sonyps4.ru

Что происходит, когда включается компьютер с ОС Linux? Процесс загрузки Linux Введение в процесс загрузки и запуска linux.

Linux - сложная операционная система, и процедура ее включения/выключения не сводится к простому нажатию кнопки питания. Следовательно, чтобы система работала корректно, выполняйте операции запуска и останова по всем правилам.

Хотя процесс начальной загрузки системы всегда был достаточно сложным, все же он был несколько проще в те дни, когда изготовители определяли буквально все аспек­ты аппаратного и программного обеспечения. Теперь, когда Linux управляет аппарат­ным обеспечением персональных компьютеров (ПК), процедура загрузки должна вы­полняться по правилам ПК. При этом приходится иметь дело с множеством возможных конфигураций.

Под начальной загрузкой Linux понимается запуск системы при включении питания . Поскольку обычные средства операционной системы на данном этапе еще недоступны, система должна в буквальном смысле “обслужить себя самостоятельно”. В ходе этого процесса ядро системы загружается в память и активизируется. Затем выполняется ряд инициализационных задач, после чего система готова к обслуживанию пользователей.

Начальная загрузка - это период особой уязвимости системы. Ошибки в конфигу­рационных файлах, сбои в работе или отсутствие нужного оборудования, повреждения файловых систем могут помешать компьютеру нормально начать работу. Настройка ре­жимов загрузки часто является одной из первых задач, которую приходится решать ад­министратору в новой системе. К несчастью, эта задача - одна из наиболее сложных, и для ее решения необходимо хорошо знать Linux.

Когда включается питание, запускается на выполнение загрузочный код, хранящий­ся в ПЗУ. Он должен запустить ядро. Ядро опрашивает состояние аппаратных устройств, а затем запускает демон init , идентификатор которого всегда равен 1.

Прежде чем на экране появится регистрационное приглашение, должен произой­ти целый ряд событий. Файловые системы должны быть проверены и смонтированы, а системные демоны - запущены. Соответствующие процедуры реализуются с помо­щью сценариев интерпретатора команд, которые последовательно запускаются демоном init. Эти сценарии часто называют rc-файлами, поскольку они имеют префикс “ rc ”. Он расшифровывается как “run command” (команда запуска) и является пережитком, оставшимся в наследство от операционной системы CTSS, существовавшей примерно в 1965 году. Конкретная структура сценариев и способ их выполнения зависят от системы.

Автоматическая и ручная загрузка

Linux-системы могут загружаться автоматически либо вручную. В первом случае система запускается самостоятельно, без какого-либо вмешательства извне. Во втором случае также все происходит автоматически до определенного момента, а перед вы­полнением основных инициализирующих сценариев управление передается оператору (человеку, сидящему за терминалом). В этот момент система входит в так называемый “однопользовательский режим”. Большинство системных процессов еще не начало вы­полняться, и вход других пользователей в систему невозможен.

В повседневной работе почти всегда применяется автоматическая загрузка. Типичная процедура загрузки на современном компьютере выглядит так: пользователь включа­ет питание и ждет (ждет, ждет, ждет...), пока система не перейдет в диалоговый режим. Системный администратор, однако, обязан не только понимать, как проходит автома­тическая загрузка, но и знать, как загрузить систему вручную. К последнему средству приходится прибегать при возникновении проблем, делающих невозможной автомати­ческую загрузку. Это может быть вызвано, например, повреждением файловой системы или ошибками в конфигурации сетевой платы.

Этапы загрузки

Типичная процедура начальной загрузки системы Linux состоит из шести этапов:

  • обнаружение и конфигурирование устройств;
  • создание процессов ядра;
  • действия оператора (только при ручной загрузке)
  • выполнение сценариев запуска;
  • работа в многопользовательском режиме.
  • Почти все этапы не требуют контроля со стороны администратора. Можно управлять загрузкой системы, редактируя сценарии запуска.

    Инициализация ядра

    Ядро Linux представляет собой программу, и первым этапом начальной загрузки является запись этой программы в память для последующего выполнения. Файл ядра обычно называется /vmlinuz или /boot/vmlinuz .

    В Linux загрузка ядра осуществляется в два этапа. Сначала в память компьютера с диска считывается (с помощью кода, записанного в ПЗУ) небольшая программа началь­ной загрузки, которая затем выполняет собственно загрузку ядра.

    Ядро выполняет тесты, позволяющие определить, сколько памяти имеется в распо­ряжении системы. Часть внутренних структур ядра имеет фиксированный размер, по­этому ядро резервирует определенный объем физической памяти для самого себя. Эта память недоступна пользовательским процессам. Ядро выдает на консоль сообщение об общем объеме физической памяти и объеме памяти, доступной пользователю.

    Конфигурирование аппаратных средств

    Одна из первых задач ядра - выявление компонентов аппаратного обеспечения. Создавая ядро для конкретной системы, можно указать, какие устройства оно должно проверять. При активизации ядро пытается найти и проинициализировать все устрой­ства, о которых ему было сообщено. Ядро выводит на консоль краткую информацию о каждом обнаруженном устройстве. Современные дистрибутивы включают ядро, которое способно работать в большинстве аппаратных конфигураций компьютеров, требуя при этом минимальной настройки или же вообще обходясь без нее.

    Информация об устройствах, задаваемая при конфигурировании ядра, зачастую ока­зывается неполной. В подобной ситуации ядро пытается получить необходимые сведе­ния, опрашивая устройства, подключенные к системной шине, и собирая нужную ин­формацию у соответствующих драйверов. Драйверы отсутствующих или не отвечающих на контрольный сигнал устройств отключаются. Если позднее устройство будет подклю­чено к системе, можно будет динамически загрузить или активизировать его драйвер.

    Процессы ядра

    После завершения этапа базовой инициализации ядро создает в области памяти, вы­деленной для пользовательских программ, несколько “самовыполняющихся” процессов. Это происходит “в обход” стандартного системного вызова fork .

    Количество и характер таких процессов зависят от операционной системы. В Linux это демон init (всегда имеет идентификатор 1; процесс с идентификатором 0 отсутст­вует) и различные обработчики памяти и сигналов ядра, в том числе те, которые пред­ставлены в табл. 1. Все эти процессы имеют идентификаторы с низкими номерами, а их имена в списках ps заключены в квадратные скобки (например, ). Иногда имена процессов могут содержать в конце символ косой черты и цифру, как, например, . Число указывает процессор, на котором выполняется данный процесс. Эта информация может быть полезна при настройке многопроцессорной системы.

    Таблица 1. Некоторые наиболее часто встречающиеся процессы ядра Linux

    Из этих процессов только init является полноценным пользовательским процессом; остальные фактически представляют собой части ядра, которые были сделаны процес­сами из концептуальных соображений.

    После создания перечисленных процессов ядро больше не принимает участия в про­цедуре начальной загрузки системы. К этому моменту, однако, еще не создан ни один из процессов, управляющих базовыми операциями (например, регистрацией пользователей в системе), и большинство демонов не запущено. Обо всем этом позаботится (в некото­рых случаях косвенно) демон init .

    Действия оператора (только при ручной загрузке)

    Если систему нужно запустить в однопользовательском режиме, оператор уста­навливает в командной строке специальный флаг (слово “ single ”), а ядро передает эту информацию демону init . Последний, в свою очередь, передает управление команде sulogin - специальной версии команды login , - которая выдает приглашение ввести пароль пользователя root . Если он введен правильно, запускается интерпретатор команд с правами суперпользователя. Можно не задавать пароль, а просто нажать < Ctrl+D >, после чего загрузка продолжится в многопользовательском режиме.

    В однопользовательском режиме команды выполняются почти так же, как и в пол­ностью загруженной системе. Однако в SUSE, Debian и Ubuntu обычно монтируется только корневой раздел. Чтобы можно было использовать программы, находящиеся вне каталогов /bin , /sbin или /etc , необходимо вручную смонтировать остальные файло­вые системы.

    Во многих однопользовательских средах корневой каталог файловой системы мон­тируется в режиме только для чтения. Если /tmp является частью корневой файловой системы, выполнение множества команд, которые используют временные файлы (таких как vi), будет невозможно. Чтобы выйти из положения, придется начать однопользова­тельский сеанс с повторного монтирования каталога / в режиме чтения/записи. Нужное действие выполняет команда:

    # mount -o rw,remount /

    В системах Red Hat и Fedora загрузка в однопользовательском режиме выпол­няется несколько более активно, нежели обычно. До того момента, когда на экран будет выведено приглашение интерпретатора команд, эти дистрибутивы попытаются смонтировать все локальные файловые системы. Хотя на первый взгляд такой подход кажется удобным, но при использовании недостаточно продуманной файловой системы он может порождать проблемы.

