sonyps4.ru

Энкодер с кнопкой схема. Энкодеры

В данном демонстрационном проекте мы рассмотрим задачу сопряжения элемента управления под названием энкодер с микроконтроллером PIC.

Для реализации демонстрационного проекта нам понадобятся:

  • 24-позиционный энкодер;
  • 16 светодиодов (3 мм);
  • драйвер светодиодов ;
  • микроконтроллер .

Энкодер - современный и оригинальный элемент управления цифровыми устройствами, и по внешнему виду похож на переменный резистор (см. рисунок ниже). Другое название этого элемента управления - датчик угла, датчик поворота. Вращение вала сопровождается щелчками, например 24 щелчка на один оборот. Энкодер имеет 3 вывода - A, B, C и применяется для быстрого ввода данных в цифровые устройства. Некоторые модели имеют встроенную кнопку, которая срабатывает по нажатию на вал энкодера (добавляется еще один вывод).

Принцип работы энкодера

При повороте на один щелчок, например, вправо, сначала замыкается контакт А+С, затем В+С. Когда в этом щелчке вал доворачивается, в той же последовательности контакты размыкаются. При повороте вала в другую сторону, последовательность замыкания с контактом С меняется, т.е. при повороте влево замыкаются сначала В+С, затем А+С.

Используя энкодер в проектах на микроконтроллерах, возможно, при помощи одного и того же энкодера, реализовать несколько различных типов ввода данных, однако, это требует некоторой обратной связи и визуализации, чтобы пользователь знал, какую информацию он вводит и в какой позиции энкодер.


Принципиальная схема: подключение энкодера к микроконтроллеру PIC (нажмите для увеличения)

Выводы энкодера A и B подключаются к портам микроконтроллера RB4 и RB5, вывод С энкодера подключается к «земле». Стоит заметить, что на сигнальные линии выводов A и B должны быть подключены подтягивающие резисторы. Энкодер не случайно подключен к указанным линиям ввода/вывода микроконтроллера: во-первых, порт B имеет встроенные подтягивающие резисторы и нам не придется подключать внешние, во-вторых, порт B микроконтроллера имеет очень полезную функцию - «interrupt-on-change» - прерывание по изменению уровня, что позволит нам отслеживать состояние энкодера.

16 обычных 3 мм светодиодов используются для визуализации вводимых данных и расположены они будут на печатной плате вокруг установленного энкодера. Светодиоды подключены к микросхеме A6276.

Микросхема представляет собой драйвер светодиодов с 16-битным последовательным вводом информации. Драйвер содержит 16-битный КМОП сдвиговый регистр, соответствующие защелки и драйверы для управления светодиодами и может управлять большим количеством светодиодов, чем это позволяет микроконтроллер. Кроме того, драйвером можно управлять по интерфейсу SPI, что дополнительно сокращает количество используемых линий ввода/вывода и делает проект масштабируемым.

Программное обеспечение микроконтроллера для решения нашей задачи относительно простое. Реализуется 3 режима работы (ввод информации) и обратная связь:

  • Режим позиционирования на 360° - в этом режиме светодиоды указывают текущую «позицию» энкодера, пользователь может поворачивать вал энкодера влево и вправо на любой угол;
  • Режим «Громкость/Уровень» - в этом режиме светодиоды указывают текущее значение между минимальным и максимальным уровнями диапазона ввода (как уровень громкости в аудиоустройствах);
  • Режим 3-позиционного ротационного тумблера - в этом режиме имеется только три выбираемых позиции, которые пользователь выбирает, поворачивая вал энкодера влево/вправо.

Демонстрация работы проекта

Энкодер это всего лишь цифровой датчик угла поворота, не более того.

Энкодеры бывают абсолютные — сразу выдающие двоичный код угла и инкрементальные, дающие лишь указание на направление и частоту вращения, а контроллер, посчитав импульсы и зная число импульсов на оборот, сам определит положение.

Если с абсолютным энкодером все просто, то с инкрементальным бывают сложности. Как его обрабатывать?

