sonyps4.ru

Генератор ламповый низкочастотный. §2.12

Прибор, принципиальная схема которого приведена на рис. 1, представляет собой звуковой генератор, работающий в диапазоне частот от 23 гц до 32 кгц. Весь диапазон частот разбит на четыре поддиапазона 23— 155 гц, 142— 980 гц, 800— 5500 гц, 4.9— 32 кгц. В приборе имеется индикатор выходного напряжения, а также делители плавный и ступенчатый, с помощью которых можно регулировать выходное напряжение от 10 мв до 10 в. Коэффициент нелинейных искажений ие превышает 3%. Точность измерения выходного напряжения 3%.

Принципиальная схема

Как видно из рис. 1, звуковой генератор состоит из двухкаскадиого возбудителя Л1, катодного повторителя Л2, выходного устройства и выпрямителя.

Возбудитель собран по схеме с реостатно-емкостной настройкой и представляет собой двухкаскадный усилитель низкой частоты с положительной обратной связью. Первый каскад усиления собран иа левом триоде лампы Л1 с нагрузкой в виде резистора R17. Второй каскад усиления собран на правом триоде лампы Л1.

В качестве нагрузки используется резистор R18. Связь между каскадами осуществляется через конденсатор С6. Необходимая для возникновения колебаний положительная обратная связь подается из анодной цепи правого триода на управляющую сетку левого триода через конденсатор большой емкости С5 и делитель, состоящий из двух участков: резистора R14, соединенных последовательно конденсаторов С1, С2 и резистора R7 и соединенных параллельно конденсаторов С3, С4.

Напряжение, воздействующее на управляющую сетку левого триода Л1, снимается с параллельного участка делителя R7. С3, С4. Применение частотнозависимого делителя позволяет получить условия самовозбуждения только для одной частоты, при которой сдвиг фаз между напряжением положительной обратной связи на управляющей сетке левого триода (делителе R7, СЗ, С4) и аноде правого триода Л1 равен нулю. Это позволяет получить с помощью такого генератора синусоидальные колебания.

Для изменения частоты генерации необходимо изменять параметры элементов, входящих в цепочки делителя. В данной схеме плавное изменение частоты осуществляется изменением емкости сдвоенного конденсатора СІ, С4, а скачкообразное — переключателем В1, который изменяет величины резисторов, входящих в цепочки делителя (R5, R6 и R12, R13; R3, R4 и R10, R11; R1, R2 и R8, R9).

Как показывают расчеты, при любой частоте и а управляющую сетку левого триода лампы Л1 будет всегда поступать достаточно большое напряжение, поэтому каскады усилителя из-за перегрузки будут вносить большие искажения. Уменьшения этих искажений добиваются с помощью отрицательной обратной связи, цепь которой состоит из переменного резистора R15, постоянного резистора R16 и включенных в левый катод лампы ламп накаливания Л3, Л4.

Цепь отрицательной обратной связи стабилизирует также выходное напряжение, которое сравнительно сильно меняется при изменении частоты. При увеличении выходного напряжения возбудителя увеличивается глубина отрицательной обратной связи, снижающей коэффициент усиления первого каскада генератора. Таким образом, выходное напряжение генератора окажется стабилизированным по диапазону.

Наименьшие искажения на выходе возбудителя будут тогда, когда напряжение, снимаемое с параллельной ветви делителя, близко к напряжению отрицательной обратной связи, величина которой при регулировке прибора устанавливается с помощью переменного резистора R15.

С выхода возбудителя через переходной конденсатор С7 напряжение звуковой частоты подается на вход катодного повторителя, собранного на лампе Л2. Нагрузкой лампы служит потенциометр R23. Делителем, состоящим из резисторов R22, R21, устанавливается необходимый режим работы этого каскада. Резистор R20 ограничительный. Применение катодного повторителя, имеющего большое входное сопротивление, позволяет уменьшить реакцию нагрузки на частоту генератора и величину искажений, вносимых выходным каскадом.

Выходное устройство состоит из плавного (R23) и ступенчатого (R26, R27; R28,. R29) делителей и обычного диодного вольтметра, в котором используется гальванометр со шкалой 50 мка. Резисторы R24, R25 установочные. Применение резистора R30 позволяет получить лучшую линейность шкалы.