    Команда fsck , которая проверяет и восстанавливает поврежденные файловые сис­темы, обычно выполняется в ходе автоматической загрузки. Если система запускается в однопользовательском режиме, команду fsck придется вводить вручную.

    Когда интерпретатор команд однопользовательского режима завершит свою работу, система продолжит загрузку в многопользовательском режиме.

    Выполнение сценариев запуска системы

    В тот момент, когда система сможет выполнять сценарии запуска, ее уже можно на­звать Linux. Это еще не полностью загруженная система, но “загадочных” этапов про­цесса загрузки больше не осталось. Файлы сценариев представляют собой обычные ко­мандные файлы, которые выбираются и запускаются демоном init по сложному, но, в общем-то, понятному алгоритму.

    Точное местонахождение, содержимое и организация сценариев запуска заслуживают отдельного изучения.

    Работа в многопользовательском режиме

    После выполнения сценариев запуска система полностью готова к работе, за одним исключением: никто не может в нее войти. Для того чтобы с конкретного терминала (включая системную консоль) можно было зарегистрироваться в системе, должен быть запущен процесс getty , ожидающий поступления запросов от этого терминала. Демон init порождает все необходимые процессы getty , заканчивая этап начальной загрузки. Если система сконфигурирована для работы в графическом режиме, демон init также порождает соответствующие регистрационные процессы, такие как xdm или gdm.

    Не забывайте о том, что демон init продолжает играть важную роль даже по завер­шении начальной загрузки. У него есть один однопользовательский и несколько много­пользовательских “уровней выполнения”, определяющих, какие ресурсы системы будут доступны пользователю.

    Загрузка Linux на персональном компьютере

    До этого момента описывалась общая схема начальной загрузки. Теперь некоторые наиболее важные (и сложные) ее этапы необходимо рассмотреть подробнее, проанали­зировав дополнительные особенности функционирования персональных компьютеров.

    Загрузка системы на персональном компьютере - это многоступенчатый процесс. Когда включается компьютер, начинает выполняться код, записанный в ПЗУ. Точное его местонахождение и структура зависят от типа оборудования. В компьютерах, соз­данных специально для UNIX или другой коммерческой операционной системы, код “прошивается” разработчиком, который заранее задает алгоритм подключения уст­ройств, базовой инициализации сети и распознавания локальных файловых систем. Это очень удобно для системного администратора. Ему достаточно ввести лишь имя нового файла ядра, а код ПЗУ автоматически обнаружит и прочитает этот файл.

    На персональных компьютерах код начальной загрузки представлен в виде базовой подсистемы ввода-вывода - BIOS (Basic Input/Output System), которая чрезвычайно уп­рощена в сравнении с фирменным кодом UNIX-станций. В действительности в BIOS есть несколько уровней кода: для самого компьютера, для видеоплаты, для SCSI-адаптера, если таковой имеется, и, иногда, для других периферийных устройств вроде сетевых плат.

    Встроенному коду BIOS известно об устройствах, расположенных на материнской плате, в частности контроллере IDE (и жестких дисках), плате сетевого адаптера, кон­троллере клавиатуры, последовательных и параллельных портах. SCSI-адаптеры знают только об устройствах, подключенных непосредственно к ним. К счастью, за последние несколько лет сложные взаимодействия, необходимые для обеспечения совместной ра­боты этих устройств, были стандартизованы и теперь почти не требуют вмешательства оператора.

    В современных компьютерах код BIOS интеллектуальнее, нежели раньше. Они по­зволяют на этапе начальной загрузки входить в режим конфигурирования, удерживая нажатой одну или две клавиши. В большинстве случаев названия этих клавиш отобра­жаются на экране, чтобы их не нужно было искать в документации.

    В режиме конфигурирования можно выбрать, с какого устройства требуется загру­жаться, хотя выбор не так уж велик. Обычно последовательность загрузки задается в виде правила, например: “сначала - дисковод для гибких дисков, затем - дисковод CD-ROM, в последнюю очередь - жесткий диск”. К сожалению, в некоторых BIOS за­грузка ограничена возможностью загрузки с первого IDE-дисковода CD-ROM или пер­вого жесткого диска IDE. Могут также распознаваться SCSI-адаптеры.

    Когда компьютер определил, с какого устройства следует загружаться, считываются первые 512 байтов с диска. Этот сегмент диска называется главной загрузочной записью (ГЗЗ). В ней хранится программа, которая сообщает компьютеру о том, в каком разделе диска расположена программа вторичной загрузки (загрузчик операционной системы).

    Стандартная программа, находящаяся в ГЗЗ, дает компьютеру указание извлечь за­грузчик ОС из первого раздела диска. В Linux поддерживаются более сложные програм­мы, которые могут работать с несколькими операционными системами и ядрами.

    Найдя раздел, с которого будет выполняться загрузка системы, программа ГЗЗ пыта­ется запустить загрузочную программу, связанную с этим разделом. В случае успеха этой программе передаются полномочия по дальнейшей загрузке ядра.

    Наверное, наиболее первичная и типовая задача системного администратора – это обеспечение правильной загрузки операционной системы.

    Для того, чтобы это осуществить, администратору совершенно необходимо четко понимать принципы загрузки системы и различные этапы этого процесса.

    Надо сказать, что задачи на устранение различных неисправностей при загрузке системы часто встречаются в различных экзаменах на сертификацию по направлениям ОС.

    Первым делом после включения компьютера происходит выполнение специального кода запуска, который представлен в виде базовой системы ввода-вывода (BIOS). Системе BIOS известна почти вся конфигурация железа. Есть сведения с какого устройства считывать первые 512 байт (MBR).

    Именно в MBR (Master Boot Record) хранится программа первичной загрузки (stage 1), в которой содержится информация о том, в каком месте диска расположена программа вторичной загрузки (stage 2), которая загружает саму операционную систему.

    Таким загрузчиком в нашем конкретном примере является GRUB (Grand Unified Boot Loader). Есть и промежуточный этап (так называемый stage 1.5), помогающий загрузчику ОС определить особые параметры файловой системы. Эта подпрограмма используется, если загрузчик GRUB не был установлен прямо в MBR.

    После получения управления GRUB отображает список операционных систем (Linux/Windows и различных версий ядра Linux), если они доступны. В ином случае управление переходит на командную строку GRUB.

    Предположим, что всё идёт как надо и мы выбрали нужную нам операционную систему (или версию ядра). В этом случае GRUB переходит к своему любимому делу – загружает саму операционную систему.

    Вся информация о ходе процесса загрузки выводится на экран (если в опциях загрузки ядра отсутствует параметр quiet ), а так же в журнальный файл /var/log/dmesg . Просмотреть который можно непосредственно, либо используя утилиту dmesg .

    По выводу служебной информации можно сделать выводы о параметрах оборудования и программного обеспечения, таких как версии ядра ОС, количество оперативной памяти, количество и характеристики процессоров, жесткие диски и соответствующие им разделы, сетевые карты, файл подкачки и многое другое.

    Анализ этой информации в случае невозможности загрузки ОС может пролить свет на возникшую проблему, поэтому этот файл считается достаточно важным для траблшутинга.

    Когда ядро системы загружено, производится базовая настройка необходимых устройств, подсистемы LVM и RAID и диск в оперативной памяти initrd, позволяющий загрузить необходимые драйверы.

    Дальнейшие действия по загрузке процессов сильно отличаются в зависимости от версии ОС. В RHEL5 используется традиционный процесс загрузки служб SysV. В RHEL6 уже есть частичное распараллеливание загрузки процессов, причем по необходимости, а не все подряд. В новых версиях RHEL (с версии ядра 3.0) процесс ещё больше оптимизирован за счёт использования программы systemd, так же как в Fedora с 15-ой версии. В этом случае используется асинхронный режим работы, ускоряющий загрузку ОС.

    Передав управление процессу init ядро переходит в особый режим и принимает обращения всех процессов через специальный универсальный интерфейс системных вызовов. На этом загрузку Linux можно считать завершенной.

    Вам так же понравится:

    Операционная система Linux Курс лекций. Учебное пособие Исправляем брешь CVE-2015-0235 в Linux

    Лучший способ понять, как работает операционная система Linux, - это проследить поэтапно ее загрузку. Именно во время загрузки запускаются все те механизмы, что приводят ОС в движение. Процесс этот сложный, многоступенчатый и порой запутанный. Изучать его интересно, а открытия, которые вы сделаете при этом, могут сильно вас удивить.

    В целом загрузку Linux дистрибутива можно разделить на 5 этапов:

    1. Загрузчик.
    2. Запуск и начальная инициализация ядра.
    3. Обнаружение оборудования, загрузка драйверов и подключение файловых систем.
    4. Запуск системных служб (демонов).
    5. Старт графической или консольной пользовательской сессии.