С Энкодера выходят два сигнала А и В, сдвинутых на 90 градусов по фазе, выглядит это так:

В оптическом же может быть два фонаря и два фотодиода, святящие через диск с прорезями (шариковая мышка, ага. Оно самое).

Механический подключается совсем просто центральный на землю, два крайних (каналы) на подтянутые порты. Я, для надежности, подключил внешнюю подтяжку. Благо мне на для этого только парой тумблеров щелкнуть:


Оптический подключается в зависимости от типа оптодатчика, обычно там стоит два с общим анодом.

Обычно, все пытаются работать с ними через прерывания INT, но этот метод так себе. Проблема тут в дребезге — механические контакты, особенно после длительного пользования, начинают давать сбои и ложные импульсы в момент переключения. А прерывание на эти ложные импульсы все равно сработает и посчитает что нибудь не то.

Метод прост:
Подставим нули и единички, в соответствии с уровнем сигнала и запишем последовательность кода:


A:0 0 1 1 0 0 1 1 0 0 1 1 0
B:1 0 0 1 1 0 0 1 1 0 0 1 1

Если A и B идут на одни порт контроллера (например на A=PB0 B=PB1), то при вращении энкодера у нас возникает меняющийся код:

11 = 3
10 = 2
00 = 0
01 = 1
11 = 3

Теперь остается только циклически опрашивать наш энкодер сравнивая текущее состояние с новым и на основании этого делающего выводы о вращении. Причем частота опроса должна быть такой, чтобы не пропустить ни одного импульса. Например, мой EC12 имеет 24 импульса на оборот. Вращать его предпологается вручную и я вряд ли смогу вращать его с космической скоростью, но решил все же замерить. Подключился к осциллографу, крутнул ручку что есть мочи:

Выжал меньше килогерца. Т.е. опрашивать надо примерно 1000 раз в секунду. Можно даже реже, будет надежней в плане возможного дребезга. Сейчас, кстати, дребезга почти нет, но далеко не факт что его не будет потом, когда девайсина разболтается.

Сам опрос должен быть в виде конечного автомата. Т.е. у нас есть текущее состояние и два возможных следующих.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 // Эту задачу надо запускать каждую миллисекунду. // EncState глобальная переменная u08 -- предыдущее состояние энкодера // EncData глобальная переменная u16 -- счетный регистр энкодера void EncoderScan(void ) { u08 New; New = PINB & 0x03 ; // Берем текущее значение // И сравниваем со старым // Смотря в какую сторону оно поменялось -- увеличиваем // Или уменьшаем счетный регистр switch (EncState) { case 2 : { if (New == 3 ) EncData++; if (New == 0 ) EncData--; break ; } case 0 : { if (New == 2 ) EncData++; if (New == 1 ) EncData--; break ; } case 1 : { if (New == 0 ) EncData++; if (New == 3 ) EncData--; break ; } case 3 : { if (New == 1 ) EncData++; if (New == 2 ) EncData--; break ; } } EncState = New; // Записываем новое значение // Предыдущего состояния SetTimerTask(EncoderScan, 1 ) ; // Перезапускаем задачу через таймер диспетчера }

// Эту задачу надо запускать каждую миллисекунду. // EncState глобальная переменная u08 -- предыдущее состояние энкодера // EncData глобальная переменная u16 -- счетный регистр энкодера void EncoderScan(void) { u08 New; New = PINB & 0x03; // Берем текущее значение // И сравниваем со старым // Смотря в какую сторону оно поменялось -- увеличиваем // Или уменьшаем счетный регистр switch(EncState) { case 2: { if(New == 3) EncData++; if(New == 0) EncData--; break; } case 0: { if(New == 2) EncData++; if(New == 1) EncData--; break; } case 1: { if(New == 0) EncData++; if(New == 3) EncData--; break; } case 3: { if(New == 1) EncData++; if(New == 2) EncData--; break; } } EncState = New; // Записываем новое значение // Предыдущего состояния SetTimerTask(EncoderScan,1); // Перезапускаем задачу через таймер диспетчера }

Почему я под счетчик завел такую большую переменную? Целых два байта? Да все дело в том, что у моего энкодера, кроме импульсов есть еще тактильные щелчки. 24 импульса и 24 щелчка на оборот. А по моей логике, на один импульс приходится четыре смены состояния, т.е. полный период 3201_3201_3201 и один щелчок дает 4ре деления, что некрасиво. Поэтому я считаю до 1024, а потом делю сдвигом на четыре. Получаем на выходе один щелочок — один тик.