Детали

Выпрямитель собран по обычной двухполупериодной схеме удвоения напряжения. Питание прибора может осуществляться от сети переменного тока с напряжением 110. 127 и 220 в.

Расположение деталей на шасси показано иа рис. 2. Шасси размером 180X X 170x63 мм изготавливают из алюминия толщиной 2 мм. К нему прикреплена передняя панель размером 150Х 180 мм. Вид со стороны передней панели показан на рис. 3, со стороны монтажа — на рис. 4. Возможно и другое расположение деталей, однако следует стремиться, чтобы трансформатор питания Тр1 был максимально удалей от сеточных цепей лампы Л1.

Переключатель В1 двухплатный на четыре положения. Вторая плата использована для крепления отдельных резисторов частотно-зависимого делителя.

Лампы Л3, Л4 использованы от кинопроектора «Луч» (110 в, 8 вт). Можно применить одну лампу иа 220 в мощностью 10— 25 вт. Трансформатор питания от приемника «Рекорд-53М». Можно использовать трансформаторы и от приемников «Москвич-В», «Волна», АРЗ-52 и др.

Для удобства налаживания прибора ветви частотно-зависимого делителя составляются из двух последовательно соединенных резисторов (R1, R2, R8, R9 и т. д.). Налаживание генератора начинают с проверки работы выпрямителя. Под нагрузкой напряжение на выходе выпрямителя должно быть равно 280—320 в. Ток, потребляемый прибором от выпрямителя, должен лежать в пределах 30—35 ма.

После этого к выходу генератора (1/1—Гн1) подключают осциллограф н добиваются иа самом низкочастотном поддиапазоне устойчивых колебаний и отсутствия искажений. На форму кривой генерируемых колебаний в значительной степени влияет величина отрицательной обратной связи. При слабой отрицательной обратной связи (R15 велико) получаются более устойчивые колебания, но с заметными искажениями формы.

При сильной связи колебания срываются. Поэтому подбором величины отрицательной обратной связи (R15) находят компромиссное решение: глубину обратной связи выбирают такой, при которой обеспечивается достаточно устойчивая генерация на всем диапазоне частот и хорошая форма кривой.

Для градуировки шкалы генератора можно воспользоваться измерителем частоты или генератором звуковых частот. В последнем случае градуировка каждой из четырех шкал осуществляется с помощью фигур Лиссажу, наблюдаемых иа экране трубки осциллографа. Градуировка индикатора выхода производится с помощью лампового образцового вольтметра, который подключается между точками а— б схемы.

Изменение напряжения, подаваемого иа вход делителя (или индикатора), осуществляется потенциометром R23, иа котором выделяется переменная составляющая напряжения порядка 13 в. Установив напряжение на образцовом вольтметре 10 в переменным резистором R24, добиваются, чтобы стрелка индикатора отклонилась на всю шкалу. Устанавливая по образцовому вольтметру потенциометром R23 напряжение, соответствующее 9, 8, 7, 6, 5, 4, 3, 2 и 1 в, каждый раз делают соответствующие пометки иа шкале индикатора цА.

Следует указать, что наличие постоянной емкости С2 в верхней ветви делителя значительно улучшает условия возникновения колебаний на высоких частотах и способствует выравниванию амплитуды колебаний возбудителя при любом положении блока конденсаторов переменной емкости. При отсутствии лампы 6П14П ее можно заменить лампами типа 6П15П, 6П18П или 6Ж5П.

Делитель напряжения при точном выборе значений, указанных иа схеме резисторов, никаких подгонок не требует. Следует лишь учесть, что необходимое ослабление, которое дает делитель, будет иметь место лишь в том случае, если со,-противление нагрузки в несколько раз превышает сопротивление делителя, к которому эта нагрузка присоединяется.