    Мы пройдемся по всем стадиям и узнаем, что происходит во время загрузки типичного дистрибутива Linux, немного отклонившись в сторону BSD, macOS и Android по пути. Во многих случаях это позволит понять, почему процесс загрузки Linux именно такой, какой есть.

    1. Загрузчик

    Все начинается с загрузчика, которому во время старта машины BIOS передает управление. В старые времена, когда Linux был не так популярен, в качестве загрузчика использовался LILO (Linux Loader) - простой, очень примитивный и не позволяющий менять конфигурацию загрузки на лету. Фактически конфигурационный файл был вшит в сам загрузчик, и его приходилось переустанавливать после каждой смены настроек: обновил ядро, забыл переустановить, и твой ноутбук больше не грузится.

    Сегодня загрузкой Linux практически в любом дистрибутиве занимается Grub, изначально разработанный для операционной системы GNU/Hard. Grub гораздо сложнее LILO и фактически сам является полноценной ОС. Он не просто читает конфиг загрузки (обычно это /boot/grub/grub.cfg) прямо с диска, но и позволяет исправить этот конфиг на месте. Grub имеет встроенную командную строку, работает с десятком различных файловых систем и позволяет формировать сложные цепочки загрузки.

    Как только пользователь выбирает нужный пункт меню (либо по истечении тайм-аута), Grub находит связанный с этим пунктом меню образ ядра Linux на диске (обычно это файл /boot/vmlinuz), а также закрепленный за ним образ initramfs (о нем чуть позже), загружает их в память и передает управление ядру.

    Чтобы увидеть меню Grub в Ubuntu, необходимо удерживать Shift

    2. Ядро и initramfs

    Получив управление, ядро начинает первичную инициализацию: запускается подсистема управления памятью, настраивается обработчик прерываний, инициализируются необходимые для дальнейшей работы ядра структуры данных. Когда эта работа будет закончена, ядро распаковывает архив initramfs (обычно он имеет имя вида /boot/initramfs-linux.img и представляет собой архив cpio, сжатый с помощью gzip) в файловую систему в оперативной памяти (tmpfs), делает ее корневой файловой системой и запускает скрипт /init (в различных дистрибутивах имя может отличаться).

    Initramfs включает в себя базовый набор компонентов Linux-дистрибутива: стандартные системные каталоги /bin, /lib, /etc и так далее, простейший командный интерпретатор (обычно ash), набор команд BusyBox, несколько вспомогательных библиотек и набор модулей ядра (драйверов), предназначенных для работы с различными накопителями и файловыми системами.

    Этапы загрузки Linux. Содержимое initramfs.

    Смысл существования initramfs в том, чтобы решить проблему курицы и яйца: загрузить драйверы для подключения реальной корневой файловой системы до того, как она будет подключена. Именно это и происходит, когда система запускает скрипт /init. Он определяет установленные в систему накопители, загружает в ядро драйверы для работы с ними, а затем подключает нужный раздел нужного накопителя (о том, какой именно, ядро узнает благодаря переданному при загрузке параметру root) к корню, перекрывая таким образом содержимое initramfs. Затем скрипт запускает /sbin/init, с которого и начинается следующий шаг загрузки ОС.

    Загрузка Linux. Скрипт init из initramfs.

    3. Первичная инициализация

    После того как скрипт /init из initramfs заканчивает свою работу, он запускает утилиту /sbin/init реальной файловой системы. С этого момента начинается инициализация самой ОС: загрузка необходимых драйверов, подключение файловых систем и разделов подкачки, настройка сетевых интерфейсов и запуск системных служб.

    Исторически /sbin/init была очень простой утилитой, которая занималась только тем, что передавала управление определенным скриптам в зависимости от переданного ей параметра (скрипты располагались в каталогах /etc/rcX.d/, где X - уровень загрузки). Каждый скрипт отвечал за строго определенную операцию: один подключал перечисленные в файле /etc/fstab файловые системы, другой конфигурировал сетевые интерфейсы, еще один запускал демон cron (он занимается запуском периодических задач), еще один - демон syslog (он отвечает за прием журнальных сообщений и их запись на диск) и так далее. Этот стиль инициализации получил имя SystemV по имени версии UNIX, в которой он появился.

    Достоинство стиля инициализации SystemV в его крайней простоте: его легко понять, его легко реализовать, с ним просто работать. Однако он абсолютно не подходит к современным реалиям.

    Сегодня загрузка ОС не сводится к загрузке пары-тройки драйверов, подключению двух файловых систем, настройке одного сетевого интерфейса и запуску трех служб. Стандартная конфигурация может включать в себя десятки различных демонов, на запуск каждого из которых может уйти немало времени, а сам демон может упасть. SystemV запускает службы последовательно и не контролирует их жизненный цикл, поэтому загрузка становится медленной, а корректная работа в дальнейшем не гарантируется.

    Чтобы обойти эти проблемы, разработчики macOS в свое время создали альтернативу /sbin/init под названием launchd. Это без преувеличения гениальная разработка - launchd не только умеет контролировать жизненный цикл служб, но и запускает их лишь тогда, когда эти службы становятся нужны. Причем делает это весьма неординарным образом.

    О том, как это происходит, мы еще поговорим. Сейчас в истории с launchd нас интересует другое, а именно то, что под его впечатлением был создан тот самый systemd. Сегодня systemd - часть большинства дистрибутивов Linux. Он гораздо сложнее /sbin/init и даже launchd, а в его конструкции нет и намека на уровни запуска и скрипты. Systemd оперирует понятием юнит (unit), который может олицетворять собой службу, операцию монтирования, операцию настройки сетевого интерфейса и другие.

    Загрузка Linux. Конфиг юнита демона Tor.

    Для описания юнитов используется специальный декларативный язык, поэтому допустить ошибку конфигурации сложнее, чем при написании скрипта. Юниты могут иметь зависимости друг от друга и запускаются параллельно либо когда в них возникает необходимость. Например, службы (демоны), не зависящие от сетевого подключения, могут быть запущены раньше настройки сетевого интерфейса, другие - сразу после его настройки, третьи - только тогда, когда к ним обращаются приложения или другие службы.

    4. Запуск демонов

    Запуск служб (демонов) - один из ключевых моментов загрузки Linux. Особое место здесь занимает демон udev, без которого типичный дистрибутив Linux окажется неработоспособен.

    Udev занимается управлением содержимым каталога /dev. Как мы все знаем, в Linux-системах этот каталог используется для хранения так называемых файлов устройств - особого типа файлов, олицетворяющих собой те или иные компоненты ПК. Именно с помощью файлов устройств в Linux происходит работа с оборудованием: читаешь файл /dev/sda1 и получаешь содержимое первого раздела первого жесткого диска, записываешь данные в /dev/fb0 и выводишь картинку на экран.

    В раннем UNIX каталог /dev был статичен. Он содержал набор файлов на все случаи жизни: даже если в ПК не была установлена звуковая карта, файл /dev/dsp для вывода звука все равно существовал. Когда количество различного оборудования было невелико, а plug’n’play еще не родился, проблем не было: всего лишь десяток-другой файлов. Но со временем он все больше захламлялся и в итоге превратился в помойку.

    Первый вариант решения этой проблемы состоял в том, чтобы подключить к /dev виртуальную файловую систему (devfs), содержимым которой управляло бы ядро. Оно находило все установленное оборудование и создавало файлы только для тех устройств, которые реально присутствуют в машине.

    Такое решение до сих пор используется в macOS и FreeBSD, но разработчики Linux пошли другим путем. Здесь есть специальная файловая система sysfs, подключенная к каталогу /sys. Это нечто вроде подробной базы данных обо всех устройствах ПК, начиная от процессора и контроллера прерываний и заканчивая мышками и геймпадами.

    Загрузка Linux. С помощью /sys можно не только получить информацию об устройствах, но и управлять ими.

    С помощью /sys можно не только получить информацию об устройствах, но и управлять ими.

    На основе информации, извлеченной из /sys, демон udev создает файлы устройств в /dev. Во время первого старта он проходит по всем устройствам в /sys, а затем засыпает и ждет, пока не будет добавлено или удалено устройство: воткнул флешку - в /sys появились новые файлы, udev проснулся и создал на их основе файл устройства в /dev, загрузив нужные драйверы.

    Еще один важный для UNIX-систем демон - syslog. Это своего рода агрегатор логов приложений, складывающий их все в каталог /var/logs. В основанных на systemd дистрибутивах вместо него обычно используется systemd-journald, который хранит логи в специальном бинарном формате (syslog оперирует текстом). В него можно добавлять новые записи, но удалять нельзя. Это защита от взломщиков, которые могли бы удалить нужные строки из файлов, чтобы скрыть следы своего пребывания в системе.

