цепи вторичной обмотки (или сумма мощностей, получаемых от всех вторичных обмоток) всегда несколько меньше мощности, потребляемой первичной обмоткой.

Если, однако, в первичной обмотке трансформатора течет пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение, частота которого равна частоте пульсаций тока в первичной обмотке. Это свойство трансформатора используется для индуктивной связи между разными цепями, разделения пульсирующего тока на его составляющие и ряда других целей, о которых разговор будет впереди.

Все трансформаторы со стальными магнитопроводами и магнитопроводами из железоникелевых сплавов (пермаллоя) называют низкочастотными трансформаторами, так как они пригодны только для преобразования переменного напряжения низкочастотного диапазона. На схемах низкочастотные трансформаторы обозначают буквой Т, а их обмотки римскими цифрами.

Принцип действия высокочастотных трансформаторов, предназначаемых для трансформации колебаний высокой частоты, также основан на электромагнитной индукции. Они могут быть как с сердечниками, так и без сердечников. Их обмотки (катушки) располагают на одном или разных каркасах, но обязательно близко одну к другой (рис. 2).


Рис. 2.Высокочастотные трансформаторы без сердечников (слева катушки трансформатора с общим каркасом; справа - катушки трансформатора на отдельных каркасах; в центре обозначение на схемах)

При появлении тока высокой частоты в одной из катушек вокруг нее возникает быстропеременное магнитное поле, которое индуцирует во второй катушке напряжение такой же частоты. Как и в низкочастотных трансформаторах, напряжение во вторичной катушке зависит от соотношения чисел витков в катушках.

Для усиления связи между катушками в высокочастотных трансформаторах используют сердечники в виде стержней или колец (рис. 3), представляющие собой спрессованную массу из неметаллических материалов. Их называют магнитодиэлектрическими или высокочастотными сердечниками.

Рис 3.Высокочастотные трансформаторы с магнитодиэлектрическими сердечниками (слева - со стержневым, справа с кольцевым (тороидальным) сердечником)

Наиболее распространены ферритовые сердечники Ферритовый сердечник не только усиливает связь между катушками, но и повышает их индуктивность, поэтому они могут иметь меньше витков по сравнению с катушками трансформатора без сердечника.

Магнитодиэлектрический сердечник высокочастотного трансформатора независимо от его конструкции и формы обозначают на схемах так же, как магнитопровод низкочастотного трансформатора, - прямой линией между катушками, а обмотки, как и катушки индуктивности, - латинскими буквами L.

Теоретическая часть. Выпрямителем называется устройство, преобразующее переменное напряжение в постоянное (выпрямленное)

Выпрямителем называется устройство, преобразующее переменное напряжение в постоянное (выпрямленное). Среднее значение (постоянная составляющая) этого постоянного напряжения используется потребите­лем. Наличие переменных составляющих (пульсаций) в результате преобразования неизбежно. Различными мерами пульсации могут быть уменьшены до любых малых значений. Одним из способов уменьшения пульсаций является применение фильтров.

Рассматриваемые в работе схемы служат основой построения большинства источников питания, используемых в самых различных областях техники. Они обеспечивают постоянным напряжением питание электромашинных механизмов, технологических процессов, электронных устройств. Знание свойств источников питания необходимо специалисту для грамотной их эксплуатации.

Основной элемент схем выпрямления – диод. Диодом называется нелинейный элемент, обладающий весьма малым сопротивлением протеканию тока в прямом направлении по сравнению с обратным. В настоящее время наибольшее распространение получили полупроводниковые диоды. Их свойства определяются р-п- переходом, образованным между двумя кристаллами полупровод­никового материала с различными типами проводимостей.

Вольтамперная характеристика (ВАХ) полупроводникового диода, например 2Д504А, изображена на рис. 1.1.

Основными параметрами диодов являются максимальное допустимое значение тока в прямом направлении I ПР max и максимальное допустимое значение обратного напряжения U ОБРдоп . При протекании через диод номинального тока в прямом направлении падение напряжения не превышает одного вольта. Приложенное к диоду обратное напряжение вызовет обратный ток величиной от нескольких микроампер до нескольких миллиампер.