Скоростной опрос на прерываниях
Но это механические, с ними можно простым опросом обойтись — частота импульсов позволяет. А бывают еще и высокоскоростные энкодеры. Дающие несколько тысяч импульсов на оборот, либо работающие на приводах и вращающиеся очень быстро. Что с ними делать?

Ускорять опрос занятие тупиковое. Но нас спасает то, что у таких энкодеров, как правило, есть уже свои схемы подавления дребезгов и неопределенностей, так что на выходе у них четкий прямоугольный сигнал (правда и стоят они совершенно негуманно. От 5000р и до нескольких сотен тысяч. А что ты хотел — промышленное оборудование дешевым не бывает).

Так что без проблем можно применять прерывания. И тогда все упрощается неимоверно. Настраиваем всего одно прерывание по внешнему сигналу. Например, INT0 настраиваем так, чтобы сработка шла по восходящему фронту. И подаем на INT0 канал А.


Пунктиром показано предполагаемое положение в произвольный момент. Красные стрелки это фронты по которым сработают прерывания при движении либо в одну, либо в другую сторону.

А в обработчике прерывания INT0 щупаем вторым выводом канал В. И дальше все элементарно!

Если там высокий уровень — делаем +1, если низкий -1 нашему счетному регистру. Кода на три строчки, мне даже писать его лень.

Конечно, можно такой метод прикрутить и на механический энкодер. Но тут надо будет заблокировать прерывания INT0 на несколько миллисекунд. И НИ В КОЕМ СЛУЧАЕ нельзя делать это в обработчике.

Алгоритм прерывания с антидребезгом будет выглядеть так:

  • Зашли в обработчик INT0
  • Пощупали второй канал
  • +1 или -1
  • Запретили локально INT0
  • Поставили на таймер событие разрешающее INT0 через несколько миллисекунд
  • Вышли из обработчика

Сложно? Нет, не сложно. Но зачем? Проще сделать банальный опрос, как указано выше и не зависеть от выводов прерываний. Впрочем, хозяин барин.

Энкодер для частотника по своему внешнему виду похож на переменный резистор или на потенциометр. Те же три вывода, тот же корпус панели. На этом его сходство заканчивается. Внутри у него два переключателя, у которых есть общий вывод задач управления и два своих.

Чтобы энкодер заработал, средний вывод нужно подключить к земле, а два остальных через резисторы к питанию. Съем сигнала управления нужно производить непосредственно с выводов панели энкодера.

Теперь представим, что энкодер идеальный и его контакты не страдают дребезгом. Подключим к выводам энкодера осциллограф и начнем вращать ручку энкодера. Импульсы будут сдвинуты относительно друг друга на 90 градусов. Если крутить ручку мощности (кВт) вправо, влево или назад, то будем иметь последовательности панели управления:

Если осциллограммы как применение последовательности задач логических нулей и единиц, то они будут иметь такой вид:

Возьмем обычный энкодер, у которого есть дребезг контактов. Зона дребезга:

При переключении с логической единицы на логический ноль возникает дребезг. С дребезгом можно бороться двумя способами: аппаратным и программным применением.

Аппаратный способ – это подключение серии конденсаторов частотника, триггеров Шмитта, как указано на схеме панели управления:

Рекомендуется применять метод борьбы с дребезгом – программный. Такой метод описан в библиотеке Ротери. Данная библиотека содержит несколько функций, которые нужны для настройки выводов векторного контроллера на ввод, и подключение подтягивающих мощность (кВт) резисторов. В библиотеке нужно указывать соответствующие команды и задачи. Данной командой включается подтягивающий резистор внутри .

