sonyps4.ru

Инженерный взгляд на вещи. Что такое deep learning и почему о нем все говорят

С появления термина «глубокое обучение» прошло уже больше 20 лет, но широко заговорили о нем только недавно. Кратко объясняем, почему так получилось, что такое deep learning, чем оно отличается от машинного обучения и почему вам надо об этом знать.

  • Что это такое?

    Глубокое обучение - это ветвь развития машинного обучения, где используется модель, вдохновленная устройством мозга - взаимодействием нейронов.

    Сам термин появился еще в 1980-х, но до 2012 года для реализации этой технологии не хватало мощностей и на нее почти никто не обращал внимание. После серии статей известных ученых, публикаций в научных изданиях технология быстро стала популярной и получила внимание крупных медиа, - первым из мировых СМИ об этом написал The New York Times. Одним из поводов для материала стала научная работа специалистов из университетов Торонто Алекса Крижевского, Ильи Сатскевера и Джеффа Хинтона. Они описали и проанализировали результаты конкурса распознавания изображений ImageNet, где с большим отрывом победила их нейросеть, обученная с помощью deep learning, - система определила 85% объектов. С тех пор в конкурсе побеждала только глубокая нейросеть

  • Погодите, а что такое машинное обучение?

    Это подобласть искусственного интеллекта и термин - им описывают методы построения алгоритмов, которые учатся на своем опыте, без написания специальной программы. То есть человеку в этом случае не надо объяснять машине, как решить задачу, она находит ответ сама, из данных, которые ей предоставлены. К примеру, если мы хотим, чтобы алгоритм определял лица, мы должны показать ему десять тысяч разных лиц, отметить, где именно находится лицо, и тогда программа научится определять его самостоятельно.

    Обучаться машина может как с помощью учителя, когда он помечает для машины правильные ответы, так и без него. Но результаты лучше при обучении с учителем. Каждый раз, когда происходит обработка данных, система становится точнее.

  • А глубокое обучение как работает?

    Оно имитирует абстрактное мышление человека и умеет обобщать. Например, нейросеть, обученная машинным способом, плохо распознает рукописные буквы - и чтобы она не путалась в различных вариантах написания, все они должны быть в нее загружены.

    Глубокое обучение же используется в случае работы с многослойными искусственными нейронными сетями и сможет справиться с этой задачей.

    «Есть три термина, которые в последнее время часто используют почти взаимозаменяемо: искусственный интеллект, машинное обучение и глубокое обучение. Однако на самом деле это „вложенные“ термины: искусственный интеллект - это всё что угодно, что может помочь компьютеру выполнять человеческие задачи; машинное обучение - это раздел ИИ, в котором программы не просто решают задачи, а обучаются на основе имеющегося у них опыта, а глубокое обучение - это раздел машинного обучения, изучающий глубокие нейронные сети.

    Проще говоря: 1. если вы написали программу, играющую в шахматы, - это искусственный интеллект; 2. если она при этом обучается на базе партий гроссмейстеров или играя против самой себя - это машинное обучение; 3. а если обучается у неё при этом не что-нибудь, а глубокая нейронная сеть, - это глубокое обучение» .

  • Как работает глубокое обучение?

    Возьмем простой пример - мы покажем нейросети фотографии, на которых изображены мальчик и девочка. На первом слое нейроны реагируют на простые визуальные образы - например перепады яркости. На втором - более сложные: углы, окружности. К третьему слою нейроны способны реагировать на надписи и человеческие лица. К каждому следующему слою определяемые образы будут сложнее. Нейронная сеть сама определяет, какие визуальные элементы ей интересны для решения этой задачи, и ранжирует их по степени важности, чтобы в дальнейшем лучше понимать, что изображено на фотографии.

  • И что с помощью него уже разработали?

    Больше всего проектов с глубоким обучением применяется в распознавании фотографии или аудио, диагностике заболеваний. Например, оно уже используется в переводах Google с изображения: технология Deep Learning позволяет определить, есть ли на картинке буквы, а затем переводит их. Другой проект, который работает с фото, - система распознавания лиц под названием DeepFace. Она умеет распознавать человеческие лица с точностью 97,25% - примерно с той же точностью, что и человек.

    В 2016 году Google выпустил WaveNet - систему, которая может имитировать человеческую речь. Для этого компания загрузила в систему миллионы минут записанных голосовых запросов, которые использовались в проекте OK Google, и после изучения, нейросеть смогла сама составить предложения с правильными ударениями, акцентом и без нелогичных пауз.

    При этом глубокое обучение может семантически сегментировать изображение или видео - то есть не просто обозначать, что на картинке есть объект, но и идеально выделить его контуры. Эта технология используется в беспилотных автомобилях, которые определяют, есть ли помехи на дороге, разметку и считывают информацию с дорожных знаков, чтобы избежать аварий. Нейросеть также используют в медицине - чтобы определять диабетическую ретинопатию по фотографиям глаз пациентов например. Министерство здравоохранения США уже разрешило использовать эту технологию в государственных клиниках.

  • А почему глубинное обучение не начали внедрять раньше?

    Раньше это было затратно, сложно и долго - нужны были мощные графические процессоры, видеокарты и объемы памяти. Бум глубинного обучения как раз связан с широким распространением графических процессоров, которые ускоряют и удешевляют вычисления, практически неограниченные возможности хранения данных и развитие технологии «больших данных».

  • Это прорывная технология, она все поменяет?

    Об этом сложно сказать точно, мнения разнятся. С одной стороны, Google, Facebook и другие крупные компании уже вложили миллиарды долларов и настроены оптимистично. По их мнению, нейросети с глубинным обучением способны поменять технологическое устройство мира. Один из главных специалистов по машинному обучению - Эндрю Ынг - говорит: «Если человек может выполнить задачу в уме за секунду, скорее всего, в ближайшее время эта задача будет автоматизирована». Ынг называет машинное обучение «новым электричеством» - это техническая революция, и компании, которые ее проигнорируют, очень быстро обнаружат себя безнадежно отставшими от конкурентов.

    С другой стороны, есть и скептики: они считают, что глубокое обучение - это модное слово или ребрендинг нейронных сетей. К примеру, старший преподаватель факультета компьютерных наук ВШЭ Сергей Бартунов считает, что этот алгоритм - лишь один из вариантов (и при этом не лучший) обучения нейросети, который быстро подхватили массовые издания и о которых теперь знают все.

    Сергей Николенко, соавтор книги «Глубокое обучение»: «История искусственного интеллекта уже знала две „зимы“, когда за волной хайпа и завышенных ожиданий следовало разочарование. Оба раза, кстати, это было связано с нейронными сетями. Сначала в конце 1950-х решили, что перцептрон Розенблатта тут же приведёт к машинному переводу и осознающим себя компьютерам; но, конечно, не получилось из-за ограниченности железа, данных и отсутствия подходящих моделей.

    А в конце 1980-х ту же ошибку совершили, когда разобрались, как обучать любые архитектуры нейронных сетей. Показалось, что вот он, золотой ключик, открывающий любые двери. Это уже был не такой уж наивный вывод: действительно, если взять нейронную сеть из конца 1980-х, механически сделать её больше (увеличить число нейронов) и обучить на современных наборах данных и современном „железе“, она будет очень даже неплохо работать! Но ни данных, ни „железа“ в то время не хватало, и революцию глубокого обучения пришлось отложить до конца нулевых годов.

    Сейчас мы живём на третьей волне хайпа искусственного интеллекта. Закончится ли она третьей „зимой“ или созданием сильного ИИ - покажет только время».

  • Глубинное обучение меняет парадигму работы с текстами, однако вызывает скепсис у компьютерных лингвистов и специалистов в области анализа данных. Нейронные сети - мощный, но тривиальный инструмент машинного обучения.

    03.05.2017 Дмитрий Ильвовский, Екатерина Черняк

    Нейронные сети позволяют находить скрытые связи и закономерности в текстах, но эти связи не могут быть представлены в явном виде. Нейронные сети - пусть и мощный, но достаточно тривиальный инструмент, вызывающий скептицизм у компаний, разрабатывающих промышленные решения в области анализа данных, и у ведущих компьютерных лингвистов.