Рис. 1.1 . Вольтамперная характеристика
полупроводникового диода 2Д504А

В блоках питания выпрямители подключаются к выходным обмоткам понижающих трансформаторов, входные обмотки которых подключены к источнику синусоидального напряжения u 1 (t) = U 1 m sin ωt , как показано на рис. 1.2. Такие схемы выпрямления имеют следующие основные параметры:

u 2 (t) = U 2 m sin ωt = U 2 sin ωt – мгновенное значение напряжения выходной обмотки трансформатора;

U 2 – действующее значение синусоидального напряжения выходной обмотки трансформатора;

U 2 m – амплитудное значение синусоидального напряжения выходной обмотки трансформатора;

U d – постоянная составляющая выпрямленного напряжения (среднее значение выпрямленного напряжения U CP );

U ~ m – размах пульсации выходного напряжения выпрямителя.

При выпрямлении однофазного переменного тока простей­шими схемами выпрямления являются одно- и двухполупериодныеоднофазные схемы. Однополупериодными выпрямителями являются та­кие, в которых ток во вторичной обмотке трансформатора в про­цессе выпрямления протекает только в одном направлении, в двухполупериодныхвыпрямителях – в обоих направле­ниях.

Схема однофазного однополупериодного выпрямителя показана на рис. 1.2. Ток через нагрузку протекает в течение одного полу­периода сетевого напряжения. Диаграммы напряжений показаны на рис. 1.3.

Рис. 1.2. Схема однофазного однополупериодного выпрямителя

Рис. 1.3 . Диаграммы напряжений

Исходя из приведенных выше определений основные параметры выпрямителя:

– среднее значение тока диода

где I 2 m – амплитудное значение тока выходной обмотки трансформатора;

– максимальное обратное напряжение на диоде

Выпрямленное напряжение u d содержит постоянную составля­ю­щую U d и переменную составляющую u d ~ , представляющую собой сумму высших гармонических составляющих. Разложение в ряд Фурье кривой выпрямленного напряжения u d позволяет определить коэффициенты этого ряда.

Постоянная составляющая

U d – функция четная, кроме основной имеет четные гармоники.

Амплитуда гармонической составляющей порядка n = 2, 4, 6, …

Качество выпрямленного напряжения оценивается коэффициентом пульсации, представляющим собой отношение размаха переменной состав­ляющей к среднему значению выпрямленного напряжения. Для схемы однополупериодного выпрямления коэффициент пульсаций

При выборе диода для схемы однополупериодного однофазного выпрямления необходимо, чтобы максимально допустимое обратное напряжение диода было больше амплитудного значения напряжения на вторичной обмотке трансформатора (U обр max U 2 m ) (рис. 1.3).

К недостатку однополупериодного выпрямителя относится присутствие постоянной составляющей тока во входной цепи. Если выпрямитель питается через транс­форматор (рис. 1.2), то постоянная составляющая тока вызывает подмагничивание сердечника трансформатора, что приводит к необходимости увеличивать его габаритные размеры. Также к недостаткам однополупериодной схемы выпрямления следует отнести значительные пульсации выпрямленных тока и напря­жения. Выпрямители подобного типа при­меняют, главным образом, в специальных маломощных установках.

Схема двухполупериодного выпрямителя со средней точкой показана на рис. 1.4.

Рис. 1.4 . Схема двухполупериодного выпрямителя со средней точкой

Напряжения и 21 и и 22 на каждой половине вторичной обмотки трансформатора можно рассматривать как два независимых синусоидаль­ных напряжения и 2 , сдвинутых относительно друг друга по фазе на угол 180°. Диоды проводят ток поочередно в течение полупериода. Диаграммы напряжений и токов представлены на рис. 1.5.

Основные параметры выпрямителя исходя из приведенных выше определений:

– среднее значение выпрямленного напряжения на нагрузке при двух­­полупериодной схеме в два раза больше по сравнению с предыдущей однополупериодной схемой выпрямления:

– среднее значение тока диода

В кривой выпрямленного напряжения ярко выражена вторая (n = 2) гармоническая составляющая с частотой f = 100 Гц (при f с = 50 Гц). Коэффициент пульсаций выпрямленного напряжения

(1.2)

Напряжение, приложенное к закрытым диодам, рав­но разности потенциалов между выводами полной вторичной обмотки трансформатора и 2 , состоящей из двух частей, т. е. и 21 + и 22 = и 2 (рис. 1.4).