    В среднестатистическом дистрибутиве Linux также есть другие демоны:

    • cron - отвечает за выполнение задач по времени. Может запускать команды через определенные промежутки или в четко заданное время. Простейший вариант использования - создание бэкапа по ночам;
    • cups - демон печати. Следит за очередью отправленных на печать документов и отдает их принтеру;
    • systemd-logind - управляет пользовательскими сессиями, позволяет быстро переключаться между сессиями, дает разрешение на автомонтирование устройств от лица пользователя и выполняет другие задачи;
    • dbus - демон, обслуживающий работу шины данных, позволяющей приложениям обмениваться информацией. В основном используется в средах рабочего стола и графических приложениях;
    • NetworkManager - конфигуратор сетевых интерфейсов. Используется только в десктопных вариантах дистрибутивов и может быть заменен на аналог. Например, wicd.

    В большинстве своем демоны обмениваются информацией с приложениями и другими демонами с помощью UNIX-сокетов. Это канал коммуникации, закрепленный за файлом. Например, демон cups создает сокет /var/run/cups/cups.sock (в разных дистрибутивах расположение может отличаться). Записывая в него данные, можно отправлять документы на печать.

    Именно эту особенность используют launchd и systemd, чтобы запускать демоны только по мере необходимости. Трюк состоит в том, чтобы заранее создать сокеты для всех системных демонов, а сами демоны запускать только тогда, когда кто-либо запишет данные в сокет; нет смысла запускать cups при загрузке или в любой другой момент, если никто не отправляет задания на печать.

    5. X Window System и PAM

    Последний этап загрузки - запуск менеджера логина. В консоли функцию менеджера логина выполняет связка утилит getty (обычно используется ее более продвинутый вариант agetty) и login. Getty представляет собой рудимент, оставшийся со времен мейнфреймов и удаленных терминалов (название расшифровывается как get teletype). Он выводит в терминал текстовое сообщение и затем запускает утилиту login, которая спрашивает логин и пароль пользователя. Когда пользователь вводит корректный пароль, login запускает от его имени шелл, указанный в файле /etc/passwd.

    Графический менеджер логина называется дисплейный менеджер (Display Manager), и в каждой графической среде он свой. KDE использует менеджер KDM, GNOME - GDM, также есть возможность использовать универсальный дисплейный менеджер, например Slim. В любом случае задача дисплейного менеджера - вывести на экран окно запроса имени пользователя и пароля, а после авторизации либо запустить оконный менеджер напрямую, либо выполнить ряд команд, записанных в пользовательский файл ~/.xinitrc.

    Этапы загрузки Linux. Дисплейный менеджер KDM в Debian.

    Одновременно с запуском дисплейного менеджера запускается графическая система X Window System, а в современных дистрибутивах - Xorg. Это клиент-серверная система вывода графики на экран, где сервер отвечает за компоновку общей картинки, сформированной различными приложениями-клиентами. X Window System - не графическая среда, а лишь прослойка, позволяющая приложениям отправлять картинку на экран и получать события ввода от пользователя. Чтобы построить на ее основе графический интерфейс, также нужен менеджер окон (window manager), который позволит пользователю управлять окнами приложений.

    Менеджер окон может работать как обособленно (например, fluxbox, window maker, i3), так и в составе комплексной среды рабочего стола, (KDE, GNOME, XFCE). Кроме менеджера окон, они также включают в себя набор средств для формирования полноценного десктопа: панель задач в нижней или верхней части экрана, док, систему расположения иконок на рабочем столе и прочее. Обычно каждый из этих элементов управляется одним или несколькими специальными приложениями.

    Независимо от того, какой способ входа использует юзер, за контроль доступа всегда отвечает PAM. Это модульная система аутентификации пользователя, которая может проверять его личность самыми разными способами, попутно выполняя ряд проверок. По умолчанию PAM использует аутентификацию исключительно с помощью пароля, но, поменяв конфигурационные файлы /etc/pam.d, порядок аутентификации можно изменить, добавив к нему, например, необходимость приложить палец к сканеру отпечатков, вставить специальную флешку-ключ и даже использовать подтверждение с помощью смартфона. О том, как это сделать, мы уже писали.

    Загрузка Linux. Конфигурационный файл PAM утилиты login

    На этом процесс загрузки можно считать законченным. Ты либо выполняешь логин в консоль и видишь приглашение командного интерпретатора или вводишь данные учетной записи в окно дисплейного менеджера, и в результате на экране появляется рабочий стол.

    Вместо заключения

    Так выглядит загрузка современного дистрибутива Linux. Некоторые не особо важные и не особо интересные детали я опустил, но попытался рассказать о самом главном. Если вдуматься, это не такой уж и сложный процесс, фактически операционная система готова принимать команды пользователя уже на этапе подключения initramfs, все остальное - запуск окружения, которое необходимо для полноценной работы пользователя.

    Итак, инсталляция Linux завершена, и вы перезапускаете компьютер. Если Linux - единственная операционная система, установленная на вашем компьютере (а, значит, загрузчик LILO размещается в главной загрузочной записи - MBR), то после обычного тестирования аппаратуры, выполняемого BIOS, ненадолго появится надпись

    Если не предпринимать никаких действий, то на экран будет выдана масса сообщений, разбирать смысл которых мы пока не будем, и, наконец, появится стилизованное изображение пингвинчика. (я пока рассматриваю тот случай, когда вы при установке отказались от автоматической загрузки графической оболочки). Ниже изображения пингвина на экране написано:

    Linux Version 2.0.36, Compiled #1 Tue Dec 29 13:11:11 EST 1998
    One Intel 486 DX/2-WB Processor, 16M RAM, 33.28 Bogomips Total
    Black Cat Linux release 5.2 (Fulcrun)
    Kernel 2.0.36 on an i486 localhost login:

    Я привел здесь то сообщение, которое появлялось у меня при одном из вариантов установки, когда я ставил Black Cat версии 5.2; у вас, конечно, сообщение будет отличаться в некоторых деталях. Если у вас хватит терпения дочитать эту книгу, то вы узнаете, что выдаваемое при загрузке сообщение при желании можно изменить, так что будет выдаваться что-нибудь вроде "Привет, дружище! Сегодня 11 ноября 2001 года. Сейчас 19 часов 22 минуты. Введи, пожалуйста, свое имя и пароль". Однако пока рано говорить о том, как это делается.

    Если вы загружались с дискеты, то загрузка происходит точно также, только чуть медленнее.

    Если Linux не единственная ОС на вашем компьютере, и вы используете LILO для организации многовариантной загрузки, то в тот момент, когда на экране появится надпись LILO boot: вы должны нажать клавишу ‹Tab› или ‹?›. Тогда LILO выдаст вам список меток, которые сопоставлены разным ОС. В версии 21 LILO уже автоматически выводит этот список на экран в виде меню. Необходимо выбрать из меню или ввести (набрать на клавиатуре) одну из этих меток и нажать клавишу ‹Enter›. Если вы выберете метку, соответствующую Linux, то в конце концов вы все равно должны увидеть слово login:, которое в данном случае служит приглашением к вводу вашего пользовательского имени.

    3.2. Вход в систему

    Как вы понимаете, в ответ на это приглашение необходимо ввести имя пользователя, а потом, по запросу, и пароль для входа в систему. Если это первый вход в систему после ее установки, то входить надо под именем ""root"". Это единственный пользователь, для которого обязательно заводится счет или бюджет (account) во время инсталляции. Этот пользователь является полным хозяином системы (как сейчас, так и в последующем), то есть имеет неограниченный доступ к ее ресурсам, может заводить и удалять других пользователей, останавливать систему и т. д. Неосторожное поведение пользователя с такими правами легко может привести к печальным последствиям, вплоть до полного краха системы. Поэтому обычно под этим именем входят в систему только для выполнения административных задач. Но у нас сейчас как раз такой случай, так что в ответ на приглашение login: вводим "root" и нажимаем клавишу ‹Enter› (или ‹Return›). Система выдаст запрос на ввод пароля:

    Очевидно, что в ответ надо вводить пароль того пользователя, имя которого было введено ранее. При первой загрузке надо ввести тот пароль, которой был задан для пользователя root в процессе инсталляции, и нажать ‹Enter›. Заметим, что если после ввода имени очень долго не вводить пароль, то система снова вернется к запросу имени пользователя. После ввода пароля вы увидите примерно такую надпись:

    Такая строка называется приглашением. Появление приглашения означает, что система готова воспринять и выполнить вашу команду. Сейчас это свидетельствует о том, что вы успешно вошли в систему. Вы видите черный экран и приглашение системы к вводу команды - то, что в MS-DOS или Windows принято называть режимом командной строки. Мы будем называть этот режим текстовым (в отличие от графического режима, предоставляемого системой X Window).