    Всеобщее увлечение нейросетевыми технологиями и глубинным обучением не обошло стороной и компьютерную лингвистику - автоматическую обработку текстов на естественном языке. На недавних конференциях ассоциации компьютерной лингвистики ACL, главном научном форуме в этой области, подавляющее большинство докладов было посвящено применению нейронных сетей как для решения уже известных задач, так и для исследования новых, которые не решались с помощью стандартных средств машинного обучения. Повышенное внимание лингвистов к нейронным сетям обусловлено несколькими причинами. Применение нейронных сетей, во-первых, существенным образом повышает качество решения некоторых стандартных задач классификации текстов и последовательностей, во-вторых, снижает трудоемкость при работе непосредственно с текстами, в-третьих, позволяет решать новые задачи (например, создавать чат-боты). В то же время нейронные сети нельзя считать полностью самостоятельным механизмом решения лингвистических проблем.

    Первые работы по глубинному обучению (deep learning) относятся к середине XX века. В начале 1940-х годов Уоррен Маккаллок и Уолтер Питтс предложили формальную модель человеческого мозга - искусственную нейронную сеть, а чуть позже Фрэнк Розенблатт обобщил их работы и создал модель нейронной сети на компьютере. Первые работы по обучению нейронных сетей с использованием алгоритма обратного распространения ошибки относятся к 1960-м годам (алгоритм вычисляет ошибку предсказания и минимизирует ее с помощью методов стохастической оптимизации). Однако оказалось, что, несмотря на красоту и изящество идеи имитации мозга, обучение «традиционных» нейронных сетей занимает много времени, а результаты классификации на небольших наборах данных сопоставимы с результатами, полученными более простыми методами, например машинами опорных векторов (Support Vector Machine, SVM). В итоге нейронные сети были на 40 лет забыты, но сегодня снова стали востребованы при работе с большими объемами неструктурированных данных, изображений и текстов.

    С формальной точки зрения нейронная сеть представляет собой направленный граф заданной архитектуры, вершины или узлы которого называются нейронами . На первом уровне графа находятся входные узлы, на последнем - выходные узлы, число которых зависит от задачи. Например, для классификации на два класса на выходной уровень сети можно поместить один или два нейрона, для классификации на k классов - k нейронов. Все остальные уровни в графе нейронной сети принято называть скрытыми слоями. Все нейроны, находящиеся на одном уровне, связаны ребрами со всеми нейронами следующего уровня, каждое ребро обладает весом. Каждому нейрону ставится в соответствие функция активации, моделирующая работу биологических нейронов: они «молчат», когда входной сигнал слаб, а когда его значение превышает некий порог, срабатывают и передают входное значение дальше по сети. Задача обучения нейронной сети на примерах (то есть на парах «объект - правильный ответ») заключается в поиске весов ребер, наилучшим образом предсказывающих правильные ответы. Ясно, что именно архитектура - топология строения графа нейронной сети - является ее важнейшим параметром. Хотя формального определения для «глубинных сетей» пока нет, принято считать глубинными все нейронные сети, состоящие из большого числа слоев или имеющие «нестандартные» слои (например, содержащие только избранные связи или использующие рекурсию с другими слоями).

    Примером наиболее успешного применения нейронных сетей пока является анализ изображений, однако нейросетевые технологии коренным образом изменили и работу с текстовыми данными. Если раньше каждый элемент текста (буква, слово или предложение) нужно было описывать с помощью множества признаков различной природы (морфологических, синтаксических, семантических и т. д.), то теперь во многих задачах необходимость в сложных описаниях пропадает. Теоретики и практики нейросетевых технологий часто говорят об «обучении представлению» (representation learning) - в сыром тексте, разбитом только на слова и предложения, нейронная сеть способна найти зависимости и закономерности и самостоятельно составить признаковое пространство. К сожалению, в таком пространстве человек ничего не поймет - во время обучения нейронная сеть ставит каждому элементу текста в соответствие один плотный вектор, состоящих из неких чисел, представляющих обнаруженные «глубинные» взаимосвязи. Акцент при работе с текстом смещается от конструирования подмножества признаков и поиска внешних баз знаний к выбору источников данных и разметке текстов для последующего обучения нейронной сети, для которого требуется существенно больше данных по сравнению со стандартными методами. Именно из-за необходимости использовать большие объемы данных и из-за слабой интерпретируемости и непредсказуемости нейронные сети не востребованы в реальных приложениях промышленного масштаба, в отличие от других, хорошо зарекомендовавших себя алгоритмов обучения, таких как случайный лес и машины опорных векторов. Тем не менее нейронные сети используются в целом ряде задач автоматической обработки текстов (рис. 1).

    Одно из самых популярных применений нейронных сетей - построение векторов слов, относящихся к области дистрибутивной семантики: считается, что значение слова можно понять по значению его контекста, по окружающим словам. Действительно, если нам незнакомо какое-то слово в тексте на известном языке, то в большинстве случаев можно угадать его значение. Математической моделью значения слова служат вектора слов: строки в большой матрице «слово-контекст», построенной по достаточно большому корпусу текстов. В качестве «контекстов» для конкретного слова могут выступать соседние слова, слова, входящие с данным в одну синтаксическую или семантическую конструкцию, и т. д. В клетках такой матрицы могут быть записаны частоты (сколько раз слово встретилось в данном контексте), но чаще используют коэффициент положительной попарной взаимной информации (Positive Pointwise Mutual Information, PPMI), показывающий, насколько неслучайным было появление слова в том или ином контексте. Такие матрицы вполне успешно могут быть использованы для кластеризации слов или для поиска слов, близких по смыслу к искомому слову.

    В 2013 году Томаш Миколов опубликовал работу , в которой предлагал использовать нейронные сети для обучения векторам слов, но для меньшей размерности: по кортежам (слово, контексты) обучалась нейронная сеть простейшей архитектуры, на выходе каждому слову в соответствие ставился вектор из 300 элементов. Оказалось, что такие вектора лучше передают семантическую близость слов. Например, на них можно определить арифметические операции сложения и вычитания смыслов и получить следующие уравнения: «Париж – Франция + Россия = Москва»; «король – мужчина + женщина = королева». Или найти лишнее слово в ряду «яблоко, груша, вишня, котенок». В работе были представлены две архитектуры, skip-gram и CBOW (Continuous Bag of Words), под общим названием word2vec. Как позже было показано в , word2vec - это не что иное, как факторизация матрицы «слово-контекст» с весами PPMI. Сейчас принято относить word2vec к дистрибутивной семантике, а не к глубинному обучению , однако исходным толчком для создания этой модели послужило применение нейронной сети. Кроме того, оказалось, что вектора word2vec служат удобным представлением смысла слова, которое можно подавать на вход глубинным нейронным сетям, используемым для классификации текстов.

    Задача классификации текстов - одна из самых актуальных для маркетологов, особенно когда речь идет об анализе мнений или отношения потребителя к какому-то товару или услуге, поэтому исследователи постоянно работают над повышением качества ее решения. Однако анализ мнений является задачей классификации скорее предложений, а не текстов - в положительном отзыве пользователь может написать одно-два отрицательно окрашенных предложения, и их тоже важно уметь определять и анализировать. Известная трудность в классификации предложений заключается в переменной длине входа - поскольку предложения в текстах бывают произвольной длины, непонятно, как подать их на вход нейронной сети. Один из подходов заимствован из области анализа изображений и заключается в использовании сверточных нейронных сетей (convolutional neural network, CNN) (рис. 2).