Функция серии Get position vfd возвращает значение энкодера. Данная фукнция нужна для получения количества импульсов, которые считал энкодер. Функция set Position vfd нужна для загрузки значения, с которого энкодер начнет свой счет.

Функция tick должна быть рассмотрена подробнее. Переменные этой функции sig1 и sig2 записывают состояние векторного pin, к которой подключен энкодер. Дальше эти pin записываются в переменную thisState vfd, которая является текущим состоянием энкодера. Если текущее состояние энкодера не равно предыдущему, то вычисляются новые направления счета и количество импульсов мощности сохраняется в переменной Position. Когда энкодер вернется в свое начальное векторное положение, произойдет сдвиг вправо на два разряда, и новое значение управления нужно записать в переменную PositionExt. Данная переменная нужна для сохранения серии результатов задач, которые будут иметь применение в основной программе.

Счет

Проанализировав состояние энкодера при вращении влево и вправо, составляем таблицу:

Его начальное положение 1-1. При повороте вправо произошел щелчок, единица стала логическим нулем. Новое значение this State vfd равно 01. Согласно команды данный результат суммируется со значением переменной Position.

Из-за того, что произошел дребезг, позиция стала 11, после перерасчета порядковый номер стал 7. После того, как дребезг закончился, нужно фиксировать новое положение 01 и к предыдущему нулю добавляется единица. При повороте энкодера произошел один щелчок, и значение переменной Position стало единицей.

Происходит второй щелчок при повороте энкодера направо, и вместо позиции 01 мы имеем позицию 00. После того, как весь дребезг закончится, на выходе управления также имеем значение единицы. При четвертом щелчке, когда позиция с 10 стала 11, мы имеем значение 6. После окончания дребезга остается 6.

В некоторых энкодерах имеет применение кнопка панели. При ее нажатии и отпускании тоже будет дребезг контактов, нужно применить библиотеку Bounce. Функции этой библиотеки нужны для задания pin, к которому будет подключена кнопка, задач времени задержки в миллисекундах. Если произошло нажатие на кнопку, то функция мощности (кВт) возвращает векторное значение true, если нет, то false vfd.

Принципиальная схема подключения энкодера к преобразователю частоты

В станкостроении энкодеры широко применяются для преобразователей частоты асинхронных двигателей. Они монтируются как датчики обратной связи по своей скорости. Такие энкодеры имеют большую дискретность от 100 импульсов на оборот до 1 млн импульсов на оборот. У этой марки дискретность равна 500 имп. на оборот.

Энкодеры подразделяются на виды задач по . Они бывают абсолютными и инкрементальными. Наш энкодер выполняет обычную функцию – выдает сигнал дифференцирования при отключении мощности питания, и ее подачи снова. Раннее состояние не сохраняется.

Энкодеры абсолютного вида имеют внутреннюю память, которая помнит последние положения. Зачем нужна память, и зачем сохранять эти данные? В заводских условиях станкостроения перед перемещением определенного устройства в первую очередь указывают нулевую точку. Такой процесс называется реферированием, то есть, выход в нуль.

Применение датчика абсолютного вида дает возможность уйти от этой процедуры на второй раз, сократить время при условии, что система имеет ограничения для перемещений.

Рассмотрим энкодеры синуса и косинуса. Они выдают выходной сигнал косинуса или синуса. Далее, с помощью устройства интерполятора мощности образуют из них импульсы. Сигналы такого вида можно изменять в размерах. Питание энкодера осуществляется от напряжения 5 вольт.

Сигнал «А» — это сигнал импульса прямого типа. Количество импульсов с этого сигнала приходит на каждом обороте. Оно равно 500 (дискретность датчика).

Сигнал «В» — тоже прямой сигнал импульса. С него на каждом обороте поступает число импульсов по дискретности датчика, который смещен от канала «А» на 90 градусов (500).