В сравнении со схемой однополупериодного выпрямителя в двухполупериодном ток во вторичной обмотке трансформатора не содержит постоянной составляющей, так как в этой обмотке ток протекает в течение всего периода, вследствие чего постоянное подмагничивание сердечника отсутствует.

Рис. 1.5. Диаграммы напряжений и токов

Однофазный мостовой выпрямитель имеет наибольшее распростране­ние. В блоках питания данные выпрямители часто используются без трансфор­маторов, с подключением непосредственно к сетевому напряжению. Схема однофазного мостового вып­рямителя представлена на рис. 1.6.

Рис. 1.6. Схема однофазного мостового выпрямителя

Диоды проводят ток попарно: VD1 , VD4 – в течение одного полупериода, а VD2 , VD3 – в течение другого полупериода питающего напряжения. Основные параметры выпрямителя следующие:

– среднее значение выпрямленного напряжения

– среднее значение тока диода

– максимальное обратное напряжение на диодах

Рассматриваемая схема относится к двухполупериодной схеме выпрямления. Коэффициент пульсации на выходе вы­прямителя

(1.4)

Амплитуда обратного напряжения U ОБР max при одинаковом выпрямленном напряжении U d в выпрямителе по мостовой схеме выпрямления (рис. 1.6) в два раза меньше, чем в вы­прямителе по двухполупериодной схеме выпрямления со средней точкой (рис. 1.4). Такая схема выпрямления позволяет получить заданное вы­прямленное напряжение при числе витков вторичной обмотки трансформатора вдвое меньшем, чем в двухполупе­риодной схеме выпрямления со средней точкой (рис. 1.4) при прочих равных ус­ловиях. Данное обстоятельство приводит к снижению массогабаритной мощности трансформатора.

Диаграммы напряжений и токов данного выпрямительного устройства представлены на рис. 1.7.

Рис. 1.7. Диаграммы напряжений и токов мостового выпрямителя

Разновидностью мостовой схемы выпрямителя является мостовая схема со средней общей точкой, как в схеме выпрямителя на рис. 1.4.
При наличии вывода от середины вторичной обмотки трансформатора выпрямитель имеет два выходных напряжения. Первый выход – это напряжение между положительной клеммой выпрямителя и средней точкой, второй выход – между отрицательной клеммой и средней точкой. При соединении средней точки обмотки с общим проводом получается два источника симметричных разнополярных напряжений. Такие источни­ки постоянных напряжений при наличии сглаживающих фильтров при­меня­ются для питания аналоговых операционных усилителей (рис. 1.8).

Рис. 1.8. Мостовая схема выпрямления со средней точкой

Схема выпрямления с умножением напряжения позволяет получить высокие значения выпрямленного напряжения без исполь­зования вы­соковольтных трансформато­ров. Наибольшее распространение на практике получили однофазные схемы выпрямления с удвоением напряжения (рис. 1.9).

Принцип действия такой схемы заклю­чается в зарядке каждого из последовательно соединенных конденса­торов через свою группу диодов от выходной обмотки транс­форматора. Выходное напряжение выпрямителя при этом равно сумме напряжений на всех конденсаторах и может в несколько раз превышать амплитуду напряжения выходной обмотки трансформатора

u ВЫХ = u Н = u C1 + u C2 » 2u 2m .

Диаграммы напряжений данного выпрямительного устройства представлены на рис. 1.10.

Рис. 1.9. Однофазные схемы выпрямления Рис. 1.10 . Диаграмы напряжений

с удвоением напряжения выпрямителя с удвоением напряжения

Все рассмотренные выше схемы выпрямления имеют относительно большие значения коэффициента пульсаций. Между тем для питания большей части электронной аппаратуры требуется выпрямленное напряжение с коэффициентом пульсации, не превышающим значений
К п = 0,002–0,02. Если потребитель постоянного напряжения предъявляет повышенные требования к ограничению пульсаций, то для их уменьшения применяются фильтры. Простейшими фильтрами являются емкостный и индуктивный.