    На вход сверточной нейронной сети подается предложение, в котором каждое слово уже представлено вектором (вектор векторов). Как правило, для представления слов векторами используются заранее обученные модели word2vec. Сверточная нейронная сеть состоит из двух слоев: «глубинного» слоя свертки и обычного скрытого слоя. Слой свертки, в свою очередь, состоит из фильтров и слоя «субдискретизации». Фильтр - это нейрон, вход которого формируется при помощи окон, передвигающихся по тексту и выбирающих последовательно некоторое количество слов (например, окно длины «три» выберет первые три слова, слова со второго по четвертое, с третьего по пятое и т. д.). На выходе фильтра формируется один вектор, агрегирующий все вектора слов, в него входящих. Затем на слое субдискретизации формируется один вектор, соответствующий всему предложению, который вычисляется как покомпонентный максимум из всех выходных векторов фильтров. Сверточные нейронные сети просты в обучении и реализации. Для их обучения используется стандартный алгоритм обратного распространения ошибки, а за счет того, что веса фильтров равномерно распределены (вес i-го слова из окна одинаков для любого фильтра), число параметров у сверточной нейронной сети невелико. С точки зрения компьютерной лингвистики сверточные нейронные сети - мощный инструмент для классификации, за которым, впрочем, не стоит никакой языковой интуиции, что существенно затрудняет анализ ошибок алгоритма.

    Классификация последовательностей - это задачи, в которых каждому слову нужно поставить в соответствие одну метку: морфологический разбор (каждому слову ставится в соответствие часть речи), извлечение именованных сущностей (определение того, является ли каждое слово частью имени человека, географического названия и пр.) и т. д. При классификации последовательностей используются методы, позволяющие учитывать контекст слова: если предыдущее слово - часть имени человека, то текущее тоже может быть частью имени, но вряд ли будет частью названия организации. Реализовать это требование на практике помогают рекуррентные нейронные сети, расширяющие идею языковых моделей (language model), предложенных в конце прошлого века. Классическая языковая модель предсказывает вероятность того, что слово i встретится после слова i-1. Языковые модели можно использовать и для предсказания следующего слова: какое слово с наибольшей вероятностью встретится после данного?

    Для обучения языковых моделей нужны большие корпусы - чем больше обучающий корпус, тем больше пар слов модель «знает». Использование нейронных сетей для разработки языковых моделей позволяет сократить объем хранимых данных. Представим себе простую архитектуру сети, в которой на вход поступают слова i-2 и i-1, а на выходе нейронная сеть предсказывает слово i. В зависимости от числа скрытых слоев и количества нейронов на них, обученная сеть может быть сохранена как некоторое количество плотных матриц относительно небольшой размерности. Иначе говоря, вместо обучающего корпуса и всех пар слов в нем можно хранить лишь несколько матриц и список уникальных слов. Однако такая нейронная языковая модель не позволяет учитывать длинные связи между словами. Эту проблему решают рекуррентные нейронные сети (рис. 3), в которых внутреннее состояние скрытого слоя не только обновляется после того, как на вход приходит новое слово, но и передается на следующий шаг. Таким образом, скрытый слой рекуррентной сети принимает входы двух типов: состояние скрытого слоя на предыдущем шаге и новое слово. Если рекуррентная нейронная сеть обрабатывает предложение, то скрытые состояния позволяют запоминать и передавать длинные связи в предложениях. Экспериментально неоднократно было проверено, что рекуррентные нейронные сети запоминают род субъекта в предложении и выбирают правильные местоимения (она - ее, он - его) при генерации предложения, однако показать в явном виде, как именно такого рода информация хранится в нейронной сети или как она используется, до сих пор не удалось.

    Рекуррентные нейронные сети служат и для классификации текстов. В этом случае выходы на промежуточных шагах не используются, а последний выход нейронной сети возвращает предсказанный класс. Сегодня двунаправленные (передающие скрытое состояние не только «направо», но и «налево») рекуррентные сети, имеющие несколько десятков нейронов на скрытом слое, стали стандартным инструментом для решения задач классификации текстов и последовательностей, а также генерации текстов и по сути вытеснили другие алгоритмы.

    Развитием рекуррентных нейронных сетей стали архитектуры вида Seq2seq, состоящие из двух соединенных рекуррентных сетей, одна из которых отвечает за представление и анализ входа (например, вопроса или предложения на одном языке), а вторая - за генерацию выхода (ответа или предложения на другом языке). Сети Seq2seq лежат в основе современных систем «вопрос-ответ», чат-ботов и систем машинного перевода.

    Кроме сверточных нейронных сетей, для анализа текстов применяются так называемые автокодировщики, используемые, например, для создания эффектов на изображениях в Photoshop или Instagram и нашедшие применение в лингвистике в задаче снижения размерности (поиск проекции вектора, представляющего текст, на пространство заведомо меньшей размерности). Проекция на двумерное пространство делает возможным представление текста в виде точки на плоскости и позволяет наглядно изобразить коллекцию текстов как множество точек, то есть служит средством предварительного анализа перед кластеризацией или классификацией текстов. В отличие от задачи классификации, в задаче снижения размерности нет четких критериев качества, однако изображения, получаемые при использовании автокодировщиков, выглядят достаточно «убедительно». С математической точки зрения автокодировщик - это нейронная сеть без учителя, которая обучается линейной функции f(x) = x и состоит из двух частей: кодировщика и декодировщика. Кодировщик - это сеть с несколькими скрытыми слоями с уменьшающимся количеством нейронов. Декодировщик - аналогичная сеть с увеличивающимся количеством нейронов. Их соединяет скрытый слой, на котором столько нейронов, сколько должно быть размерностей в новом пространстве меньшей размерности, и именно он отвечает за снижение размерности. Как и сверточные нейронные сети, автокодировщик не имеет никакой лингвистической интерпретации, поэтому может считаться скорее инженерным, чем аналитическим инструментом.

    Несмотря на впечатляющие результаты, нейронная сеть не может считаться самостоятельным инструментом для анализа текста (поиска закономерностей в языке) и тем более для понимания текста. Да, нейронные сети позволяют находить скрытые связи между словами и обнаруживать закономерности в текстах, но пока эти связи не представлены в интерпретируемом виде, нейронные сети будут оставаться достаточно тривиальными инструментами машинного обучения. Кроме того, в промышленных аналитических решениях глубинное обучение пока еще не востребовано, поскольку требует неоправданных затрат на подготовку данных при непредсказуемости результатов. Даже в исследовательском сообществе высказывается критическое отношение к попыткам сделать нейронные сети универсальным инструментом. В 2015 году Крис Маннинг, глава группы компьютерной лингвистики в Стэнфорде и президент ACL, четко очертил круг применимости нейронных сетей . В него он включил задачи классификации текстов, классификации последовательностей и снижения размерности. Однако благодаря маркетингу и популяризации глубинного обучения возросло внимание собственно к компьютерной лингвистике и ее новым приложениям.

    Литература

    1. Tomas Mikolov et. al. Efficient Estimation of Word Representations in Vector Space, arxiv.org. URL: http://arxiv.org/pdf/1301.3781.pdf
    2. Levy Omer, Yoav Goldberg, Ido Dagan. Improving distributional similarity with lessons learned from word embeddings. Transactions of the Association for Computational Linguistics 3. - 2015. - P. 211–225. URL: https://www.transacl.org/ojs/index.php/tacl/article/view/570/124 (дата обращения: 18.05.2017).
    3. Павел Велихов. Машинное обучение для понимания естественного языка // Открытые Системы.СУБД. - 2016. - № 1. - С.18–21. URL: (дата обращения: 18.05.2017).
    4. Christopher Manning. Computational linguistics and deep learning. Computational Linguistics. - 2016. URL: http://www.mitpressjournals.org/doi/full/10.1162/COLI_a_00239#.WQH8MBhh2qA (дата обращения: 18.05.2017).

    Дмитрий Ильвовский ([email protected]) - сотрудник Международной лаборатории интеллектуальных систем и структурного анализа, Екатерина Черняк ([email protected]) - преподаватель центра непрерывного образования, факультет компьютерных наук, НИУ ВШЭ (Москва). Работа выполнена в рамках Программы фундаментальных исследований НИУ ВШЭ.



    » (Manning Publications).

    Статья рассчитана на людей, у которых уже есть значительный опыт работы с глубинным обучением (например, тех, кто уже прочитал главы 1-8 этой книги). Предполагается наличие большого количества знаний.

    Глубинное обучение: геометрический вид

    Самая удивительная вещь в глубинном обучении - то, насколько оно простое. Десять лет назад никто не мог представить, каких потрясающих результатов мы достигнем в проблемах машинного восприятия, используя простые параметрические модели, обученные с градиентным спуском. Теперь выходит, что нужны всего лишь достаточно большие параметрические модели, обученные на достаточно большом количестве образцов. Как сказал однажды Фейнман о Вселенной: «Она не сложная, её просто много ».