Сигнал «R» — это сигнал метки «нуль». С одного оборота датчика получается один импульс.

В энкодерах промышленного назначения используется сигнал дифференцирования, для работы с частотным преобразователем (частотником). Название у него сложное, а на самом деле все просто. Все каналы отдельно копируются своей инверсией. Это необходимо для отдавания сигнала на значительные расстояния. Выходной канал энкодера подсоединяется к приемнику специального назначения, сделанному на усилителях операционного вида. Импульс в итоге определяется в совокупности двух сигналов.

Подключение

Подключение простое. Подсоединяем напряжение 5 вольт на выходы энкодера. У нас раскладка: провод коричневого цвета – 0 В, белого цвета — +5 В, розовый, зеленый и красный – А, В, R.

Программа подключения энкодера базируется на прерываниях каналов А и В. Срабатывания прерываний происходят на переднем фронте. Получается ситуация, когда происходит торможение энкодера в момент растрового пересечения и выходной сигнал канала всегда остается положительным. Подсчет импульсов непрерывно ведется счетчиком.

В нашем случае мы не будем применять прерывания, потому что мы работаем с 4-мя датчиками, они эксплуатируются одновременно. Если применять схему прерываний, наверняка возникнет ситуация потери импульсов. У нас эта проблема решается путем установления значка наличия движения. А мы рассматривали эксплуатацию энкодеров промышленного назначения.

Работа счетчика импульсов на основе модуля энкодера

Счетчик работает в связке с модулем семиразрядного индикатора, который и будет отображать количество накрученных энкодером импульсов. При включении значение счетчика равно нулю.

Покрутим ручку энкодера по часовой стрелке. Значение счетчика инкрементируется на единицу при каждом щелчке энкодера. Наибольшее число можно накрутить 999999999. это число должно заполнить все разряды нашего семисегментного индикатора. Если вращать ручку дальше, то счетчик обнулится, начнет снова считать с нуля.

Для примера накрутим 120 импульсов. Теперь скручиваем обратно, вращая ручку против часовой стрелки. Центральная ось энкодера работает как кнопка. Она очищает от нулей свободные разряды индикатора. У кнопки есть небольшой дребезг контактов, поэтому выключение и включение происходит не сразу. Программным путем, дребезг устраняется. Это основа работы с модулем энкодера.

В этой статье пойдет речь о энкодере и о том как его подключить к микроконтроллеру. Встретить его можно в таких устройствах как аудиосистемы, стиральные машины, микроволновкой и ряде современных устройств. К примеру в аудиосистемах энкодеры и микроконтроллеры используются для регулировки громкости. Но ладно хватит уже воды, давайте ближе к делу.

Энкодер или как его еще называют датчик угла поворота - представляет собой электромеханическое устройство, которое преобразует положение угла вала в электрический сигнал. Энкодеры делятся на 2 типа абсолютные и инкрементные.

В инкрементных энкодерах при повороте вала формируются импульсы, количество этих импульсов пропорционально углу поворота вала. Если подсчитать эти импульсы то можно узнать угол поворота вала энкодера. Если ручка энкодера находится в покое то импульсы не формируются. Такие энкодеры широко применяются в аудио системах и промышленных средствах управления.

Абсолтные энкодеры имеют совершенно другой принцип дейставия, основаная на выдачи уникального кода каждому положению вала. Формирование импульсов происходит когда вал вращается и когда он в покое. Причем информация о текущем положения вала, сохранится даже после прекращения подачи напряжения.

В нашем примере мы подключим инкрементный энкодер с микроконтроллером. Энкодер PEC12 422OF SOO24 который имеет 24 импульса за 1 оборот.

Энкодер имеет 5 выводов, 3 из них это выводы самого энкодера, а другие два это кнопка. У выводов энкодера одни вывод общий а 2 другие сигнальные. Схема подключения ничем не отличается от схемы подключения обычной кнопки. Сигнальные выводы подключаются в портам ввода/вывода микроконтроллера. А общий вывод котоый посередине соединяется к земле. С целью защиты от дребезга контактов можно добавить конденсаторы емкостью несколько нФ. Выводы к которым мы подключили энкодер настраиваем в программе как входы и включаем подтягивающие резисторы, можно подключить внешние резисторы.