Емкостный фильтр образуется конденсатором, подключенным к выходным клеммам выпрямителя, т. е. параллельно нагрузке (рис. 1.11).
При использовании простейшего емкостного фильтра сгла­живание пульсаций выпрямленного напряжения и тока происхо­дит за счет периодической зарядки конденсатора фильтра С Ф и последующей его разрядки на сопротивле­ние нагрузки R Н с постоянной времени разряда t РАЗР = С Ф R Н.

Конденсатор, как известно, не пропускает постоянной состав­ляющей тока и обладает тем меньшим сопротивлением для переменных составляющих, чем выше их частота.

Следует отметить, что емкостные фильтры предпочтительно применять в схемах выпрямления с малыми значениями выпрямленного тока. Процессы изменения напряжения на конденсаторе и токов в цепях представлены на рис. 1.11.

Рис. 1.11. Схема выпрямления с емкостным фильтром
и процессы изменения напряжений и токов

Рассмотрим установившиеся процессы периодических изменений напряжения на конденсаторе.

При включении емкостного фильтра в выпрямителе напряжение u H не уменьшается до нуля, увеличивая сред­нее значение выпрямленного напряжения по сравнению с выпрямителем без фильтра. При этом к закрытому диоду приложено напряжение U ОБР max , зна­чение которого может приближаться к удвоенному значению U 2 m .

Емкость конденсатора С Ф выбирают такой, чтобы выполня­лось соотношение

t РАЗР = С Ф R Н >> Т ,

где Т = 1 / f осн – период основной гармоники.

Коэффициент пульсаций выпрямителя с емкостным фильт­ром умень­шается. Емко­стный фильтр для сглаживания пульсаций целесооб­разно применять с высокоомным нагрузочным сопротивлением R Н при мощности Р Н не более нескольких десятков Ватт.

Если требуется более высокий коэффициент сглаживания, то прибегают к сложным сглаживающим фильтрам. К ним отно­сятся Г - и П -об­раз­ные фильтры LC- и -типов.

Ток через диоды при наличии конденсатора на выходе выпрямителя протекает короткими импульсами. При выборе диодов только по среднему значению тока в р-п- переходе могут возникать опасные локальные перегревы.

В качестве индуктивного фильтра используют катушку с ферро­магнитным сердечником, называемую дросселем. Дроссель включается последовательно в цепь тока нагрузки. Индуктивность дросселя приводит к уменьшению пульсаций за счет индуктивного сопротивления его обмотки.

Внешняя характеристика выпрямителя отражает динамику изменения выходного напряжения выпрямителя в зависимости от изменения тока нагрузки. При увеличении выходного тока выходное на­пряжение уменьшается из-за увеличения падения напря­жения на обмотках трансформатора, диодах, подводящих проводах, элементах фильтра (рис. 1.12). Наклон внешней характеристики при том или ином токе I ср характеризуется выходным сопро­тивлением R ВЫХ, которое определяется выражением

I ср – заданный.

Преобразователем напряжения называется устройство, которое изменяет вольтаж цепи. Это электронный прибор, который используется для изменения величины входного напряжения устройства. Преобразователи напряжениямогут повышать или понижать входное напряжение, в том числе менять величину и частоту первоначального напряжения.

Необходимость применения данного устройства преимущественно возникает в случаях, когда необходимо использовать какой-либо электрический прибор в местах, где невозможно использовать имеющиеся стандарты или возможности электроснабжения. Преобразователи могут использоваться в виде отдельного устройства либо входить в состав систем бесперебойного питания и источников электрической энергии. Они широко применяются во многих областях промышленности, в быту и других отраслях.

Устройство

Для преобразования одного уровня напряжения в иное часто используют импульсные преобразователи напряжения с применением индуктивных накопителей энергии. Согласно этому известно три типа схем преобразователей:

  • Инвертирующие.
  • Повышающие.
  • Понижающие.

Общими для указанных видов преобразователей являются пять элементов:

  • Ключевой коммутирующий элемент.
  • Источник питания.
  • Индуктивный накопитель энергии (дроссель, катушка индуктивности).
  • Конденсатор фильтра, который включен параллельно сопротивлению нагрузки.
  • Блокировочный диод.

Включение указанных пяти элементов в разных сочетаниях дает возможность создать любой из перечисленных типов импульсных преобразователей.