    В приведенном примере приглашение включает в себя указание имени пользователя (root), имени системы (localhost) и тукущего каталога (/root). Вид приглашения тоже можно изменить. Во всех последующих примерах мы будем использовать приглашение, состоящее только из имени пользователя.

    Прежде чем предложить вам ввести первую команду, надо сказать, что в любой UNIX-системе учитывается регистр символов, т. е. различаются строчные и прописные буквы. Поэтому вводить все команды и их параметры следует именно так, как указано в примерах, учитывая регистр.

    Первая команда, которую стоит ввести - команда useradd. После имени команды надо ввести пробел и имя пользователя, например, jim:

    После этого система будет знать о существовании пользователя jim (говорят, будет "открыт счет для пользователя jim"). Однако войти в систему (или, как обычно говорят, "логироваться") под этим именем еще невозможно. Для того, чтобы система разрешила работать пользователю с именем jim, надо задать ему пароль. Для этого вводим команду

    Появится строка

    Вводите пароль. После того, как вы завершите ввод нажатием клавиши ‹Enter›, система попросит ввести его повторно:

    Если вы не ошиблись при вводе (пароль приходится вводить "вслепую", поскольку он не отображается на экране), появится сообщение: passwd: all authentication tokens updated successfully и приглашение системы. Если вы выбрали пароль не очень удачно (слишком короткий или простой), вам будет выдано предупреждение, но система все равно примет пароль и позволит новому пользователю входить с ним в систему.

    Таким образом, вы познакомились с первыми двумя командами системы Linux: useradd и passwd. Следующая команда, о которой нужно знать каждому пользователю любой UNIX-системы - это команда man. Команда man - это система встроенной помощи системы Linux. Вводить ее надо с параметром - именем другой команды или ключевым словом, например,

    В ответ вы получите описание соответствующей команды или информацию по теме, обозначенной ключевым словом. Поскольку информация обычно не помещается на одном экране, при просмотре можно пользоваться клавишами ‹PageUp› и ‹PageDown›, а также клавишей пробела. Нажатие клавиши ‹Q› в любой момент приводит к выходу из режима просмотра и возврату в режим ввода команд. Попробуйте просмотреть информацию по рассмотренным уже командам login и passwd. Заметим, что точно также можно получить информацию по самой команде man. Введите

    К сожалению, в большинстве случаев информация выдается по-английски. Если вы не читаете по-английски, то терпеливо читайте настоящее руководство или другую подходящую книгу по данной теме.

    Вы можете попробовать вводить еще некоторые команды и понаблюдать за реакцией системы. Попробуйте, например, команды, перечисленные в табл. 3.1 (вводите их с приведенными в таблице параметрами).

    Таблица 3.1. Простейшие команды Linux.

    Команда Краткое описание
    whoami Сообщает имя, с которым вы вошли в систему в данном сеансе работы
    w или who Сообщает, какие пользователи работают в данный момент в системе
    pwd Сообщает имя текущего каталога
    ls -l Выдает список файлов и подкаталогов текущего каталога
    cd ‹имя_каталога› Осуществляет смену текущего каталога
    ps ax Выдает список выполняющихся процессов

    Просмотрите описания этих команд с помощью команды man.

    Мы не будем приводить здесь более подробный список возможных команд. Во-первых, с необходимыми командами можно будет постепенно познакомиться в ходе дальнейшего чтения. Во-вторых, описания основных команд можно найти в любой книге по UNIX.

    3.3. Консоль, виртуальные терминалы и оболочка

    Итак, вы приобрели первый опыт работы в текстовом, или "консольном", режиме системы Linux. Понятия "терминала" и "консоли", которые встретятся нам еще не раз, требуется, вероятно, дополнительно пояснить.

    Когда создавалась система UNIX, компьютеры были большими (мейнфреймами), и пользователи работали на них через множество последовательных интерфейсов для подключения удаленных терминалов. Терминал - это устройство, которое предназначено для взаимодействия пользователя с компьютером и состоит из монитора и клавиатуры. К вашему персональному компьютеру наверняка не подключены удаленные терминалы, но есть клавиатура и монитор, которые и выполняют роль терминала пользователя (только в его состав добавилась мышь).

    У мейнфреймов имелся особый терминал, который предназначался для системного администратора и назывался консолью. Консоль обычно подсоединялась к компьютеру не по последовательному интерфейсу, а через отдельные разъемы (иногда в качестве устройства вывода в ее состав вместо монитора входило печатающее устройство).

    Поскольку в UNIX-системах обычно соблюдаются традиции, клавиатура и монитор персонального компьютера ведут себя так же, как ранее консоль. Преимущество такого решения состоит в том, что все старые программы, создававшиеся для администраторов UNIX, без проблем работают и на новом типе системной консоли.

    Но, кроме консоли, Linux позволяет подключать к компьютеру и удаленные терминалы и, более того, обеспечивает возможность работы с несколькими виртуальными терминалами с одной консоли. Нажмите комбинацию клавиш ‹Ctrl›+‹Alt›+‹F2›. Вы снова увидите приглашение login:. Однако это не возврат к началу работы с системой - вы просто переключились в другой виртуальный терминал. Здесь вы можете зарегистрироваться под другим именем. Попробуйте войти в систему под именем только что заведенного пользователя. После этого нажмите комбинацию клавиш ‹Ctrl›+‹Alt›+‹F1›. Вы вернетесь к первому экрану. По умолчанию Red Hat Linux открывает при запуске 6 параллельных сеансов работы (виртуальных терминалов), и этим иногда очень удобно пользоваться. Для переключения между виртуальными терминалами используются комбинации ‹Ctrl›+‹Alt›+‹F1› - ‹Ctrl›+‹Alt›+‹F6›. (Заметим, что при работе в текстовом режиме тот же результат можно получить, используя комбинации ‹Alt›+‹F1› - ‹Alt›+‹F6›, однако в графическом режиме без клавиши ‹Ctrl› не обойтись, так что лучше сразу привыкать к комбинациям из 3 клавиш). Кстати, если в процессе работы вы забыли, в каком терминале находитесь в данный момент, воспользуйтесь командой tty, которая выводит имя терминала в следующем формате: /dev/tty2.

    Сразу же скажем, что, если вы хотите завершить сеанс работы с системой в одном из терминалов, вы можете сделать это нажатием комбинации клавиш ‹Ctrl›+‹D›. Это не приведет ни к остановке работы компьютера, ни к перезагрузке системы. Не забывайте, что Linux - многозадачная и многопользовательская система. Завершение работы одного пользователя не означает, что надо выключать компьютер. Просто завершается сеанс работы одного из пользователей, и система снова выводит в данном терминале приглашение, которое вы уже видели. Можно завершить сеанс работы и введя одну из команд logout или exit.

    Зная теперь как открыть и закрыть сеанс работы в системе, выполните приведенные выше рекомендации, т. е. заведите себя как рядового пользователя (без суперпользовательских прав), завершите все сеансы работы, открытые от имени root, и снова войдите в систему под своим новым именем.

    Теперь надо сказать несколько слов об оболочке. Оболочка, или просто shell (это слово часто не переводят, а оставляют в английском написании), - это программа, которая осуществляет все общение с пользователем. Именно оболочка воспринимает все команды, вводимые пользователем с клавиатуры, и организует исполнение этих команд. Поэтому оболочку можно назвать еще командным процессором (более привычный термин для пользователя DOS, не правда ли?). Строго говоря, когда выше говорилось, например, "система выводит приглашение", это неправильно, поскольку приглашение выводит именно оболочка, ожидая ввода пользователем очередной команды. Каждый раз, когда очередной пользователь входит в систему, команда login запускает для него командный процессор - оболочку. Если вы логировались со второго терминала под именем пользователя jim (или под другим выбранным вами именем), то обратите теперь внимание на различие в приглашениях у пользователей root и jim. У пользователя root приглашение оканчивается символом #, а у всех остальных пользователей - символом $.

    Оболочку может запускать не только команда login. Вы можете просто ввести команду bash (именно так называется программа-оболочка в системе Red Hat Linux) и тем самым запустить новый экземпляр оболочки. Выходя из него (по команде exit или по комбинации клавиш ‹Ctrl ›+‹ D›) вы вернетесь к предыдущему экземпляру оболочки.

    Оболочка bash является не только командным процессором, но и мощным языком программирования. В ней имеется целый ряд встроенных (внутренних) команд и операторов, а, кроме того, в качестве команды может использоваться любая программа, хранящаяся в виде файла на диске. Список встроенных команд можно получить по команде help. Попробуйте! Детальную информацию по конкретной встроенной команде выдает та же команда help с указанием в качестве параметра имени встроенной команды, например: help cd.