§ 133. Ламповый генератор

Выше было рассмотрено применение трехэлектродной лампы в электронном усилителе. Однако триоды широко применяют и в ламповых генераторах, которые служат для создания переменных токов различной частоты.
Простейшая схема лампового генератора приведена на рис. 192. Основными его элементами являются триод и колебательный контур. Для питания нити накала лампы используется батарея накала Б н. В цепь анода включена анодная батарея Б a и колебательный контур, состоящий из катушки индуктивности L к и конденсатора C к, Катушка L c включена в цепь сетки и связана индуктивно с катушкой L к колебательного контура. Если зарядить конденсатор, а затем замкнуть его на катушку индуктивности, то конденсатор будет периодически разряжаться и заряжаться, а в цепи колебательного контура возникнут затухающие электрические колебания тока и напряжения. Затухание колебаний вызвано потерями энергии в контуре. Для получения незатухающих колебаний переменного тока необходимо периодически с определенной частотой добавлять энергию в колебательный контур с помощью быстродействующего устройства. Таким устройством является триод. Если накалить катод лампы (см. рис. 192) и замкнуть анодную цепь, то в цепи анода появится электрический ток, который зарядит конденсатор С к колебательного контура. Конденсатор, разряжаясь на катушку индуктивности L к, вызовет в контуре затухающие колебания. Переменный ток, проходящий при этом через катушку L к, индуктирует в катушке L с переменное напряжение, воздействующее на сетку лампы и управляющее силой тока в цепи анода.

Когда на сетку лампы подается отрицательное напряжение, анодный ток в ней уменьшается. При положительном напряжении на сетке лампы в анодной цепи увеличивается ток. Если в этот момент на верхней пластине конденсатора С к колебательного контура будет отрицательный заряд, то анодный ток (поток электронов) зарядит конденсатор и тем самым скомпенсирует потери энергии в контуре.
Процесс уменьшения и увеличения тока в анодной цепи лампы повторится во время каждого периода электрических колебаний в контуре.
Если при положительном напряжении на сетке лампы верхняя пластина конденсатора С к заряжена положительным зарядом, то анодный ток (поток электронов) не увеличивает заряда конденсатора, а, наоборот, уменьшает его. При таком положении колебания в контуре не будут поддерживаться, а будут затухать. Чтобы этого не случилось, необходимо правильно включать концы катушек L к и L c и обеспечить этим своевременный заряд конденсатора. Если колебания в генераторе не возникают, то необходимо поменять местами концы одной из катушек.
Ламповый генератор является преобразователем энергии постоянного тока анодной батареи в энергию переменного тока, частота которого зависит от индуктивности катушки и емкости конденсатора, образующих колебательный контур. Нетрудно понять, что это преобразование в схеме генератора выполняет триод. Э. д. с., индуктируемая в катушке L c током колебательного контура, периодически воздействует на сетку лампы и управляет анодным током, который в свою очередь с определенной частотой подзаряжает конденсатор, возмещая таким образом потери энергии в контуре. Такой процесс повторяется многократно в течение всего времени работы генератора.
Рассмотренный процесс возбуждения незатухающих колебаний в контуре называют самовозбуждением генератора, так как колебания в генераторе сами себя поддерживают.

§ 137. ЛАМПОВЫЙ ГЕНЕРАТОР

Выше было рассмотрено применение трехэлектродной лампы в электронном усилителе. Однако триоды широко применяют и в ламповых генераторах, которые служат для создания переменных токов различной частоты.

Простейшая схема лампового генератора приведена на рис. 186. Основными его элементами являются триод и колебательный кон­тур. Для питания нити накала лампы используется батарея накала Бн. В цепь анода включена анодная батарея Ба и колебательный контур, состоящий из катушки индуктивности Lк и конденсатора Ск. Катушка Lc включена в цепь сетки и связана индуктивно с катушкой Lк колебательного контура. Если зарядить конденсатор, а затем замкнуть его на катушку индуктивности, то конденсатор будет периодически разряжаться и заряжаться, а в цепи колебательного контура возникнут затухающие электрические колебания тока и напряжения. Затухание колебаний вызвано потерями энергии в контуре. Для получения незатухающих колебаний переменного тока необходимо периодически с определенной частотой добавлять энергию в колебательный контур с помощью быстродействующего устройства. Таким устройством является

Если накалить катод лампы и замкнуть анодную цепь, то в цепи анода появится электрический ток, который зарядит кон­денсатор Ск колебательного контура. Конденсатор, разряжаясь на катушку индуктивности LK, вызовет в контуре зату­хающие колебания. Переменный ток, про­ходящий при этом через катушку LK, ин­дуктирует в катушке Lc переменное на­пряжение, воздействующее на сетку лам­пы и управляющее силой тока в цепи анода.