Регулирование уровня выходящего напряжения преобразователя обеспечивается изменением ширины импульсов, которые управляют работой ключевого коммутирующего элемента. Стабилизация выходного напряжения создается методом обратной связи: изменение выходного напряжения создает автоматическое изменение ширины импульсов.

Типичным представителем преобразователя напряжения также является трансформатор. Он преобразует переменное напряжение одного значения в переменное напряжение иного значения. Данное свойство трансформатора широко применяется в радиоэлектронике и электротехнике.

Устройство трансформатора включает следующие элементы:

  • Магнитопровод.
  • Первичная и вторичная обмотка.
  • Каркас для обмоток.
  • Изоляция.
  • Система охлаждения.
  • Иные элементы (для доступа к выводам обмоток, монтажа, защиты трансформатора и так далее).

Напряжение, которое будет выдавать трансформатор на вторичной обмотке, будет зависеть от витков, которые имеются на первичной и вторичной обмотке.

Существуют и иные виды преобразователей напряжения, которые имеют иную конструкцию. Их устройство в большинстве случаев выполнено на полупроводниковых элементах, так как они обеспечивают значительный коэффициент полезного действия.

Принцип действия

Преобразователь напряжение вырабатывает напряжение питания необходимой величины из иного питающего напряжения, к примеру, для питания определенной аппаратуры от аккумулятора. Одним из главных требований, которые предъявляются к преобразователю, является обеспечение максимального коэффициента полезного действия.

Преобразование переменного напряжения легко можно выполнить при помощи трансформатора, вследствие чего подобные преобразователи постоянного напряжения часто создаются на базе промежуточного преобразования постоянного напряжения в переменное.

  • Мощный генератор переменного напряжения, который питается от источника исходного постоянного напряжения, соединяется с первичной обмоткой трансформатора.
  • Переменное напряжение необходимой величины снимается с вторичной обмотки, которое потом выпрямляется.
  • В случае необходимости постоянное выходное напряжение выпрямителя стабилизируется при помощи стабилизатора, который включен на выходе выпрямителя, либо с помощью управления параметрами переменного напряжения, которое вырабатывается генератором.
  • Для получения высокого кпд в преобразователях напряжения используются генераторы, которые работают в ключевом режиме и вырабатывают напряжение с использованием логических схем.
  • Выходные транзисторы генератора, которые коммутируют напряжение на первичной обмотке, переходят из закрытого состояния (ток не течет через транзистор) в состояние насыщения, где на транзисторе падает напряжение.
  • В преобразователях напряжения высоковольтных источников питания в большинстве случаев применяется эдс самоиндукции, которая создается на индуктивности в случаях резкого прерывания тока. В качестве прерывателя тока работает транзистор, а первичная обмотка повышающего трансформатора выступает индуктивностью. Выходное напряжение создается на вторичной обмотке и выпрямляется. Подобные схемы способны вырабатывать напряжение до нескольких десятков кВ. Их часто применяют для питания электронно-лучевых трубок, кинескопов и так далее. При этом обеспечивается кпд выше 80%.

В иды

Преобразователи можно классифицировать по ряду направлений.

Преобразователи напряжения постоянного тока:

  • Регуляторы напряжения.
  • Преобразователи уровня напряжения.
  • Линейный стабилизатор напряжения.

Преобразователи переменного тока в постоянный:

  • Импульсные стабилизаторы напряжения.
  • Блоки питания.
  • Выпрямители.

Преобразователи постоянного тока в переменный:

  • Инверторы.

Преобразователи переменного напряжения:

  • Трансформаторы переменной частоты.
  • Преобразователи частоты и формы напряжения.
  • Регуляторы напряжения.
  • Преобразователи напряжения.
  • Трансформаторы разного рода.

Преобразователи напряжения в электронике в соответствии с конструкцией также делятся на следующие типы:

  • На пьезоэлектрических трансформаторах.
  • Автогенераторные.
  • Трансформаторные с импульсным возбуждением.
  • Импульсные источники питания.
  • Импульсные преобразователи.
  • Мультиплексорные.
  • С коммутируемыми конденсаторами.
  • Бестрансформаторные конденсаторные.