    В глубинном обучении всё является вектором, то есть точкой в геометрическом пространстве . Входные данные модели (это может быть текст, изображения и т. д.) и её цели сначала «векторизируются», то есть переводятся в некое первоначальное векторное пространство на входе и целевое векторное пространство на выходе. Каждый слой в модели глубинного обучения выполняет одно простое геометрическое преобразование данных, которые идут через него. Вместе, цепочка слоёв модели создаёт одно очень сложное геометрическое преобразование, разбитое на ряд простых. Эта сложная трансформация пытается преобразовать пространство входных данных в целевое пространство, для каждой точки. Параметры трансформации определяются весами слоёв, которые постоянно обновляются на основании того, насколько хорошо модель работает в данный момент. Ключевая характеристика геометрической трансформации - то, что она должна быть дифференцируема , то есть мы должны иметь возможность узнать её параметры через градиентный спуск. Интуитивно, это означает, что геометрический морфинг должен быть плавным и непрерывным - важное ограничение.

    Весь процесс применения этой сложной геометрической трансформации на входных данных можно визуализировать в 3D, изобразив человека, который пытается развернуть бумажный мячик: смятый бумажный комочек - это многообразие входных данных, с которыми модель начинает работу. Каждое движение человека с бумажным мячиком похоже на простую геометрическую трансформацию, которую выполняет один слой. Полная последовательность жестов по разворачиванию - это сложная трансформация всей модели. Модели глубинного обучения - это математические машины по разворачиванию запутанного многообразия многомерных данных.

    Вот в чём магия глубинного обучения: превратить значение в векторы, в геометрические пространства, а затем постепенно обучаться сложным геометрическим преобразованиям, которые преобразуют одно пространство в другое. Всё что нужно - это пространства достаточно большой размерности, чтобы передать весь спектр отношений, найденных в исходных данных.

    Ограничения глубинного обучения

    Набор задач, которые можно решить с помощью этой простой стратегии, практически бесконечен. И все же до сих пор многие из них вне досягаемости нынешних техник глубинного обучения - даже несмотря на наличие огромного количества вручную аннотированных данных. Скажем, для примера, что вы можете собрать набор данных из сотен тысяч - даже миллионов - описаний на английском языке функций программного обеспечения, написанных менеджерами продуктов, а также соответствующего исходного года, разработанного группами инженеров для соответствия этим требованиям. Даже с этими данными вы не можете обучить модель глубинного обучения просто прочитать описание продукта и сгенерировать соответствующую кодовую базу. Это просто один из многих примеров. В целом, всё что требует аргументации, рассуждений - как программирование или применение научного метода, долговременное планирование, манипуляции с данными в алгоритмическом стиле - находится за пределами возможностей моделей глубинного обучения, неважно сколько данных вы бросите в них. Даже обучение нейронной сети алгоритму сортировки - невероятно сложная задача.

    Причина в том, что модель глубинного обучения - это «лишь» цепочка простых, непрерывных геометрических преобразований , которые преобразуют одно векторное пространство в другое. Всё, что она может, это преобразовать одно множество данных X в другое множество Y, при условии наличия возможной непрерывной трансформации из X в Y, которой можно обучиться, и доступности плотного набора образцов преобразования X:Y как данных для обучения. Так что хотя модель глубинного обучения можно считать разновидностью программы, но большинство программ нельзя выразить как модели глубинного обучения - для большинства задач либо не существует глубинной нейросети практически подходящего размера, которая решает задачу, либо если существует, она может быть необучаема , то есть соответствующее геометрическое преобразование может оказаться слишком сложным, или нет подходящих данных для её обучения.

    Масштабирование существующих техник глубинного обучения - добавление большего количества слоёв и использование большего объёма данных для обучения - способно лишь поверхностно смягчить некоторые из этих проблем. Оно не решит более фундаментальную проблему, что модели глубинного обучения очень ограничены в том, что они могут представлять, и что большинство программ нельзя выразить в виде непрерывного геометрического морфинга многообразия данных.

    Риск антропоморфизации моделей машинного обучения

    Один из очень реальных рисков современного ИИ - неверная интерпретация работы моделей глубинного обучения и преувеличение их возможностей. Фундаментальная особенность человеческого разума - «модель психики человека», наша склонность проецировать цели, убеждения и знания на окружающие вещи. Рисунок улыбающейся рожицы на камне вдруг делает нас «счастливыми» - мысленно. В приложении к глубинному обучению это означает, например, что если мы можем более-менее успешно обучить модель генерировать текстовые описания картинок, то мы склонны думать, что модель «понимает» содержание изображений, также как и генерируемые описания. Нас затем сильно удивляет, когда из-за небольшого отклонения от набора изображений, представленных в данных для обучения, модель начинает генерировать абсолютно абсурдные описания.

    В частности, наиболее ярко это проявляется в «состязательных примерах», то есть образцах входных данных сети глубинного обучения, специально подобранных, чтобы их неправильно классифицировали. Вы уже знаете, что можно сделать градиентное восхождение в пространстве входных данных для генерации образцов, которые максимизируют активацию, например, определённого фильтра свёрточной нейросети - это основа техники визуализации, которую мы рассматривали в главе 5 (примечание: книги «Глубинное обучение с Python »), также как алгоритма Deep Dream из главы 8. Похожим способом, через градиентное восхождение, можно слегка изменить изображение, чтобы максимизировать предсказание класса для заданного класса. Если взять фотографию панды и добавить градиент «гиббон», мы можем заставить нейросеть классифицировать эту панду как гиббона. Это свидетельствует как о хрупкости этих моделей, так и о глубоком различии между трансформацией со входа на выход, которой она руководствуется, и нашим собственным человеческим восприятием.

    В общем, у моделей глубинного обучения нет понимания входных данных, по крайней мере, не в человеческом смысле. Наше собственное понимание изображений, звуков, языка, основано на нашем сенсомоторном опыте как людей - как материальных земных существ. У моделей машинного обучения нет доступа к такому опыту и поэтому они не могут «понять» наши входные данные каким-либо человекоподобным способом. Аннотируя для наших моделей большое количество примеров для обучения, мы заставляем их выучить геометрическое преобразование, которое приводит данные к человеческим концепциям для этого специфического набора примеров, но это преобразование является лишь упрощённым наброском оригинальной модели нашего разума, таким, какое разработано исходя из нашего опыта как телесных агентов - это как слабое отражение в зеркале.

    Как практикующий специалист по машинному обучению, всегда помните об этом, и никогда не попадайте в ловушку веры в то, что нейросети понимают задачу, которую выполняют - они не понимают, по крайней мере не таким образом, какой имеет смысл для нас. Они были обучены другой, гораздо более узкой задаче, чем та, которой мы хотим их обучить: простому преобразованию входных образцов обучения в целевые образцы обучения, точка к точке. Покажите им что-нибудь, что отличается от данных обучения, и они сломаются самым абсурдным способом.

    Локальное обобщение против предельного обобщения

    Кажется, существуют фундаментальные отличия между прямым геометрическим морфингом со входа на выход, который делают модели глубинного обучения, и тем способом, как люди думают и обучаются. Дело не только в том, что люди обучаются сами от своего телесного опыта, а не через обработку набора учебных образцов. Кроме разницы в процессах обучения, есть фундаментальные отличия в природе лежащих в основе представлений.

    Люди способны на гораздо большее, чем преобразование немедленного стимула в немедленный отклик, как нейросеть или, может быть, насекомое. Люди удерживают в сознании сложные, абстрактные модели текущей ситуации, самих себя, других людей, и могут использовать эти модели для предсказания различных возможных вариантов будущего, и выполнять долговременное планирование. Они способны на объединение в единое целое известных концепций, чтобы представить то, что они никогда не знали раньше - как рисование лошади в джинсах, например, или изображение того, что бы они сделали, если бы выиграли в лотерею. Способность мыслить гипотетически, расширять свою модель ментального пространства далеко за пределы того, что мы напрямую испытывали, то есть, способность делать абстракции и рассуждения , пожалуй, определяющая характеристика человеческого познания. Я называю это «предельным обобщением»: способность приспосабливаться к новым, никогда не испытанным ранее ситуациям, используя очень мало данных либо вовсе не используя никаких данных.