Когда на сетку лампы подается отри­цательное напряжение, анодный ток в ней уменьшается. При положительном напряжении на сетке лампы в анодной цепи увеличивается ток. Если в этот момент на верхней пластине конденсатора Ск колебательного контура будет отрицательный заряд, то анодный ток (поток электронов) зарядит конденсатор и тем самым скомпенсирует потери энергии в контуре.

Процесс уменьшения и увеличения тока в анодной цепи лампы I повторится во время каждого периода электрических колебаний в контуре.

Если при положительном напряжении на сетке лампы верхняя I пластина конденсатора Ск заряжена положительным зарядом, то анодный ток (поток электронов) не увеличивает заряда конденсатора, а, наоборот, уменьшает его. При таком положении колебания в контуре не будут поддерживаться, а будут затухать. Чтобы этого не случилось, необходимо правильно включать концы катушек

Lк и Lc и обеспечить этим своевременный заряд конденсатора. Если I колебания в генераторе не возникают, то необходимо поменять местами концы одной из катушек.

Ламповый генератор является преобразователем энергии постоянного тока анодной батареи в энергию переменного тока, частота которого зависит от индуктивности катушки и емкости конденсатора, образующих колебательный контур. Нетрудно понять, что это преобразование в схеме генератора выполняет триод. э. д. с, индуктируемая в катушке Lc током колебательного контура, периодически воздействует на сетку лампы и управляет анодным током, который, в свою очередь, с определенной частотой подзаряжает конденсатор, возмещая таким образом потери энергии в контуру Такой процесс повторяется многократно в течение всего времени работы генератора.

Рассмотренный процесс возбуждения незатухающих колебания в контуре называют самовозбуждением генератора, так как коле­бания в генераторе сами себя поддерживают.


Вынужденные электрические колебания, которые мы до сих пор рассматривали, возникают под действием переменного напряжения, вырабатываемого генераторами на электростанциях. Однако такие генераторы не способны создавать применяемые в радиотехнике колебания высокой частоты, так как для этого потребовалась бы чрезмерно большая скорость вращения роторов. Колебания высокой частоты получают с помощью других устройств, одним из которых является так называемый ламповый генератор. Он назван так потому, что одной из его основных частей является трехэлектродная электронная лампа - триод.
Рис. 2.27
Ламповый генератор представляет собой автоколебательную систему, в которой вырабатываются незатухающие колебания за счет энергии источника постоянного напряжения, например батареи гальванических элементов или выпрямителя. В этом отношении ламповый генератор подобен часам, в которых незатухающие колебания маятника поддерживаются за счет энергии поднятой гири или сжатой пружины.
Ламповый генератор содержит колебательный контур, состоящий из катушки с индуктивностью L и конденсатора емкостью С. Известно, что если конденсатор зарядить, то в контуре возникнут затухающие колебания. Чтобы колебания не затухали, нужно компенсировать потери энергии за каждый период.
Пополнять энергию в контуре можно, подзаряжая конденсатор. Для этого надо контур периодически подключать на некоторый промежуток времени к источнику постоянного напряжения. Конденсатор должен подключаться к источнику только в те интервалы времени, когда присоединенная к поло-жительному полюсу источника обкладка конденсатора заряжена положительно, а присоединенная к отрицательному полюсу - отрицательно (рис. 2.27). Только в этом случае источник подзаряжает конденсатор, пополняя его энергию. При этом электрическое поле зарядов на обкладках конденсатора совершает отрицательную работу и энергия конденсатора уве-личивается.
Если же ключ замкнуть в момент времени, когда знаки зарядов на обкладках конденсатора соответствуют рисунку 2.28, то электрическое поле зарядов, имеющихся на обкладках кон-
денсатора, будет совершать положительную работу. Энергия конденсатора при этом уменьшается; конденсатор частично разряжается.
Следовательно, источник постоянного напряжения, все время подключенный к контуру, не может поддерживать в нем незатухающие колебания. Половину периода энергия бу-дет поступать в контур, а в следующую половину периода - уходить из него.
Но если с помощью ключа подключать источник тока к колебательному контуру лишь в те полупериоды, когда происходит передача энергии в контур (см. рис. 2.27), то установятся незатухающие колебания. Понятно, что для этого необходимо обеспечить автоматическую работу ключа (или клапана, как его часто называют). Поскольку речь идет о колебаниях очень высокой частоты, то ключ должен обладать огромным быстродействием. В качестве такого практически безынерционного ключа используется триод (рис. 2.29).
В анодной цепи, в которую включен колебательный контур, должен протекать ток в те промежутки времени, когда обкладка конденсатора, присоединенная к положительному полюсу источника, заряжена положительно. Для этого колебания в контуре должны управлять потенциалом сетки ис, регулирующим силу тока в анодной цепи. Необходима, как говорят, обратная связь.
Обратная связь в ламповом генераторе, схема которого приведена на рисунке 2.29, является индуктивной. В цепь сетки включена катушка Lc, индуктивно связанная с катушкой колебательного контура. Колебания силы тока в контуре вследствие явления электромагнитной индукции приводят к
Направление обхода