Особенности

  • При отсутствии ограничений по объему и массе, а также при высоком значении питающего напряжения преобразователи рационально использовать на тиристорах.
  • Полупроводниковые преобразователи на тиристорах и транзисторах могу быть регулируемыми и нерегулируемыми. При этом регулируемые преобразователи могут применяться как стабилизаторы переменного и постоянного напряжения.
  • По способу возбуждения колебаний в устройстве могут быть схемы с независимым возбуждением и самовозбуждением. Схемы с независимым возбуждением выполняются из усилителя мощности и задающего генератора. Импульсы с выхода генератора направляются на вход усилителя мощности, что позволяет управлять им. Схемы с самовозбуждением – это импульсные автогенераторы.

Применение

  • Для распределения и передачи электрической энергии. На электростанциях генераторы переменного тока обычно вырабатывается энергия напряжением 6-24 кВ. Для передачи энергии на дальние расстояния выгодно использовать большее напряжение. Вследствие этого на каждой электростанции ставят трансформаторы, повышающие напряжение.
  • Для различных технологических целей: электротермических установок (электропечные трансформаторы), сварки (сварочные трансформаторы) и так далее.
  • Для питания различных цепей;

Автоматики в телемеханике, устройств связи, электробытовых приборов;
радио- и телевизионной аппаратуры.

Для разделения электрических цепей данных устройств, в том числе согласования напряжений и так далее. Трансформаторы, применяемые в данных устройствах, в большинстве случаев имеют малую мощность и невысокое напряжение.

  • Преобразователи напряжения практически всех типов широко применяются в быту. Блоки питания многих бытовых приборов, сложных электронных устройств, инверторные блоки широко используются для обеспечения требуемого напряжения и обеспечения автономного энергоснабжения. К примеру, это может быть инвертор, который может быть использован для аварийного или резервного источника питания бытовых приборов (телевизор, электроинструмент, кухонная техника и так далее), потребляющих переменный ток напряжением 220 Вольт.
  • Наиболее дорогими и востребованными в медицине, энергетике, военной сфере, науке и промышленности являются преобразователи, которые имеют выходное переменное напряжение с чистой формой синусоиды. Подобная форма пригодна для работы устройств и приборов, которые имеют повышенную чувствительность к сигналу. К ним можно отнести измерительную и медицинскую аппаратуру, электрические насосы, газовые котлы и холодильники, то есть оборудование, в составе которых имеются электромоторы. Преобразователи часто необходимы и для продления времени службы оборудования.

Достоинства и недостатки

К достоинствам преобразователей напряжения можно отнести:

  • Обеспечение контроля входного и выходного режима тока. Эти устройства трансформируют переменный ток в постоянный, служат в качестве распределителей напряжения постоянного тока и трансформаторов. Поэтому их часто можно встретить в производстве и быту.
  • Конструкция большинства современных преобразователей напряжения имеет возможность переключения между разным входным и выходным напряжением, в том числе предполагает выполнение подстройки выходного напряжения. Это позволяет подбирать преобразователь напряжения под конкретный прибор или подключаемую нагрузку.
  • Компактность и легкость бытовых преобразователей напряжения, к примеру, автомобильных преобразователей. Они миниатюрны и не занимают много места.
  • Экономичность. КПД преобразователей напряжения достигает 90%, благодаря чему существенно экономится энергия.
  • Удобство и универсальность. Преобразователи позволяют подключать быстро и легко любой электроприбор.
  • Возможность передачи электроэнергии на дальние расстояния благодаря повышению напряжения и так далее.
  • Обеспечение надежной работы критических узлов: охранных систем, освещения, насосов, котлов отопления, научного и военного оборудования и так далее.

К недостаткам преобразователей напряжения можно отнести:

  • Восприимчивость преобразователей напряжения к повышенной влажности (кроме преобразователей, специально созданных для работы на водном транспорте).
  • Занимают некоторое место.
  • Сравнительно высокая цена.