    Это резко отличается от того, что делают сети глубинного обучения, что я бы назвал «локальным обобщением»: преобразование входных данных в выходные данные быстро прекращает иметь смысл, если новые входные данные хотя бы немного отличаются от того, с чем они встречались во время обучения. Рассмотрим, для примера, проблему обучения подходящим параметрам запуска ракеты, которая должна сесть на Луну. Если бы вы использовали нейросеть для этой задачи, обучая её с учителем или с подкреплением, вам бы понадобилось дать ей тысячи или миллионы траекторий полёта, то есть нужно выдать плотный набор примеров в пространстве входящих значений, чтобы обучиться надёжному преобразованию из пространства входящих значений в пространство исходящих значений. В отличие от них, люди могут использовать силу абстракции для создания физических моделей - ракетостроение - и вывести точное решение, которое доставит ракету на Луну всего за несколько попыток. Таким же образом, если вы разработали нейросеть для управления человеческим телом и хотите, чтобы она научилась безопасно проходить по городу, не будучи сбитой автомобилем, сеть должна умереть много тысяч раз в различных ситуациях, прежде чем сделает вывод, что автомобили опасны, и не выработает соответствующее поведение, чтобы их избегать. Если её перенести в новый город, то сети придётся заново учиться большей часть того, что она знала. С другой стороны, люди способны выучить безопасное поведение, не умерев ни разу - снова, благодаря силе абстрактного моделирования гипотетических ситуаций.

    Итак, несмотря на наш прогресс в машинном восприятии, мы всё ещё очень далеки от ИИ человеческого уровня: наши модели могут выполнять только локальное обобщение , адаптируясь к новым ситуациям, которые должны быть очень близки к прошлым данным, в то время как человеческий разум способен на предельное обобщение , быстро приспосабливаясь к абсолютно новым ситуациям или планируя далеко в будущее.

    Выводы

    Вот что вы должны помнить: единственным реальным успехом глубинного обучения к настоящему моменту является способность транслировать пространство X в пространство Y, используя непрерывное геометрическое преобразование, при наличии большого количества данных, аннотированных человеком. Хорошее выполнение этой задачи представляет собой революционно важное достижение для целой индустрии, но до ИИ человеческого уровня по-прежнему очень далеко.

    Чтобы снять некоторые из этих ограничений и начать конкурировать с человеческим мозгом, нам нужно отойти от прямого преобразования со входа в выход и перейти к рассуждениям и абстракциям . Возможно, подходящей основой для абстрактного моделирования различных ситуация и концепций могут быть компьютерные программы. Мы говорили раньше (примечание: в книге «Глубинное обучение с Python »), что модели машинного обучения можно определить как «обучаемые программы»; в данный момент мы можем обучать только узкое и специфическое подмножество всех возможных программ. Но что если бы мы могли обучать каждую программу, модульно и многократно? Посмотрим, как мы можем к этому придти.

    Будущее глубинного обучения

    Учитывая то, что мы знаем о работе сетей глубинного обучения, их ограничениях и нынешнем состоянии научных исследований, можем ли мы прогнозировать, что произойдёт в среднесрочной перспективе? Здесь несколько моих личных мыслей по этому поводу. Имейте в виду, что у меня нет хрустального шара для предсказаний, так что многое из того, что я ожидаю, может не воплотиться в реальность. Это абсолютные спекуляции. Я разделяю эти прогнозы не потому что ожидаю, что они полностью воплотятся в будущем, а потому что они интересны и применимы в настоящем.

    На высоком уровне вот основные направления, которые я считаю перспективными:

    • Модели приблизятся к компьютерным программам общего предназначения, построенных поверх гораздо более богатых примитивов, чем наши нынешние дифференцируемые слои - так мы получим рассуждения и абстракции , отсутствие которых является фундаментальной слабостью нынешних моделей.
    • Появятся новые формы обучения, которые сделают это возможным - и позволят моделям отойти просто от дифференцируемых преобразований.
    • Модели будут требовать меньшего участия разработчика - не должно быть вашей работой постоянно подкручивать ручки.
    • Появится большее, систематическое повторное использование выученных признаков и архитектур; мета-обучаемые системы на основе повторно используемых и модульных подпрограмм.
    Вдобавок, обратите внимание, что эти рассуждения не относятся конкретно к обучению с учителем, которое до сих пор остаётся основой машинного обучения - также они применимы к любой форме машинного обучения, включая обучение без учителя, обучение под собственным наблюдением и обучение с подкреплением. Фундаментально неважно, откуда пришли ваши метки или как выглядит ваш цикл обучения; эти разные ветви машинного обучения - просто разные грани одной конструкции.

    Итак, вперёд.

    Модели как программы

    Как мы заметили раньше, необходимым трансформационным развитием, которое можно ожидать в области машинного обучения, является уход от моделей, выполняющих чисто распознавание шаблонов и способных только на локальное обобщение , к моделям, способным на абстракции и рассуждения , которые могут достичь предельного обобщения . Все нынешние программы ИИ с базовым уровнем рассуждений жёстко запрограммированы людьми-программистами: например, программы, которые полагаются на поисковые алгоритмы, манипуляции с графом, формальную логику. Так, в программе DeepMind AlphaGo бóльшая часть «интеллекта» на экране спроектирована и жёстко запрограммирована экспертами-программистами (например, поиск в дереве по методу Монте-Карло); обучение на новых данных происходит только в специализированных подмодулях - сети создания ценностей (value networks) и сети по вопросам политики (policy networks). Но в будущем такие системы ИИ могут быть полностью обучены без человеческого участия.

    Как этого достичь? Возьмём хорошо известный тип сети: RNN. Что важно, у RNN немного меньше ограничений, чем у нейросетей прямого распространения. Это потому что RNN представляют собой немного больше, чем простые геометрические преобразования: это геометрические преобразования, которые осуществляются непрерывно в цикле for . Временной цикл for задаётся разработчиком: это встроенное допущение сети. Естественно, сети RNN всё ещё ограничены в том, что они могут представлять, в основном, потому что каждый их шаг по-прежнему является дифференцируемым геометрическим преобразованием и из-за способа, которым они передают информацию шаг за шагом через точки в непрерывном геометрическом пространстве (векторы состояния). Теперь представьте нейросети, которые бы «наращивались» примитивами программирования таким же способом, как циклы for - но не просто одним-единственным жёстко закодированным циклом for с прошитой геометрической памятью, а большим набором примитивов программирования, с которыми модель могла бы свободно обращаться для расширения своих возможностей обработки, таких как ветви if , операторы while , создание переменных, дисковое хранилище для долговременной памяти, операторы сортировки, продвинутые структуры данных вроде списков, графов, хеш-таблиц и многого другого. Пространство программ, которые такая сеть может представлять, будет гораздо шире, чем могут выразить существующие сети глубинного обучения, и некоторые из этих программ могут достичь превосходной силы обобщения.

    Одним словом, мы уйдём от того, что у нас с одной стороны есть «жёстко закодированный алгоритмический интеллект» (написанное вручную ПО), а с другой стороны - «обученный геометрический интеллект» (глубинное обучение). Вместо этого мы получим смесь формальных алгоритмических модулей, которые обеспечивают возможности рассуждений и абстракции , и геометрические модули, которые обеспечивают возможности неформальной интуиции и распознавания шаблонов . Вся система целиком будет обучена с небольшим человеческим участием либо без него.

    Родственная область ИИ, которая, по моему мнению, скоро может сильно продвинуться, это программный синтез , в частности, нейронный программный синтез. Программный синтез состоит в автоматической генерации простых программ, используя поисковый алгоритм (возможно, генетический поиск, как в генетическом программировании) для изучения большого пространства возможных программ. Поиск останавливается, когда найдена программа, соответствующая требуемым спецификациям, часто предоставляемым как набор пар вход-выход. Как видите, это сильно напоминает машинное обучение: «данные обучения» предоставляются как пары вход-выход, мы находим «программу», которая соответствует трансформации входных в выходные данные и способна к обобщениям для новых входных данных. Разница в том, что вместо значений параметров обучения в жёстко закодированной программе (нейронной сети) мы генерируем исходный код путём дискретного поискового процесса.