Рис. 2.29
колебаниям напряжения на концах катушки Lc и тем самым к колебаниям потенциала сетки триода.
Выберем в качестве положительного направления обхода анодной цепи генератора направление против часовой стрелки. Напряжение на конденсаторе контура в этом случае равно разности потенциалов между нижней обкладкой конденсатора, присоединенной к положительному полюсу анодной батареи G, и верхней обкладкой.
Сила тока в контурной катушке отстает по фазе на л/2 от колебаний напряжения на контуре (это напряжение равно напряжению на конденсаторе). ЭДС индукции в катушке Lc (а значит, и напряжение между сеткой и катодом) согласно закону электромагнитной индукции сдвинута по фазе относительно колебаний силы тока в катушке контура тоже на л/2. В зависимости от порядка подключения концов катушки Lc к сетке и катоду лампы сдвиг фаз напряжения на участке сетка - катод равен либо +л/2, либо -л/2. В первом случае колебания напряжения на сетке совпадают по фазе с колебаниями напряжения на конденсаторе. Это означает, что в момент, когда нижняя пластина конденсатора заряжена положительно, сетка также заряжена положительно относительно катода лампы. Лампа при этом отперта, и ток в анодной цепи, созданный батареей G, подзаряжает конденсатор. В момент, когда нижняя пластина конденсатора заряжена отрицательно, потенциал сетки оказывается ниже потенциала катода и лампа запирается. Анодная цепь размыкается, и конденсатор не раз-ряжается через анодную цепь. Это и является необходимым условием работы генератора.
При переключении концов катушки Lc напряжение на сетке меняет фазу на л. Сетка оказывается заряженной положи-тельно, когда нижняя пластина конденсатора заряжена отрицательно (и наоборот). Анодный ток в лампе при этом разряжает конденсатор, а не подзаряжает его. В этих условиях генератор работать не будет.
После замыкания анодной цепи конденсатор заряжается и в контуре начинаются колебания. Их амплитуда нарастает до тех пор, пока потери энергии в контуре не будут в точности компенсироваться поступлением энергии из анодной цепи. Эта амплитуда прямо пропорциональна напряжению на полюсах источника тока. Увеличение напряжения источника увеличивает «толчки» тока, подзаряжающего конденсатор контура.
Частота колебаний в контуре определяется индуктивностью L катушки и емкостью С конденсатора контура согласно формуле Томсона:
При малых L и С частота колебаний велика.
Обнаружить возникновение колебаний в генераторе (возбуждение генератора) можно с помощью осциллографа, подав на его вертикально отклоняющие пластины напряжение с конденсатора. Если поменять местами концы катушки Lc, присоединяемые к сетке и катоду, генератор работать не будет.
«Ламповые генераторы имеются на мощных передающих радиостанциях и входят в состав других радиотехнических устройств.

Ламповые генераторы в качестве источников питания электротермических установок используются на частотах от 60 кГц до 80 МГц. Для того, чтобы они не мешали радиосвязи, выделены частоты: 66 кГц (–10...+12%); 440 кГц (±2,5%); 880 кГц (±2,5%); 1,76 МГц (±2,5%); 5,28 МГц (±2,5%); 13,56 МГц (±1%); 27,12 МГц (±1%); 40,68 МГц (±1%); 81,36 МГц (±1%).