    Поскольку оболочка играет очень важную роль в Linux, ей будет посвящена отдельная глава этой книги. Впрочем, аналогичный материал вы найдете в любой книге по UNIX. Стоит только отметить, что для UNIX-подобных систем разработано несколько альтернативных bash оболочек. Их можно использовать и в Linux, но по умолчанию запускается именно bash.

    Рассмотрим теперь еще одну команду, которую вам необходимо знать, поскольку все же компьютер у вас персональный (неважно, дома ли это происходит, или на работе). А это значит, что вы и есть суперпользователь данного компьютера. Но, как уже было сказано выше, входить в систему под именем суперпользователя не рекомендуется, поскольку любое неосторожное действие суперпользователя может привести к нежелательным последствиям. Входя под именем простого пользователя, вы, по крайней мере, не можете по неосторожности удалить или испортить системные файлы. В то же время, имеется ряд действий (например, монтирование файловых систем), выполнить которые может только суперпользователь. Не перезагружать же каждый раз компьютер! Именно в таких ситуациях выручает команда su. Достаточно ввести команду su и текущая оболочка (так и хочется сказать "система") запустит для вас новый экземпляр оболочки, в который вы попадете уже с правами пользователя root. Естественно, что для этого вам придется (в ответ на соответствующий запрос) ввести пароль этого пользователя. Закончив выполнять администраторские действия, выйдите из оболочки, и вы снова станете непривилегированным пользователем с отведенными ему полномочиями.

    Если вы вошли в систему под именем root, то вы можете аналогичным образом запустить новый экземпляр оболочки от имени любого пользователя, пароль которого вы знаете . Но для этого надо указать имя этого пользователя в командной строке, например:

    Когда мы вводим su без указания имени, по умолчанию подставляется имя суперпользователя root.

    Но в ОС Linux есть еще одна возможность временно переключаться в бюджет пользователя root для выполнения административных функций. Вспомните, что Linux - это многопользовательская система, в ней одновременно могут работать несколько пользователей. Поэтому в первом виртуальном терминале можно войти под именем root, а в любом другом терминале - под именем простого пользователя. Основную работу вы можете выполнять как простой пользователь, а когда потребуется выполнить административные функции, вы "зовете системного администратора". Для этого достаточно нажать ‹Ctrl›+‹Alt›+‹F1› - и системный администратор уже тут. По завершении операции, которую может выполнить только суперпользователь, вы немедленно должны вернуться в бюджет простого пользователя. В таком случае вы не рискуете нарушить что-либо в системе, пока еще не набрались необходимого опыта.

    3.4. Редактирование командной строки. История команд

    В предыдущих разделах вам было предложено выполнить несколько команд ОС Linux. Полагаю, что, если в процессе набора возникали ошибки, вы сами догадались, как их исправить. Тем не менее будет полезно привести для справки короткую сводку команд, позволяющих редактировать командную строку, а также вообще оказывать какое-то влияние на поведение оболочки с помощью клавиатуры (о мышке разговор отдельный).

    Примечание . Приводимые ниже описания команд относятся к оболочке GNU bash версии 1.14.7(1). Думается, что они будут верны и для последующих версий этой оболочки.

    Таблица 3.2. Клавиши редактирования командной строки

    Клавиша Описание реакции системы
    ‹Стрелка вправо› или ‹Ctrl›+‹F› Перемещение вправо по командной строке в пределах уже набранной цепочки символов плюс один символ справа (место для ввода следующего символа)
    ‹Стрелка влево› или ‹Ctrl›+‹B› Перемещение на один символ влево
    ‹Esc›+‹F› Перемещение на одно слово вправо
    ‹Esc›+‹B› Перемещение на одно слово влево
    ‹Home› или ‹Ctrl›+‹A› Перемещение в начало набранной цепочки символов
    ‹End› или ‹Ctrl›+‹E› Перемещение в начало/конец набранной цепочки символов
    ‹Del› или ‹Ctrl›+‹D› Удаление символа, на который показывает курсор
    ‹Backspase› Удаление символа в позиции, предшествующей курсору
    ‹Ctrl›+‹K› Удалить правую часть строки, начиная с символа, на который указывает курсор
    ‹Ctrl›+‹U› Удалить левую часть строки, включая символ, который находится слева от курсора
    ‹Enter› или ‹Ctrl›+‹M› Запуск на выполнение команды, определяемой набранной цепочкой символов
    ‹Ctrl›+‹L› Очистить экран и поместить текущую команду в верхней строке экрана
    ‹Ctrl›+‹T› Поменять местами два символа: символ, на который показывает курсор, и символ слева от курсора, затем, курсор переместить на один символ вправо
    ‹Esc›+‹T› Поменять местами два слова: слово, на которое указывает курсор и слово слева от первого
    ‹Ctrl›+‹K› Вырезать часть строки от текущей позиции курсора до конца строки (вырезанная часть строки сохраняется в буфере, ее можно вставить в другое место строки)
    ‹Esc›+‹D› Вырезать часть строки от текущей позиции курсора до конца текущего слова (если курсор указывает на пробел между словами, то вырезается все слово справа от курсора)
    ‹Esc›+‹Del› Вырезать часть строки от текущей позиции курсора до начала текущего слова (если курсор указывает на пробел между словами, то вырезается все слово слева от курсора)
    ‹Ctrl›+‹W› Вырезать часть строки от текущей позиции курсора до предыдущего пробела
    ‹Ctrl›+‹Y› Вставить последний вырезанный текст в позицию курсора
    ‹Esc›+‹C› Символ, на который указывает курсор, заменить на тот же, но заглавный, а курсор переместить на первый пробел справа от текущего слова
    ‹Esc›+‹U› Сделать символы данного слова заглавными, начиная с символа, на который указывает курсор, а курсор установить на пробел справа от слова
    ‹Esc›+‹L› Превратить символы, начиная с символа, на который указывает курсор, до конца данного слова в прописные (маленькие) буквы, а курсор установить на пробел справа от слова
    ‹Shift›+‹PgUp› ‹Shift›+‹PgDown› Эти команды позволяют просмотреть несколько страниц экранного вывода (количество зависит от размера видеопамяти); полезны в тех случаях, когда та или иная команда выводит на экран очень много информации, быстро пробегающей по экрану и как бы исчезающей для пользователя; как видите, эта информация не пропадает
    ‹Ctrl›+‹C› Прервать выполнение запущенной команды
    ‹Ctrl›+‹D› Выход из оболочки bash

    Примечание . Если вы работаете не просто в оболочке bash, а запустили программу Midnight Commander, то такие клавиши как ‹Стрелка вправо›, ‹Стрелка влево›, ‹Home›, ‹End›, ‹Del› не могут использоваться так, как указано в приведенной таблице, поскольку они используются для перемещения подсветки в текущей панели . Но указанные выше в скобках комбинации символьных клавиш с клавишами ‹Ctrl› и ‹Esc› по-прежнему действуют для редактирования командной строки.

    Список возможных команд не ограничивается только приведенными в табл. 3.2, но из-за ограниченности объема книги невозможно привести здесь полный перечень клавиатурных команд. Для получения дополнительной информации воспользуйтесь командой info bash.

    Заметим, что оболочка bash имеет встроенную подпрограмму, предназначенную для облегчения ввода команд в командной строке. Эта подпрограмма вызывается при двукратном нажатии клавиши ‹Tab› после того, как вы уже ввели некоторое число символов. Если эти символы являются началом названия одной из стандартных команд, которые известны оболочке, то возможны два варианта реакции оболочки на двукратное нажатие клавиши ‹Tab›. Если по введенным символам команда определяется однозначно, оболочка просто добавляет окончание команды в командную строку. Если однозначно восстановить имя команды по введенным символам невозможно, то выдается список возможных вариантов продолжения для того, чтобы пользователь мог ввести еще несколько символов, позволяющих однозначно завершить ввод команды нажатием клавиши ‹Tab›.

    Если вы попробуете дважды ввести символ табуляции в пустой командной строке, то после первого ввода вы получите только звуковой сигнал, а после второго - примерно следующее сообщение: "There are 1217 possibilities. Do you really wish to see them all? (y or n)" ("Возможны 1217 вариантов завершения. Вы действительно хотите увидеть их все?").

    Если дважды нажать клавишу табуляции после того, как введена одна из команд и пробел, оболочка предполагает, что вы ищете имя файла, который должен вводиться как параметр команды, и выдает в качестве подсказки список файлов текущего каталога. Если же достаточная часть имени файла введена, то заканчивается ввод этого имени в командную строку. Аналогичным образом можно пытаться угадывать окончания переменных окружения, если вместо клавиши ‹Tab› воспользоваться комбинацией ‹Esc›+‹$›.