Схема подключения энкодера к микроконтроллеру

Принцип действия энкодера основан на замыкании и размыкании контактов, когда ручку никто не крутит то на входе в МК имеется логическая еденица. Когда ручку начинают поворачивать то появляются два прямоугольных импульса которые сдвинуты друг относительно друга. От того в какую сторону крутим будет зависить какой сигнал опережает.

Но так как имеется друбезг контактов в любых картина будет выглядить следующим образом.

Алгоритм работы программы микроконтроллера

С определенным интервалом начинается вызов функции опроса энкодера. Эта функция считывает логические уровни, которые присутсвуют на выводах микроконтроллера и производит запись этого значения во временную переменную. Внутри функции опроса энкодера существует другая статичная переменная которая сохраняется при выходе из этой функции в ней хранится последовательность предыдуших значений. Из этой переменной берется последнее записанное значение и сравнивается с текущим для того чтобы определить были ли изменения. Если эти значения равны тот происходит выход из функции, а если они отличаются то значение статичной переменной сдвигается на 2 разряда влево и в "свободное" место записывается новое (текущее) значение.

Получается что когда вал энкодера вращается то во временную переменную будет постоянно записываться новое значение и получится повторяющаяся кодовая последовательность. Если вращаем вправо булед: 11100001, а если влево то 11010010. По этим значениям можно понять в какую сторону крутится вал.

В архиве есть 2 файла encoder.h и encoder.c. Изначалоно нужно задать порт и номер выводов к которым производится подключение это переменные LEFT_SPIN и RIGHT_SPIN. В файле "c" находится реализация функций.

Принцип действия, схема включения и исходник библиотеки для работы с инкрементным энкодером уже рассматривался мной в одной из статей. Сегодня мы поговорим о практическом применении энкодера. В качестве примера я выбрал программу генератора прямоугольного сигнала с диапазоном рабочих частот 1 – 100 Гц. Первоначальный замысел предполагал диапазон 1 - 1000 Гц, но на практике выяснилось, что перебирать тысячу значений утомительно даже с энкодером.

Подготовка

Создаем в пустом workspace`е новый проект

Project > Create New Project…

Тип шаблона C > main

Копируем в папку проекта файлы исходника библиотеки для работы с энкодером
encoder.h и encoder.c

Подключаем к нашему проекту файл encoder.c
Правая кнопка мышки в окне workspace и в открывшемся меню Add > Add Files…

Копируем файл bits_macros.h в папку проекта.


Подключаем заголовочные файлы

В начале файла main.c забиваем следующие строки
#include
#include
#include "encoder.h"
#include "bits_macros.h"

Задаем настройки проекта

Project > Options

Тип микроконтроллера
General Options > Target > Processor Configuration > ATMega8535

Разрешение использования имен битов определенных в заголовочных файлах
General Options > System > Enable bit defenitions...

Оптимизация кода по размеру
C/C++ Compiler > Optimisations >Size High

Тип выходного файла
Linker > Output File галочка Override default и поменять расширение на hex
Linker > Format > Other выбрать Intel Standart

Жмем Ок. Сохраняем проект и workspace.
Теперь у нас есть пустой проект с подключенной либой и заданными настройками.

Задача

Заставить микроконтроллер генерировать меандр с частотой от 1 до 100 Гц. Значение частоты должно задаваться с помощью энкодера. Поворот энкодера на одну позицию должен соответствовать изменению частоты генератора на 1 Гц.

Схема для нашего примера

К выводу, на котором будет генерироваться меандр, подключен светодиод, чтобы хоть как-то видеть результат работы программы. Вряд ли у многих под рукой осциллограф.