Данный курсовой проект охватывает вопросы расчета схемы ламповых генераторов для индукционного нагрева, конструктивного расчета элементов схемы, частотного анализа и разработки конструкции генераторного блока.

Генераторная лампа

Основным элементом лампового генератора является генераторная лампа. Анод генераторной лампы изготавливается из меди и интенсивно охлаждается, так как под действием анодного напряжения (оно составляет в среднем 5…10 кВ) электроны приобретают большую энергию и отдают ее аноду.

Катод лампы изготовляется из вольфрамовой проволоки, которая при работе нагревается примерно до температуры 2300 °С. При нагреве от 20 до 2300 °С сопротивление вольфрама возрастает примерно в 10 раз. Поэтому включать холодный катод на полное напряжение не рекомендуется. Пойдет большой ток накала, и электродинамические усилия между нитями приведут к разрушению катода. Напряжение накала обычно включается в две ступени. Сначала подается половинное напряжение, а когда нить накала прогреется, включается полное напряжение. Для генераторных ламп оно составляет обычно 10–15 В, токи накала – десятки и сотни ампер.

Анодная цепь

Анодная цепь генератора содержит три основных элемента: электронную лампу, колебательный контур и источник анодного напряжения. Их можно соединить последовательно или параллельно.

На рис. 1 представлены два варианта схемы последовательного питания по аноду. В первом из них под высоким напряжением относительно земли находится колебательный контур, во втором – анодный выпрямитель. Необходимость изоляции от земли усложняет изготовление генератора по схеме последовательного питания, поэтому обычно применяется схема параллельного питания по аноду (рис. 2). Эта схема лишена указанных выше недостатков, но более сложна. Пути переменной и постоянной составляющих анодного тока разделяются с помощью анодного разделительного конденсатора C a.р и блокировочного дросселя L а.б. Таким образом, постоянная составляющая анодного тока проходит через выпрямитель, лампу и анодный блокировочный дроссель L а.б.

Рис. 1. Схемы последовательного питания по аноду

Переменная составляющая идет через лампу, колебательный контур и анодный разделительный конденсатор С а.р. Назначение этого конденсатора – не пропускать постоянную составляющую анодного тока и иметь достаточно малое сопротивление для переменной. Значение С а.р выбирается из условия:

где R э – эквивалентное сопротивление колебательного контура.

Назначение L а.б – не пропускать переменную составляющую анодного тока в выпрямитель. Его выбирают из соотношения:

Рис.2. Схема параллельного питания по аноду

Для дальнейшего уменьшения величины переменной составляющей выпрямитель шунтируется конденсатором C б (см. рис. 2).

Сеточная цепь

Генераторы могут быть с независимым возбуждением (на сетку лампы подаются колебания от маломощного генератора) и с самовозбуждением.

Независимое возбуждение используется в радиопередатчиках, в генераторах для электротехнологии обычно используют самовозбуждение (используется положительная обратная связь с колебательного контура).

Для существования колебаний необходимо, чтобы напряжение на сетке было в фазе с напряжением на контуре, и, следовательно, в противофазе с напряжением на аноде (рис. 3). Это условие самовозбуждения по фазе.

Если сигнал обратной связи будет очень малым, то колебания не возникнут. Отсюда следует условие самовозбуждения по амплитуде.

К ос > К ос min ,

где К ос = U g /U a – коэффициент обратной связи, U g – напряжение на сетке;U a –напряжение на аноде (cм. рис. 3), К ос min – минимальное значение коэффициента обратной связи, оно получается из расчета генераторной лампы.

В зависимости от соотношения между остаточным напряжением на аноде e а min максимальным напряжением на сетке e g max различают три режима работы: недонапряженный, перенапряженный и критический (граничный).

На рис. 4 представлены графики анодного тока и сеточного напряжения. Если анодно-сеточная характеристика линейна, то импульсы сеточного и анодного токов имеют вид отрезка синусоиды. Когда ток такой формы протекает через колебательный контур, то в нем возникают синусоидальные колебания, так как колебательный контур выделяет первую гармонику тока, которая и поддерживает колебания за счет положительной обратной связи. Для нормальной работы лампы на ее сетку необходимо подать отрицательное смещение E g (рис. 4).