    Для практической работы с оболочкой также полезно знать, что оболочка запоминает некоторое число введенных команд (по умолчанию 1000, это значение задается в переменной HISTSIZE; см. гл. 5) и позволяет вызывать их путем выбора из списка - так называемой истории команд. Историю команд можно просмотреть, введя в командной строке history (здесь вы сможете воспользоваться комбинациями клавиш ‹Shift›+‹PgUp› и ‹Shift›+‹PgDown›, чтобы просмотреть то, что выдаст эта команда). История команд сохраняется в файле, определяемом переменной HISTFILE (обычно $HOME/.bash_history). Для работы с историей команд в оболочке bash используются следующие комбинации клавиш.

    Таблица 3.3. Клавиши для управления историей команд.

    Клавиша Описание реакции системы
    ‹Стрелка вверх› или ‹Ctrl›+‹P› Переход к предыдущей команде в списке (движение назад по списку)
    ‹Стрелка вниз› или ‹Ctrl›+‹N› Переход к следующей команде в списке (движение вперед по списку)
    ‹PgUp› Переход к (вызов в командную строку) самой первой команде, сохраненной в истории команд
    ‹!›, ‹N› Выполняется (без нажатия клавиши ‹Enter›) n-ная команда из списка истории команд
    ‹!›, ‹-›, ‹N› Выполняется n-ая от конца списка команда
    ‹!›, строка символов Выполняется команда, имя которой начинается на строку символов (поиск нужной команды осуществляется движением в обратном порядке от конца файла истории и выполняется первая попавшаяся команда, которая начинается на строку символов)
    ‹Ctrl›+‹O› То же что нажатие клавиши ‹Enter›, затем отображается очередная команда из файла истории

    3.5. Завершение работы системы Linux

    Хотя компьютер, работающий под управлением ОС Linux, при выполнении некоторых условий можно оставлять работающим круглосуточно, большинство пользователей персональных компьютеров привыкли выключать их после завершения работы. Если вы работаете с ОС Linux, нельзя выключать компьютер простым отключением питания, как это было под MS-DOS. Дело в том, что в любой момент времени в системе запущено несколько процессов, вы могли видеть это, когда выполняли команду

    (и можете посмотреть еще раз, повторив запуск этой команды). Но более важная причина состоит в том, что некоторые из этих процессов могут работать с файлами, причем система не записывает все изменения файлов на диск сразу после внесения этих изменений пользователем или процессом, а сохраняет их временно в оперативной памяти (кэширует). Если просто выключить питание, эти изменения не будут сохранены и пропадут, что иногда может привести даже к невозможности последующей загрузки системы. Так что надо уметь правильно завершить работу системы перед выключением компьютера. Это делается командой shutdown.

    Команда shutdown может быть выполнена только пользователем root , так что вы либо должны были войти в систему под этим именем, либо должны предварительно выполнить команду su, чтобы приобрести соответствующие права.

    Команда shutdown имеет следующий синтаксис:

    # shutdown ‹options› ‹time› ‹warning-massage›

    Замечание

    Существует некоторая вероятность того, что запустив команду, вы получите ответ "command not found". Это значит, что оболочка не знает, где находится файл программы. В таком случае вам необходимо ввести команду с указанием полного пути, в данном случае в виде /sbin/shutdown -h, поскольку для команды shutdown файл программы лежит в каталоге /sbin.

    Из опций программы shutdown наиболее часто используются две:

    H - полная остановка системы (компьютер будет выключен);

    R - перезагрузить систему.

    Параметр time указывает время, когда должна быть выполнена команда (не обязательно выполнять ее немедленно). Время можно указать в форме задержки от текущего момента. Например, если вы хотите, чтобы система остановилась через 5 минут, вводите команду

    что будет означать "остановить систему через 5 минут и перезагрузиться после того, как работа будет корректно завершена"". Для вас пока наиболее актуальной формой этой команды будет, скорее всего,

    когда вы захотите просто выключить компьютер. Эквивалентом команды

    является команда halt. При нажатии известной комбинации клавиш ‹Ctrl›+‹Alt›+‹Del› в Red Hat Linux выполняются действия, аналогичные команде

    так что таким образом тоже можно выключить компьютер, только надо в момент перезагрузки отключить питание.

    3.6. Помощь по работе с Linux

    Вы завершили первый сеанс работы с операционной системой Linux, и, надеюсь, понимаете, что вам еще не раз потребуется подсказка в разных ситуациях. Надеюсь также, что настоящая книга сможет служить вам такой подсказкой на первых порах, но она наверняка не решит всех ваших проблем. Поэтому постараюсь сразу указать другие источники информации. При этом я несколько забегаю вперед, рассказывая о получении подсказки в графическом режиме работы, о котором еще ничего не было сказано. Но это оправдано, поскольку о способах выхода из затруднительных ситуаций лучше знать заранее.

    Если вы окажетесь в ситуации, когда не знаете, что предпринять или сделать для достижения желаемой цели, лучше всего начать искать подсказку в самой системе. Дистрибутив Red Hat Linux содержит тысячи страниц документации, представленной в электронном виде, так что ответы на все возникающие вопросы у вас, что называется, "на кончиках пальцев". Существует несколько независимых источников, которые содержат информацию почти по любому аспекту работы в системе Linux:

    Страницы интерактивного руководства man;

    Гипертекстовое руководство info;

    Документация, прилагаемая к пакетам ПО;

    Текстовые файлы HOWTO и FAQ проекта Linux Documentation Project;

    Команда locate.

    Необходимо сразу сказать, что большую часть информации из этих источников вы будете получать на английском языке. Только для русифицированных дистрибутивов часть страниц интерактивного руководства man выдается на русском языке. Можно дополнительно скачать из Интернета имеющиеся там страницы руководства man, переведенные на русский язык [П5.1], и разместить их в соответствующих каталогах. Но все равно, на русский переведено далеко не все. Учитывая это замечание, рассмотрим каждый из перечисленных выше источников информации подробнее.

    3.6.2. Страницы интерактивного руководства man

    Выше уже было вкратце рассказано о команде man, с помощью которой пользователь всегда может в затруднительной ситуации получить подсказку почти по любой команде системы, форматах файлов и системных вызовах. Это основной способ получения подсказки во всех UNIX-системах. Страницы руководства man в Linux делятся на следующие секции:

    Таблица 3.4. Основные секции интерактивного руководства man

    Секция Содержание
    1 Команды пользователя
    8 Системные команды
    2 Системные вызовы
    3 Библиотечные вызовы (подпрограммы)
    4 Устройства
    5 Форматы файлов
    6 Игры
    7 Разное
    9 Ядро (kernel internals)
    n Tcl/Tk commands

    Порядок перечисления секций в этой таблице не случаен. Дело в том, что файлы с информацией расположены в подкаталогах каталога /usr/man и команда man ищет нужную информацию, просматривая эти подкаталоги именно в том порядке, который приведен табл. 3.4. Если вы, например, дадите команду

    то получите справку о команде swapon из секции 8. Поэтому если вы хотите получить справку по системному вызову swapon, надо дать команду

    указывая номер секции, в которой надо искать информацию.

    Страницы man просматриваются с помощью команды less (что дает возможность просматривать информацию поэкранно и перемещаться по этим экранам вперед и назад), так что для управления процессом вывода информации можно использовать клавиши, используемые в программе less. Наиболее употребительные:

    Таблица 3.5. Клавиатурные команды, используемые при просмотре man-страниц

    Клавиша Назначение
    ‹Q› Выход из программы
    ‹Enter› Просмотр строка за строкой
    ‹Space› Вывод следующего экрана информации
    ‹B›

    Под начальной загрузкой (bootstrapping), понимается запуск системы при включении питания. Поскольку обычные средства операционной системы на данном этапе еще недоступны, система должна «самозагрузиться», в буквальном смысле «обслужить себя самостоятельно». В ходе этого процесса ядро системы загружается в память и активизируется. Затем выполняется ряд инициализационных задач, после чего система готова к обслуживанию пользователей.

    Начальная загрузка - это период особой уязвимости системы. Ошибки в конфигурации, сбои в работе или отсутствие нужного оборудования, повреждения файловых систем могут помешать компьютеру нормально начать работу. Настройка режимов загрузки часто является одной из первых задач, которую приходится решать администратору в новой системе, особенно при добавлении нового оборудования. К несчастью, эта задача - одна из наиболее сложных, и для ее решения необходимо хорошо знать многие другие аспекты системы.

    Когда включается питание, запускается на выполнение загрузочный код, хранящийся на постоянном запоминающем устройстве. Он должен запустить ядро. Ядро опрашивает состояние аппаратных устройств, а затем запускает демон init, идентификатор которого всегда равен 1.

    Прежде чем система полностью загрузится, должны быть проверены и смонтированы файловые системы и запущены системные демоны. Соответствующие процедуры реализуются с помощью сценариев интерпретатора команд, которые последовательно запускаются демоном init. Конкретная структура сценариев и способ их выполнения зависят от системы.