    Я определённо ожидаю, что к этой области снова проснётся большой интерес в следующие несколько лет. В частности, я ожидаю взаимное проникновение смежных областей глубинного обучения и программного синтеза, где мы будем не просто генерировать программы на языках общего назначения, а где мы будем генерировать нейросети (потоки обработки геометрических данных), дополненные богатым набором алгоритмических примитивов, таких как циклы for - и многие другие. Это должно быть гораздо более удобно и полезно, чем прямая генерация исходного кода, и существенно расширит границы для тех проблем, которые можно решать с помощью машинного обучения - пространство программ, которые мы можем генерировать автомтически, получая соответствующие данные для обучения. Смесь символического ИИ и геометрического ИИ. Современные RNN можно рассматривать как исторического предка таких гибридных алгоритмо-геометрических моделей.


    Рисунок: Обученная программа одновременно полагается на геометрические примитивы (распознавание шаблонов, интуиция) и алгоритмические примитивы (аргументация, поиск, память).

    За пределами обратного распространения и дифференцируемых слоёв

    Если модели машинного обучения станут больше похожи на программы, тогда они больше почти не будут дифференцируемы - определённо, эти программы по-прежнему будут использовать непрерывные геометрические слои как подпрограммы, которые останутся дифференцируемыми, но вся модель в целом не будет такой. В результате, использование обратного распространения для настройки значений весов в фиксированной, жёстко закодированной сети не может оставаться в будущем предпочтительным методом для обучения моделей - по крайней мере, нельзя ограничиваться только этим методом. Нам нужно выяснить, как наиболее эффективно обучать недифференцируемые системы. Нынешние подходы включают генетические алгоритмы, «эволюционные стратегии», определённые методы обучения с подкреплением, ADMM (метод переменных направлений множителей Лагранжа). Естественно, градиентный спуск больше никуда не денется - информация о градиенте всегда будет полезна для оптимизации дифференцируемых параметрических функций. Но наши модели определённо будут становится всё более амбициозными, чем просто дифференцируемые параметрические функции, и поэтому их автоматизированная разработка («обучение» в «машинном обучении») потребует большего, чем обратное распространение.

    Кроме того, обратное распространение имеет рамки end-to-end, что подходит для обучения хороших сцепленных преобразований, но довольно неэффективно с вычислительной точки зрения, потому что не использует полностью модульность глубинных сетей. Чтобы повысить эффективность чего бы то ни было, есть один универсальный рецепт: ввести модульность и иерархию. Так что мы можем сделать само обратное распространение более эффективным, введя расцепленные модули обучения с определённым механизмом синхронизации между ними, организованном в иерархическом порядке. Эта стратегия частично отражена в недавней работе DeepMind по «синтетическим градиентам». Я ожидаю намного, намного больше работ в этом направлении в ближайшем будущем.

    Можно представить будущее, где глобально недифференцируемые модели (но с наличием дифференцируемых частей) будут обучаться - расти - с использованием эффективного поискового процесса, который не будет применять градиенты, в то время как дифференцируемые части будут обучаться даже быстрее, используя градиенты с использованием некоей более эффективной версии обратного распространения

    Автоматизированное машинное обучение

    В будущем архитектуры модели будут создаваться обучением, а не писаться вручную инженерами. Полученные обучением модели автоматически работают вместе с более богатым набором примитивов и программоподобных моделей машинного обучения.

    Сейчас бóльшую часть времени разработчик систем глубинного обучения бесконечно модифицирует данные скриптами Python, затем долго настраивает архитектуру и гиперпараметры сети глубинного обучения, чтобы получить работающую модель - или даже чтобы получить выдающуюся модель, если разработчик настолько амбициозен. Нечего и говорить, что это не самое лучшее положение вещей. Но ИИ и здесь может помочь. К сожалению, часть по обработке и подготовке данных трудно автоматизировать, поскольку она часто требует знания области, а также чёткого понимания на высоком уровне, чего разработчик хочет достичь. Однако настройка гиперпараметров - это простая поисковая процедура, и в данном случае мы уже знаем, чего хочет достичь разработчик: это определяется функцией потерь нейросети, которую нужно настроить. Сейчас уже стало обычной практикой устанавливать базовые системы AutoML, которые берут на себя большую часть подкрутки настроек модели. Я и сам установил такую, чтобы выиграть соревнования Kaggle.

    На самом базовом уровне такая система будет просто настраивать количество слоёв в стеке, их порядок и количество элементов или фильтров в каждом слое. Это обычно делается с помощью библиотек вроде Hyperopt, которые мы обсуждали в главе 7 (примечание: книги «Глубинное обучение с Python »). Но можно пойти намного дальше и попробовать получить обучением соответствующую архитектуру с нуля, с минимальным набором ограничений. Это возможно с помощью обучения с подкреплением, например, или с помощью генетических алгоритмов.

    Другим важным направлением развития AutoML является получение обучением архитектуры модели одновременно с весами модели. Обучая модель с нуля каждый раз мы пробуем немного разные архитектуры, что чрезвычайно неэффективно, поэтому действительно мощная система AutoML будет управлять развитием архитектур, в то время как свойства модели настраиваются через обратное распространение на данных для обучения, таким образом устраняя всю чрезмерность вычислений. Когда я пишу эти строки, подобные подходы уже начали применять.

    Когда всё это начнёт происходить, разработчики систем машинного обучения не останутся без работы - они перейдут на более высокий уровень в цепочке создания ценностей. Они начнут прикладывать гораздо больше усилий к созданию сложных функций потерь, которые по-настоящему отражают деловые задачи, и будут глубоко разбираться в том, как их модели влияют на цифровые экосистемы, в которых они работают (например, клиенты, которые пользуются предсказаниями модели и генерируют данные для её обучения) - проблемы, которые сейчас могут позволить себе рассматривать только крупнейшие компании.

    Пожизненное обучение и повторное использование модульных подпрограмм

    Если модели становятся более сложными и построены на более богатых алгоритмических примитивах, тогда эта повышенная сложность потребует более интенсивного повторного их использования между задачами, а не обучения модели с нуля каждый раз, когда у нас появляется новая задача или новый набор данных. В конце концов, многие наборы данных не содержат достаточно информации для разработки с нуля новой сложной модели и станет просто необходимо использовать информацию от предыдущих наборов данных. Вы же не изучаете заново английский язык каждый раз, когда открываете новую книгу - это было бы невозможно. К тому же, обучение моделей с нуля на каждой новой задаче очень неэффективно из-за значительного совпадения между текущими задачами и теми, которые встречались раньше.

    Вдобавок, в последние годы неоднократно звучало замечательное наблюдение, что обучение одной и той же модели делать несколько слабо связанных задач улучшает её результаты в каждой из этих задач . Например, обучение одной и той же нейросети переводить с английского на немецкий и с французского на итальянский приведёт к получению модели, которая будет лучше в каждой из этих языковых пар. Обучение модели классификации изображений одновременно с моделью сегментации изображений, с единой свёрточной базой, приведёт к получению модели, которая лучше в обеих задачах. И так далее. Это вполне интуитивно понятно: всегда есть какая-то информация, которая частично совпадает между этими двумя на первый взгляд разными задачами, и поэтому общая модель имеет доступ к большему количеству информации о каждой отдельной задаче, чем модель, которая обучалась только на этой конкретной задаче.

    Что мы делаем на самом деле, когда повторно применяем модель на разных задачах, так это используем предобученные веса для моделей, которые выполняют общие функции, вроде извлечения визуальных признаков. Вы видели это на практике в главе 5. Я ожидаю, что в будущем будет повсеместно использоваться более общая версия этой техники: мы не только станем применять ранее усвоенные признаки (веса подмодели), но также архитектуры моделей и процедуры обучения. По мере того, как модели будут становиться более похожими на программы, мы начнём повторно использовать подпрограммы , как функции и классы в обычных языках программирования.