Рис. 4. Диаграммы анодного тока и сеточного напряжения

Оно может быть фиксированным (от постороннего источника) или автоматическим и необходимо для того, чтобы выбрать рабочую точку на характеристике лампы (рис. 3 и 4).

В генераторах для электротермии обычно используется автоматическое смешение. Оно подается с помощью гридлика (рис. 5).При протекании сеточного тока через элементы гридликаR g , L g , C g на сопротивленииR g выделяется постоянное напряжениеЕ g , которое прикладывается между сеткой и катодом.

Элементы гридлика определяются таким образом: R g = - E g / I g о, где Е g – отрицательное смещение; I g о – постоянная cоставляющая сеточного тока лампы, они известны из расчета лампы. Блокировочные элементы L g , C g находятся из соотношений:

При изменении R g изменяется угол отсечки анодного тока (см. рис. 4). Оптимальным является значение θ = 70º ÷ 90º. При этом обеспечивается достаточно высокий КПД генераторной лампы по аноду и хорошее использование лампы по мощности.

Рис. 5. Гридлик лампового генератора

Одноконтурный генератор

На рис. 6 представлена принципиальная схема промышленного генератора ВЧГ1-25/0,44, имеющего один колебательный контур. Индуктивностью колебательного контора является закалочный трансформатор Т р, нагруженный на индуктор ИЗ. Согласование генератора с нагрузкой осуществляется путем переключения отводов на первичной стороне закалочного трансформатора Т р. Если колебательный контур настроен в резонанс, то его эквивалентное сопротивление

где – характеристическое сопротивление контура; r – активное сопротивление; С – емкость; L индуктивность; Q – добротность.

Добротность отражает способность колебательного контура поддерживать электромагнитные колебания. Это отношение реактивной мощности P r к активной P a или реактивного сопротивления к активному:

Иногда вместо добротности используют затухание:

Чтобы генераторная лампа отдавала номинальную мощность, необходимо, чтобы на ней было номинальное колебательное напряжение U a 1 и через нее шел номинальный ток первой гармоники I a 1 . Отсюда вытекает, что эквивалентное сопротивление колебательного контура, подключенного к лампе, должно быть равно эквивалентному сопротивлению лампы:

R ЭЛ = U a1 / I a1 ,

где U a1 и I a1 определяются из расчета лампы.

Если сопротивление колебательного контура R ЭК > R ЭЛ то режим генератора будет перенапряженным, иначе – недонапряженным.

Процесс согласования генератора с нагрузкой заключается в том, чтобы выполнить условие:

R эк = R эк.

Если это условие не выполняется, то включают не всю первичную обмотку трансформатора, а ее часть, используя отводы. При этом уменьшается коэффициент анодной связиp = U a / U k (см. рис. 6), а также эквивалентное сопротивление, приведенное к лампе:

R эк = p 2 R эк

При R эк < R эл следует взять другой индуктор, с большим числом витков.

Как известно, генерация в схемах с самовозбуждением происходит благодаря положительной обратной связи. Она осуществляется делителем С о ’, С о ’’ и звеном обратной связи С о, L о (см. рис. 6).

Особенностью данной схемы является возможность бесконтактного изменения величины индуктивности обратной связи L о. Перемещением катушки L кз внутри L о изменяется индуктивность L о и, следовательно, величина коэффициента обратной связи

K ос = U g / U a

Рассмотрим подробнее влияние положения короткозамкнутой катушки L кз на индуктивность соленоидаL 0 (см. рис. 6)

Известно определение индуктивности соленоида:

L 0 = w Φ / I ,

где w , Ф, I число витков, поток и ток соответственно.

При введении внутрь соленоида L о короткозамкнутой катушки в ней наводится ток, магнитное поле которого уменьшает потокФ, что приводит к уменьшению индуктивности L о.

Путем описанных регулировок генератор настраивается на критический или слабо перенапряженный режим, что обеспечивает высокий КПД по аноду.

Рис. 6. Принципиальная электрическая схема генератора ВЧИ1-25/0,44

Критический режим характеризуется отношением I a о / I g о = 5÷7. Это соотношение обычно используется при настройке, так как все промышленные генераторы имеют приборы, измеряющие постоянные составляющие анодного и сеточного токов.