Алгоритм программы

Прямоугольный сигнал генерируется с помощью 16 разрядного таймера Т1, который работает в режиме СТС – сброс при совпадении. Во флэш памяти микроконтроллера храниться массив, содержащий для каждого значения требуемой частоты константу. Для доступа к элементам массива используется переменная pTimerValue. В прерываниях таймера Т1 значение константы считывается и записывается в регистр сравнения.

Для генерации сигнала используется вывод PD5 (OC1A). У него есть альтернативные функции – он может менять свое состояние на противоположное при равенстве счетного регистра и регистра сравнения.

В основной программе в бесконечном цикле while микроконтроллер опрашивает буфер энкодера и в зависимости от его значения уменьшает или увеличивает переменную pTimerValue.

В самом начале main`а располагается код инициализации периферии и необходимых переменных.

Структура программы

Для наглядности я изобразил структуру программы в виде диаграммы.

Это типовая структура построения простых программ. Прерывания естественно происходят в произвольном месте цикла.

  • Инициализация.
  • Бесконечный цикл (так называемый superloop), в котором происходит ожидание события, обычно в виде опроса флагов или какого-нибудь буфера.
  • Параллельная работа периферийных устройств, вызывающих прерывания. В них выполняется какой-то код (желательно короткий) и выставляются флаги.

Для простых задач такого подхода хватает за глаза. Для сложных существуют другие способы организации программ. Наберитесь терпения, скоро и до них дойдет дело.

Расчет констант для таймера Т1

Рассчитаем значение константы для частоты 1 Гц. Подобный расчет я уже приводил, но будет не лишним его вспомнить

Тактовая частота микроконтроллера 16 МГц (смотрите схему). Коэффициент предделителя таймера - 256. Он позволяет получить прерывания с любой частотой из нашего диапазона.

Период одного тика таймера будет равен 1/(16 МГц/ 256) = 16 мкс

На выводе PD5 нам нужно получить сигнал частотой 1 Гц. Вывод меняет свое состояние на каждое прерывание таймера и значит, частота прерываний должна быть в 2 раза больше. Для нашего случая - 2 Гц.

Сколько тиков таймера уложится в 2 Герца? (1/2 Гц)/16 мкс = 31250
Это и есть искомая константа.

Остальные значения рассчитываются аналогично. Я для этого обычно использую Exel.


Полученные значения мы помещаем в массив

__flash unsigned int timerValue =
{

сохраняем его в отдельном файле – timer_value.h и подлючаем его к файлу main.c

#include "timer_value.h"

Да, еще нужно добавить парочку констант в этот файл

#define MAX_TIM_VALUE 99
#define MIN_TIM_VALUE 0

Убедимся, что правильно рассчитали константы для таймера. Запустим его. Код программы будет такой.

//программирование AVR на Си

//сайт 17.10.09
#include
#include
#include "encoder.h"
#include "bits_macros.h"
#include "timer_value.h"

//индекс для доступа к элементам массива
volatile unsigned char pTimerValue = 0;

int main(void )
{
//инициализация таймера Т1
TCNT1 = 0;
TCCR1A = (0<TCCR1B = (0<

//настройка вывода PD5 на выход
SetBit(PORTD, PD5);
SetBit(DDRD, PD5);

//ничего не делаем в бесконечном цикле
while (1);
return 0;
}

Думаю, пояснения требует только кусок инициализации таймера.

Обнуление счетного регистра
TCNT1 = 0;

Инициализация конфигурационных регистров таймера Т1.
TCCR1A = (0<TCCR1B = (0<

Где биты WGM13, WGM12, WGM11, WGM10 задают режим работы таймера – СТС,
CS12, CS11, CS10 – определяют коэффициент предделителя таймера –256,

COM1A1, COM1A0 – определяют поведение вывода PD5(OC1F) – в данном случае по сигналу таймера он будет менять свое состояние на противоположное


Инициализация регистра совпадения начальным значением.
OCR1A = timerValue;

Компилируем программу и грузим в микроконтроллер. Светодиод должен моргать с частотой 1 Гц.
В программе нет никаких прерываний. Нет никаких манипуляций с выводом PD5. Однако светодиод моргает!