    Подумайте, как выглядит сегодня процесс разработки программного обеспечения: как только инженер решает определённую проблему (HTTP-запросы в Python, например), он упаковывает её как абстрактную библиотеку для повторного использования. Инженеры, которым в будущем встретится похожая проблема, просто ищут существующие библиотеки, скачивают и используют их в своих собственных проектах. Таким же образом в будущем системы метаобучения смогут собирать новые программы, просеивая глобальную библиотеку высокоуровневых повторно используемых блоков. Если система начнёт разрабатывать похожие подпрограммы для нескольких разных задач, то выпустит «абстрактную» повторно используемую версию подпрограммы и сохранит её в глобальной библиотеке. Такой процесс откроет возможность для абстракции , необходимого компонента для достижения «предельного обобщения»: подпрограмма, которая окажется полезной для многих задач и областей, можно сказать, «абстрагирует» некий аспект принятия решений. Такое определение «абстракции» похоже не понятие абстракции в разработке программного обеспечения. Эти подпрограммы могут быть или геометрическими (модули глубинного обучения с предобученными представлениями), или алгоритмическими (ближе к библиотекам, с которыми работают современные программисты).

    Рисунок: Метаобучаемая система, способная быстро разработать специфические для задачи модели с применением повторно используемых примитивов (алгоритмических и геометрических), за счёт этого достигая «предельного обобщения».

    В итоге: долговременное видение

    Вкратце, вот моё долговременное видение для машинного обучения:
    • Модели станут больше похожи на программы и получат возможности, которые простираются далеко за пределы непрерывных геометрических преобразований исходных данных, с чем мы работаем сейчас. Возможно, эти программы будут намного ближе к абстрактным ментальным моделям, которые люди поддерживают о своём окружении и о себе, и они будут способны на более сильное обобщение благодаря своей алгоритмической природе.
    • В частности, модели будут смешивать алгоритмические модули с формальными рассуждениями, поиском, способностями к абстракции - и геометрические модули с неформальной интуицией и распознаванием шаблонов. AlphaGo (система, потребовавшая интенсивного ручного программирования и разработки архитектуры) представляет собой ранний пример, как может выглядеть слияние символического и геометрического ИИ.
    • Они будут выращиваться автоматически (а не писаться вручную людьми-программистами), с использованием модульных частей из глобальной библиотеки повторно используемых подпрограмм - библиотеки, которая эволюционировала путём усвоения высокопроизводительных моделей из тысяч предыдущих задач и наборов данных. Как только метаобучаемая система определила общие шаблоны решения задач, они преобразуются в повторно используемые подпрограммы - во многом как функции и классы в современном программировании - и добавляются в глобальную библиотеку. Так достигается способность абстракции .
    • Глобальная библиотека и соответствующая система выращивания моделей будет способна достичь некоторой формы человекоподобного «предельного обобщения»: столкнувшись с новой задачей, новой ситуацией, система сможет собрать новую работающую модель для этой задачи, используя очень малое количество данных, благодаря: 1) богатым программоподобным примитивам, которые хорошо делают обобщения и 2) обширному опыту решения похожих задач. Таким же образом, как люди могут быстро изучить новую сложную видеоигру, потому что у них есть предыдущий опыт многих других игр и потому что модели на основе предыдущего опыта являются абстратктными и программоподобными, а не простым преобразованием стимула в действие.
    • По существу, эту непрерывно обучающуюся систему по выращиванию моделей можно интерпретировать как Сильный Искусственный Интеллект. Но не ждите наступления какого-то сингулярного робоапокалипсиса: он является чистой фантазией, которая родилась из большого списка глубоких недоразумений в понимании интеллекта и технологий. Впрочем, этой критике здесь не место.

    Об искусственных нейронных сетях сегодня много говорят и пишут – как в контексте больших данных и машинного обучения, так и вне его. В этой статье мы напомним смысл этого понятия, еще раз очертим область его применения, а также расскажем о важном подходе, который ассоциируется с нейронными сетями – глубоком обучении, опишем его концепцию, а также преимущества и недостатки в конкретных случаях использования.

    Что такое нейронная сеть?

    Как известно, понятие нейронной сети (НС) пришло из биологии и представляет собой несколько упрощенную модель строения человеческого мозга. Но не будем углубляться в естественнонаучные дебри – проще всего представить нейрон (в том числе, искусственный) как некий черный ящик с множеством входных отверстий и одним выходным.

    Математически, искусственный нейрон осуществляет преобразование вектора входных сигналов (воздействий) X в вектор выходных сигналов Y при помощи функции, называемой функцией активации. В рамках соединения (искусственной нейронной сети — ИНС) функционируют три вида нейронов: входные (принимающие информацию из внешнего мира – значения интересующих нас переменных), выходные (возвращающие искомые переменные – к примеру, прогнозы, или управляющие сигналы), а также промежуточные – нейроны, выполняющие некие внутренние («скрытые») функции. Классическая ИНС, таким образом, состоит из трех или более слоев нейронов, причем на втором и последующих слоях («скрытых» и выходном) каждый из элементов соединен со всеми элементами предыдущего слоя.

    Важно помнить о понятии обратной связи, которое определяет вид структуры ИНС: прямой передачи сигнала (сигналы идут последовательно от входного слоя через скрытый и поступают в выходной слой) и рекуррентной структуры, когда сеть содержит связи, идущие назад, от более дальних к более ближним нейронам). Все эти понятия составляют необходимый минимум информации для перехода на следующий уровень понимания ИНС – обучения нейронной сети, классификации его методов и понимания принципов работы каждого из них.

    Обучение нейронной сети

    Не следует забывать, для чего вообще используются подобные категории – иначе есть риск увязнуть в отвлеченной математике. На самом деле, под искусственными нейронными сетями понимают класс методов для решения определенных практических задач, среди которых главными являются задачи распознавания образов, принятия решений, аппроксимации и сжатия данных, а также наиболее интересные для нас задачи кластерного анализа и прогнозирования.

    Не уходя в другую крайность и не вдаваясь в подробности работы методов ИНС в каждом конкретном случае, позволим себе напомнить, что при любых обстоятельствах именно способность нейронной сети к обучению (с учителем или «самостоятельно») и является ключевым моментом использования ее для решения практических задач.

    В общем случае, обучение ИНС заключается в следующем:

    1. входные нейроны принимают переменные («стимулы») из внешней среды;
    2. в соответствии с полученной информацией изменяются свободные параметры НС (работают промежуточные слои нейронов);
    3. в результате изменений в структуре НС сеть «реагирует» на информацию уже иным образом.

    Таков общий алгоритм обучения нейронной сети (вспомним собаку Павлова – да-да, внутренний механизм образования условного рефлекса именно таков – и тут же забудем: все же наш контекст предполагает оперирование техническими понятиями и примерами).

    Понятно, что универсального алгоритма обучения не существует и, скорее всего, существовать не может; концептуально подходы к обучению делятся на обучение с учителем и обучение без учителя. Первый алгоритм предполагает, что для каждого входного («обучающегося») вектора существует требуемое значение выходного («целевого») вектора – таким образом, два этих значения образуют обучающую пару, а вся совокупность таких пар – обучающее множество. В случае варианта обучения без учителя обучающее множество состоит лишь из входных векторов – и такая ситуация является более правдоподобной с точки зрения реальной жизни.

    Глубокое обучение

    Понятие глубокого обучения (deep learning ) относится к другой классификации и обозначает подход к обучению так называемых глубоких структур, к которым можно отнести многоуровневые нейронные сети. Простой пример из области распознавания образов: необходимо научить машину выделять все более абстрактные признаки в терминах других абстрактных признаков, то есть определить зависимость между выражением всего лица, глаз и рта и, в конечном итоге, скопления цветных пикселов математически. Таким образом, в глубокой нейронной сети за каждый уровень признаков отвечает свой слой; понятно, что для обучения такой «махины» необходим соответствующий опыт исследователей и уровень аппаратного обеспечения. Условия сложились в пользу глубокого обучения НС только к 2006 году – и спустя восемь лет можно говорить о революции, которую произвел этот подход в машинном обучении.