Многоконтурные схемы ламповых генераторов для электротермии

Эти схемы (см. рис. 7) являются основными для целой серии высокочастотных установок на частоты до 5,28 МГц. Их преимуществом является: гибкость регулировок, возможность изменения режима без отключения генератора, универсальность, Недостатки по сравнению с одноконтурной схемой: сложность схемы, большие габариты и стоимость. Подробные описания схем и методы их расчета имеются в .

Отличительной особенностью этих схем является наличие анодного регулятора L 1 . Этот регулятор позволяет изменять напряжение на нагрузочном контуре без выключения генератора.

Короткозамкнутая катушка L КЗ перемещается внутри L 1 не выходя за ее пределы .

Рис. 7. Принципиальная схема трехконтурного генератора для электротермии

Этим обеспечивается постоянное значение индуктивности L 1 и, следовательно, постоянство рабочей частоты генератора. Катушка L 1 разделена на две части (см. рис. 7).

Когда L КЗ находится а верхней части L 1 , то магнитный поток в этом месте уменьшается, следовательно, уменьшается индуктивность этой части катушки. В результате на нагрузочном контуре будет максимальное напряжение. При перемещении L кз в нижнюю часть L 1 картина будет обратной.

Многоконтурная схема, может генерировать колебания на нескольких частотах. Чтобы убедиться в том, что генератор будет устойчиво работать на заданной частоте, выполняется частотный анализ. Для этого составляется эквивалентная схема генератора. В этой схеме обычно пренебрегают теми элементами, которые дают резонансные частоты, сильно отличающиеся от рабочей. Если анализ выполняется графическим методом, то пренебрегают также активными сопротивлениями.

При анализе частотных характеристик на ЭВМ этого можно не делать. На рис. 8 представлена схема, эквивалентная рис. 7. В ней пренебрегается L а.б и С р, а также цепями постоянных составляющих анодного и сеточного токов.

При курсовом проектировании анализ проводится на компьютере по программе PALEC.

На эквивалентной схеме предварительно обозначить номера узлов и ветвей. При этом анодный узел ввода должен иметь номер 1, катодный – 0, сеточный – 2, остальные нумеруются произвольно. После этого ввести исходные данные аналогично образцу, имеющемуся в вычислительной лаборатории кафедры ЭТПТ.

КОНСТРУКТИВНЫЙ РАСЧЕТ ЭЛЕМЕНТОВ ЛАМПОВОГО ГЕНЕРАТОРА

Конструктивный расчет высокочастотных (ВЧ) дросселей и контурных индуктивностей

Расчет выполняется на основе методики, изложенной в . Известна формула для индуктивности цилиндрическогосоленоида:

где k =k (а/2 R ) – коэффициент Нагаока; R – радиус соленоида; a - его длина; w - число витков. Выразим L , через длину провода l :

l = 2Rw ,

длина катушки a = wh , где h – шаг намотки; тогда число витков:

где Следовательно

Обозначив получим

Эта формула дает возможность найти длину провода, необходимого для изготовления катушки:

Обычно для высокочастот­ных дросселей 2 R / a = 0,3÷0,5.

Поэтому можно принять:

F = 1,03…1,13 (см. рис. 9).

Кроме индуктивности, дроссель имеет также емкость, которая может играть значительную роль на высоких частотах. Для ее уменьшения многослойные обмотки выполняются с транспозицией (рис. 10). Этот тип намотки используется и на низких частотах для уменьшения межвиткового напряжения (сравнить максимальные напряжения между соседними витками катушек на рис. 10, а и б).

рис. 9. График функции F

Порядок расчета блокировочного дросселя

1. Выбор диаметра провода по току дросселя. По дросселю протекает постоянная составляющая анодного тока I a о и переменныйток, который примерно равен: I = U a / (wL а.б). Плотность тока можно принять 3 А/мм 3 .

2. Выбор шага намотки h и отношения 2 R / a .

3. Длина провода определяется по формуле (1).

Скачать c Letitbit.net

или

Для скачивания методического пособия "Ламповый генератор" поделитесь ссылкой с друзьями.

Под этой строчкой в течении 30 секунд появится обещанная Вам ссылка:



Загрузка...