Трансформатор электрический

Трансформа́тор электри́ческий

устройство, преобразующее одного напряжения в переменный ток другого напряжения при неизменной частоте. В простейшем случае состоит из магнитопровода (сердечника, набранного из листовой стали) и расположенных на нём двух обмоток: первичной и вторичной. Преобразуемый ток подаётся в первичную обмотку; возникающий при этом в сердечнике переменный магнитный поток наводит во вторичной обмотке электродвижущую силу взаимоиндукции. Иногда вторичной обмоткой служит часть первичной (или наоборот); такие трансформаторы называются автотрансформаторами. Отношение напряжений в обмотках равно отношению числа витков в них. Основной вид электрического трансформатора – силовые трансформаторы, среди которых наиболее распространены двухобмоточные силовые трансформаторы, устанавливаемые на линиях электропередачи (ЛЭП). Такие трансформаторы повышают напряжение тока, вырабатываемого генераторами электростанций, с 10–15 до нескольких сотен киловатт, что позволяет передавать электроэнергию по воздушным ЛЭП на несколько тысяч километров. В местах потребления электроэнергии при помощи силовых трансформаторов высокое напряжение преобразуют в низкое (380 В, 220 В и др.). Помимо силовых, существуют электрические трансформаторы, предназначенные, напр., для измерения больших напряжений и токов, преобразования напряжения синусоидальной формы в импульсное (пик-трансформатор), преобразования импульсов тока и напряжения (импульсный трансформатор), выделения переменной составляющей тока, разделения электрических цепей на гальванически не связанные между собой части, их согласования и др.

1 и 2 – первичная и вторичная обмотки соответственно с числом витков W1 и W2; 3 – сердечник; Ф0 – основной магнитный поток; Ф1 и Ф2 – потоки рассеяния; I1 и I2 – токи в первичной и вторичной обмотках; U1 – напряжение на первичной обмотке; U2 – напряжение на вторичной обмотке (W1/W2 = U1/U2); Rн – сопротивление нагрузки

Энциклопедия «Техника». - М.: Росмэн . 2006 .


Смотреть что такое "трансформатор электрический" в других словарях:

    ТРАНСФОРМАТОР ЭЛЕКТРИЧЕСКИЙ - статическое (без движущихся частей) электромагнитное устройство, служащее для преобразования переменного тока одного напряжения в переменный ток др. напряжения той же частоты. Принцип его действия основан на явлении взаимной индукции (см. (1)).… … Большая политехническая энциклопедия

    Не имеющее подвижных частей электромагнитное устройство, служащее для передачи посредством магнитного поля электрической энергии из одной цепи переменного тока в другую без изменения частоты. Трансформатор может повышать его напряжение… … Энциклопедия Кольера

    Статическое (не имеющее подвижных частей) устройство для преобразования переменного напряжения по величине. В основе действия Т. э. лежит явление индукции электромагнитной (См. Индукция электромагнитная). Т. э. состоит из одной первичной… …

    Статическое (не имеющее подвижных частей) устройство, преобразующее псрем. ток одного напряжения в перем. ток другого напряжения (при неизменной частоте). В основе действия Т. э. лежит явление электромагнитной индукции. Состоит из магнитопровода … Большой энциклопедический политехнический словарь

    - … Википедия

    Электрический трансформатор, служащий для преобразования энергии переменного тока в электрических сетях энергетических систем, в радиотехнических устройствах, системах автоматики и др. и работающий при постоянном действующем значении… … Большая советская энциклопедия

    У этого термина существуют и другие значения, см. Трансформатор (значения). Трансформатор силовой ОСМ 0,16 Однофазный сухой многоцелевого назначения мощностью 0.16 кВт … Википедия

    трансформатор напряжения - измерительный электрический трансформатор для преобразования высокого напряжения в низкое в целях измерения и контроля. Трансформаторы напряжения подразделяют на трансформаторы переменного напряжения (обычно их называют… … Энциклопедический словарь по металлургии

    Силовой Трансформатор электрический, допускающий изменение Трансформации коэффициента (а следовательно, амплитуды вторичного напряжения) без разрыва цепи нагрузки. Применяется преимущественно при необходимости перераспределения мощности… … Большая советская энциклопедия

    Измерительный Трансформатор электрический, предназначенный для преобразования высокого напряжения в низкое в цепях измерения и контроля. Применение Т. н. позволяет изолировать цепи вольтметров, частотометров, электрических счётчиков,… … Большая советская энциклопедия



Загрузка...