Программа

Теперь нужно “прикрутить” к этой программе энкодер. Зададим настройки в хедер файле encoder.h – порт и выводы, к которым подключен энкодер, значения констант.


#define PORT_Enc PORTA
#define PIN_Enc PINA
#define DDR_Enc DDRA
#define Pin1_Enc 2
#define Pin2_Enc 1

#define RIGHT_SPIN 0x01
#define LEFT_SPIN 0xff

Хедер содержит прототипы трех функций. Вспомним их назначение.

void ENC_InitEncoder(void) настраивает выводы микроконтроллера, к которым подключен энкодер на вход. Эту функцию нужно вызвать в начале main`а.


void ENC_PollEncoder(void) – однократно опрашивает энкодер, анализирует текущее и предыдущее состояния и записывает в буфер соответствующие константы (RIGHT_SPIN и LEFT_SPIN). Эта функция будет сидеть в прерывании таймера Т0.


unsigned char ENC_GetStateEncoder(void) – возвращает содержимое буфера энкодера. Если поворот на одну позицию не был зафиксирован – функция вернет 0, если поворот был зафиксирован функция вернет значение соответствующей константы. При этом значение буфера очистится. Эта функция будет вызываться в основном программе – в цикле while.


Дополняем нашу программу. Можете попробовать сделать это самостоятельно.

//программирование AVR на Си
//пример использования энкодера
//сайт 17.10.09

#include
#include
#include "encoder.h"
#include "bits_macros.h"
#include "timer_value.h"

#define TCNT0_const 253
#define TCCR0_const 5

volatile unsigned char pTimerValue = 0;

int main(void )
{
ENC_InitEncoder();

//инициализация таймера т0
TCNT0 = TCNT0_const;
TCCR0 = TCCR0_const;

//инициализация таймера т1
TCNT1 = 0;
TCCR1A = (0<TCCR1B = (0<OCR1A = timerValue;

//разрешение прерываний от таймеров
//т0 - по переполнению, т1 - по совпадению

TIMSK = (1<

//настраиваем PD5 на выход
SetBit(PORTD, PD5);
SetBit(DDRD, PD5);

__enable_interrupt ();
while (1){
//считываем содержимое буфера энкодера
//после считывания он очищается

unsigned char stateEnc = ENC_GetStateEncoder();

//если не пустой
if (stateEnc != 0){
//определяем направление вращения и изменяем переменную timerValue
if (stateEnc == RIGHT_SPIN){
if (pTimerValue == MAX_TIM_VALUE) pTimerValue = MIN_TIM_VALUE;
else pTimerValue++;
}
if (stateEnc == LEFT_SPIN) {
if (pTimerValue == MIN_TIM_VALUE) pTimerValue = MAX_TIM_VALUE;
else pTimerValue--;
}
}
}
return 0;
}

//опрос энкодера
#pragma vector=TIMER0_OVF_vect
__interrupt void timer0_ovf_my(void )
{
TCNT0 = TCNT0_const;
ENC_PollEncoder();
}

#pragma vector=TIMER1_COMPA_vect
__interrupt void timer1_compa_my(void )
{
//обновляем значение регистра стравнения
OCR1A = timerValue;
}

Вроде все должно быть понятно.
Кусок кода, в котором изменяется значение pTimerValue, можно было бы написать еще так:

if (stateEnc != 0) {
pTimerValue = pTimerValue + stateEnc;
if (pTimerValue == (MAX_TIM_VALUE + 1)) pTimerValue = MIN_TIM_VALUE;
else if (pTimerValue == (MIN_TIM_VALUE - 1)) pTimerValue = MAX_TIM_VALUE;
}

При вращении энкодера вправо pTimerValue складывается с 1, то есть инкрементируется.

При вращении энкодера влево pTimerValue складывается с 0хff, что равносильно вычитанию 1. Одна и та же операция, а результат прямо противоположный.



Загрузка...