    Главное - активизировать командную оболочку

    При нормальной работе системы сами выполняют начальную загрузку в автономном режиме, после чего к ним могут получить удаленный доступ администраторы и пользователи. Однако администраторам необходимо иметь инструмент восстановления системы в случае, если неожиданный отказ дисковода или какая-нибудь проблема конфигурации помешает системе нормально выполнить процесс начальной загрузки. Системы UNIX (вместо загрузки «по полной программе») могут ограничиться только самым необходимым, а именно активизацией командной оболочки на системной консоли. Этот вариант называют входом системы в так называемый «однопользовательский режим», режим восстановления или профилактический режим - все эти термины взаимозаменяемы. Однопользовательский режим не позволяет выполнять сетевые операции, а для использования системной консоли вам нужно иметь физический доступ к ней.

    В большинстве систем для входа в однопользовательский режим во время начальной загрузки необходимо передать ядру в командной строке определенный параметр. Если система уже загружена и работает, вы можете перевести ее в однопользовательский режим с помощью команды shutdown или telinit .

    Этапы загрузки

    Типичная процедура начальной загрузки состоит из шести отдельных этапов:

    • считывание начального загрузчика с главной загрузочной записи;
    • обнаружение и конфигурирование устройств;
    • создание процессов ядра;
    • вмешательство администратора (только в однопользовательском режиме);
    • выполнение системных сценариев запуска.

    Почти все этапы не требуют интерактивного контроля со стороны администратора. Ведь администраторы имеют возможность управлять загрузкой системы, редактируя файлы конфигурации для сценариев запуска системы или изменяя аргументы, передаваемые загрузчиком ядру.

    Инициализация ядра

    Ядро представляет собой программу, и в качестве первой задачи начальной загрузки выполняется запись этой программы в память для последующего выполнения. Имя файлу ядра дает его изготовитель, но по традиции оно называется /unix или /vmunix . В Linux-системах ядро обычно получает путевое имя в виде вариации на тему /boot/ vmlinuz .

    В большинстве систем загрузка осуществляется в два этапа. Сначала в память компьютера с диска считывается (с помощью кода, записанного на постоянном запоминающем устройстве) небольшая программа начальной загрузки (именуемая начальным загрузчиком), которая затем выполняет собственно загрузку ядра. Эта процедура совершается вне UNIX-домена и поэтому не стандартизирована среди систем.

    Ядро выполняет тесты, позволяющие определить, сколько памяти имеется в распоряжении системы. Часть внутренних структур ядра имеет фиксированный размер, поэтому ядро резервирует определенный объем физической памяти для самого себя. Эта память недоступна пользовательским процессам. Ядро выдает на консоль сообщение об общем объеме физической памяти и объеме памяти, доступной пользовательским процессам.

    Конфигурирование аппаратных средств

    Одна из первых задач ядра - исследование компонентов аппаратного обеспечения. В процессе тестирования различных системных шин и инвентаризации оборудования ядро выводит на консоль краткую информацию о каждом обнаруженном устройстве. Во многих случаях ядро загружает драйверы устройств как независимые модули ядра. Для систем, ориентированных на персональные компьютеры, дистрибутивы включают ядро, которое способно работать в большинстве аппаратных конфигураций компьютеров, требуя при этом минимальной настройки или же вообще обходясь без нее.

    Процесс конфигурации аппаратного обеспечения должен быть относительно прозрачным для администраторов, особенно в среде Linux. Готовые ядра имеют модульную структуру и автоматически обнаруживают большую часть устройств. Тем не менее вы можете встретить нераспознанные устройства.

    Создание процессов ядра

    После завершения этапа базовой инициализации ядро создает в области памяти, выделенной для пользовательских программ, несколько «самовыполняющихся» процессов. Это происходит «в обход» стандартного системного механизма fork .

    Количество таких процессов зависит от операционной системы, хотя демон init всегда имеет идентификатор процесса (PID ), равный 1. Большинство систем UNIX использует sched в качестве процесса с идентификатором 0.В Linux процесс с идентификатором PID, равным 0, отсутствует. Демон init работает в сопровождении с различными обработчиками памяти и сигналов ядра. Все эти процессы имеют идентификаторы с низкими номерами, а их имена в листингах команды ps заключены в квадратные скобки (например, ). Иногда имена процессов могут содержать в конце символ косой черты и цифру, как, например, . Число указывает процессор, на котором выполняется данный процесс. Эта информация может быть полезна при настройке многопроцессорной системы.

    Некоторые наиболее часто встречающиеся процессы ядра в Linux-системах
    Процесс Назначение

    k journald Записывает обновления журнала на диска
    kswapd Выполняет подкачку процессов при недостаточном объеме физической памяти

    ksoftirqd Обрабатывает мягкие прерывания, если ими нельзя заняться во время переключения контекста

    khubd Выполняет конфигурирование USB-устройств

    Для каждой смонтированной файловой системы ext3 или ext4 существует один процесс kjoumald.

    Из этих процессов только init является полноценным пользовательским процессом; остальные фактически представляют собой части ядра, которые были сделаны процессами из концептуальных соображений.

    Системы UNIX создают подобные процессы ядра, но поскольку эти процессы отображают особенности конкретной реализации ядра, никакие имена или функции не могут быть одинаковыми для разных систем. К счастью, администраторам никогда не приходится взаимодействовать с этими процессами напрямую.

    После создания этих процессов ядро больше не принимает участия в процедуре начальной загрузки системы. К этому моменту, однако, еще не создан ни один из процессов, управляющих базовыми операциями (например, регистрацией пользователей в системе), и большинство демонов не запущено. Обо всем этом позаботится (в некоторых случаях косвенно) демон init.

    Действия оператора (только в режиме восстановления)

    Если систему нужно запустить в режиме восстановления, оператор устанавливает в командной строке специальный флаг, а ядро передает эту информацию демону init в качестве уведомления о запуске. Во время однопользовательской загрузки вы должны получить приглашение ввести пароль пользователя root. Если он введен правильно, запускается интерпретатор команд с правами суперпользователя. Можно не задавать пароль, а просто нажать комбинацию клавиш , после чего загрузка продолжится в многопользовательском режиме

    В однопользовательском режиме команды выполняются почти так же, как и в полностью загруженной системе. Однако иногда монтируется только корневой раздел. Для того чтобы можно было использовать программы, находящиеся вне каталогов /bin, /sbin или /etc, необходимо вручную смонтировать остальные файловые системы.

    Во многих однопользовательских средах корневой каталог файловой системы монтируется в режиме только для чтения. Если каталог /etc является частью корневой файловой системы (обычная ситуация), редактирование многих файлов конфигурации будет невозможно. Чтобы выйти из положения, придется начать однопользовательский сеанс с повторного монтирования каталога / в режиме чтения/записи. Нужное действие в Linux-системах выполняет следующая команда.

    # mount -о rw,remount /

    В большинстве других систем вы можете выполнить команду mount / , чтобы реализовать обращение к файлу fstab или vfstab и выяснить, как должна быть смонтирована файловая система.

    В системе Red Hat загрузка в однопользовательском режиме выполняется несколько активнее, нежели обычно. До того момента, когда на экран будет выведено приглашение интерпретатора команд, этот дистрибутив попытается смонтировать все локальные файловые системы. Хотя на первый взгляд такой подход кажется удобным, но при использовании недостаточно продуманной файловой системы он может порождать проблемы.

    Команда fsck , которая проверяет и восстанавливает поврежденные файловые системы, обычно выполняется в ходе автоматической загрузки. Если система запускается в однопользовательском режиме, команду fsck придется вводить вручную.

    Когда интерпретатор команд однопользовательского режима завершит свою работу, система продолжит загрузку в нормальном режиме.

    Выполнение сценариев запуска системы

    В тот момент, когда система сможет выполнять сценарии запуска, ее уже можно назвать UNIX. Это еще не полностью загруженная система, но «загадочных» этапов процесса загрузки больше не осталось. Файлы сценариев представляют собой обычные командные файлы, которые выбираются и запускаются демоном init по сложному, но, в общем-то, понятному алгоритму.

    Точное местонахождение, содержимое и организация сценариев запуска заслуживают отдельного изучения.

    Завершение процесса загрузки

    После выполнения сценариев инициализации система полностью готова к работе. Такие системные демоны, как DNS- и SMTP-серверы, принимают и обслуживают подключения. Не забывайте о том, что демон init продолжает играть важную роль даже по завершении начальной загрузки.

    У демона init есть один однопользовательский и несколько многопользовательских «уровней выполнения», определяющих, какие ресурсы системы будут доступны пользователю.



    Загрузка...