    Итак, прежде всего, в контексте нашей статьи стоит заметить следующее: глубокое обучение в большинстве случае не контролируется человеком. То есть этот подход подразумевает обучение нейронной сети без учителя. Это и есть главное преимущество «глубокого» подхода: машинное обучение с учителем, особенно в случае глубоких структур, требует колоссальных временных – и трудовых – затрат. Глубокое же обучение – подход, моделирующий человеческое абстрактное мышление (или, по крайней мере, представляет собой попытку приблизиться к нему), а не использующий его.

    Идея, как водится, прекрасная, но на пути подхода встают вполне естественные проблемы – прежде всего, коренящиеся в его претензии на универсальность. На самом деле, если на поприще распознавания образов подходы deep learning добились ощутимых успехов, то с той же обработкой естественного языка возникает пока гораздо больше вопросов, чем находится ответов. Очевидно, что в ближайшие n лет вряд ли удастся создать «искусственного Леонардо Да Винчи» или даже – хотя бы! — «искусственного homo sapiens ».

    Тем не менее, перед исследователями искусственного интеллекта уже встает вопрос этики: опасения, высказываемые в каждом уважающем себя научно-фантастическом фильме, начиная с «Терминатора» и заканчивая «Трансформерами», уже не кажутся смешными (современные изощренные нейросети уже вполне могут считаться правдоподобной моделью работы мозга насекомого!), но пока явно излишни.

    Идеальное техногенное будущее представляется нам как эра, когда человек сможет делегировать машине большинство своих полномочий – или хотя бы сможет позволить ей облегчить существенную часть своей интеллектуальной работы. Концепция глубокого обучения – один из шагов на пути к этой мечте. Путь предстоит долгий – но уже сейчас понятно, что нейронные сети и связанные с ними все развивающиеся подходы способны со временем воплотить в жизнь чаяния научных фантастов.

    Что такое глубокое обучение (deep learning) ? March 3rd, 2016

    Сейчас говорят о модных технологиях глубокого обучения, как будто это манна небесная. Но понимают ли говорящие, что это на самом деле? А ведь у этого понятия нет формального определения, и объединяет оно целый стек технологий. В этом посте я и хочу популярно, насколько это возможно, и по сути объяснить что стоит за этим термином, почему он так популярен и что дают нам эти технологий.


    Если совсем коротко, то этот новомодный термин (deep learning) о том, как собрать из каких-то простых абстракции более сложную и глубокую абстракцию (репрезентацию) притом, что даже самые простые абстракции должен собирать сам компьютер, а не человек . Т.е. речь уже не просто об обучении, а о метаобучении. Образно говоря, компьютер самостоятельно должен научиться как лучше ему учиться. И, по сути, термин «глубокое» именно это и подразумевает. Практически всегда этот термин применяемся к искусственным нейронным сетям, где используется больше одного скрытого слоя, поэтому формально «глубокий» значит ещё и более глубокую архитектуру нейронной сети.

    Вот на слайде в развитие хорошо видно, чем отличается глубокое обучение, от обычного. Повторюсь, уникальным для глубокого обучения является то, что машина сама находит признаки (ключевые черты чего-либо, по которым легче всего разделять один класс объектов от другого) и признаки эти структурирует иерархично: из более простых складываются более сложные . Ниже мы разберем это на примере.

    Давайте посмотрим на примере задачи распознавания изображений: раньше как — запихивали в обычную нейронную сеть с одним слоем огромную (1024×768 — около 800 000 числовых значений) картинку и смотрели как компьютер медленно умирает, задыхаясь от нехватки памяти и неспособности понять, какие пиксели важны для распознавания, а какие нет. Не говоря уже об эффективности такого способа. Вот архитектура такой обычной (неглубой) нейронной сети.

    Потом все же прислушались к тому, как выделяет признаки мозг, а делает он это строго иерархично, и тоже решили извлекать из картинок иерархичную структуру. Для этого необходимо было добавить больше скрытых слоев (слоев, которые находятся между входом и выходом; грубо говоря, этапов преобразования информации) в нейронную сеть. Хотя решили так делать практически сразу, как изобрели нейронки, но тогда успешно обучались сети только с одним скрытом слоем. Т.е. в принципе глубокие сети существуют примерно столько же, сколько обычные, просто мы не могли их обучить. Что же поменялось?

    В 2006 году сразу несколько независимых исследователей решили эту проблему (к тому же аппаратные мощности развились уже достаточно, появились достаточно мощные видеокарты). Эти исследователи: Джеффри Хинтон (и его коллега Руслан Салахутидинов) с техникой предварительного обучения каждого слоя нейросети ограниченной машиной Больцмана (простите меня за эти термины...), Ян Лекун с сверточными нейронными сетями и Йошуая Бенджио с каскадными автокодировщиками. Первые два сразу же были рекрутированы Google и Facebook, соответственно. Вот две лекции: одна — Хинтона , другая — Лякуна , в которых они и рассказывают, что такое глубокое обучение. Лучше их об этом не расскажет никто. Ещё одна классная лекция Шмидхубера про развитие глубокого обучения, тоже одного из столпов этой науки. А у Хинтона ещё есть прекрасный курс на курсере по нейронкам.

    На что способны глубокие нейронные сети сейчас? Они способны распознавать и описывать объекты, можно сказать «понимают» что это. Речь идет о распознавании смыслов.

    Просто посмотрите это видео распознавания того, что видит камера, в реальном времени.

    Как я уже сказал, технологии глубокого обучения — это целая группа технологий и решений. Несколько из них я уже перечислил абзацем выше, другой пример — это рекуррентные сети, которые как раз используются в видео выше для описания того, что видит сеть. Но самый популярный представитель технологий данного класса — это все-таки сверточные нейронные сети ЛяКуна. Они построены по аналогии с принципами работы зрительной коры мозга кошки, в которой были открыты так называемые простые клетки, реагирующие на прямые линии под разными углами, и сложные — реакция которых связана с активацией определенного набора простых клеток. Хотя, честно говоря, сам ЛяКун не ориентировался на биологию, он решал конкретную задачу (смотрите его лекции), а потом так совпало.

    Если совсем просто, то сверточные сети — это такие сети, где основным структурным элементом обучения является группа (сочетание) нейронов (обычно квадрат 3×3,10×10 и т.д.), а не один. И на каждом уровне сети обучаются десятки таких групп. Сеть находит такие сочетания нейронов, которые максимизируют информацию об изображении. На первом уровне сеть извлекает самые базовые, структурно простые элементы картинки — можно сказать, строительные единицы: границы, штрихи, отрезки, контрасты. Повыше — уже устойчивые комбинации элементов первого уровня, и так далее вверх по цепочке. Хочу ещё раз отдельно подчеркнуть главную особенность глубокого обучения: сети сами формируют эти элементы и решают, какие из них более важный, а какие — нет. Это важно, так как в области машинного обучения, создание признаков — является ключевым и сейчас мы переходим на этап, когда компьютер сам учится создавать и отбирать признаки. Машина сама выделяет иерархию информативных признаков.

    Итак, в процессе обучения (просмотра сотен картинок) сверточная сеть формирует иерархию признаков различного уровня глубины. Вот на первом уровне, они могут выделить, например, такие элементы (отражая контрастность, угол, границу и т.д.).


    На втором уровне — это уже будет элемент из элементов первого уровня. На третьем — из второго. Надо понимать, что данная картинка — просто демонстрация. Сейчас в промышленной применение, такие сети имеют от 10 до 30 слоев (уровней).

    После того, как такая сеть обучилась — мы можем её использовать для классификации. Подав на вход какое-то изображение, группы нейронов первого слоя пробегаются по изображению, активируясь в тех местах, где есть соответствующий конкретному элементу элемент картинки. Т.е. эта сеть разбирает картинку на части — сначала на черточки, штрихи, углы наклона, потом более сложные части и в конце она приходит к выводу, что картинка из такого рода комбинации базовых элементов — это лицо.

    Подробнее про сверточные сети —



    Загрузка...