sonyps4.ru

Чем отличается протокол TCP от UDP, простым языком. Протокол UDP

Протоколы TCP и UDP

TCP- Transmission Control Protocol

Обмен данными, ориентированный на соединения, может использовать надежную связь, для обеспечения которой протокол уровня 4 посылает подтверждения о получении данных и запрашивает повторную передачу, если данные не получены или искажены. Протокол TCP использует именно такую надежную связь. TCP используется в таких прикладных протоколах, как HTTP, FTP, SMTP и Telnet.

Протокол TCP требует, чтобы перед отправкой сообщения было открыто соединение. Серверное приложение должно выполнить так называемое пассивное открытие (passive open) , чтобы создать соединение с известным номером порта, и, вместо того чтобы отправлять вызов в сеть, сервер переходит в ожидание поступления входящих запросов. Клиентское приложение должно выполнить активное открытие (active open) , отправив серверному приложению синхронизирующий порядковый номер (SYN), идентифицирующий соединение. Клиентское приложение может использовать динамический номер порта в качестве локального порта.

Сервер должен отправить клиенту подтверждение (ACK) вместе с порядковым номером (SYN) сервера. В свою очередь клиент отвечает АСК, и соединение устанавливается.

После этого может начаться процесс отправки и получения сообщений. При получении сообщения в ответ всегда отправляется сообщение АСК. Если до получения АСК отправителем истекает тайм-аут, сообщение помещается в очередь на повторную передачу.

Поля заголовка TCP перечислены в следующей таблице:

Заголовок TCP
Поле Длина Описание
Порт источника 2 байта Номер порта источника
Порт назначения 2 байта Номер порта назначения
Последовательный номер 4 байта Последовательный номер генерируется источником и используется назначением, чтобы переупорядочить пакеты для создания исходного сообщения и отправить подтверждение источнику.
Номер подтверждения 4 байта Если установлен бит АСК поля "Управление", в данном поле содержится следующий ожидаемый последовательный номер.
Смещение данных 4 бита Информация о начале пакета данных.
Резерв 6 битов Резервируются для будущего использования.
Управление 6 битов Биты управления содержат флаги, указывающие, верны ли поля подтверждения (АСК), указателя срочности (URG), следует ли сбрасывать соединение (RST), послан ли синхронизирующий последовательный номер (SYN) и т. д.
Размер окна 2 байта В этом поле указывается размер приемного буфера. Используя подтверждающие сообщения, получатель может информировать отправителя о максимальном размере данных, которые тот может отправить.
Контрольная сумма 2 байта Контрольная сумма заголовка и данных; по ней определяется, был ли искажен пакет.
Указатель срочности 2 байта В этом поле целевое устройство получает информацию о срочности данных.
Опции переменная Необязательные значения, которые указываются при необходимости.
Дополнение переменная В поле дополнения добавляется столько нулей, чтобы заголовок заканчивался на 32-битной границе.

TCP - это сложный, требующий больших затрат времени протокол, что объясняется его механизмом установления соединения, но он берет на себя заботу о гарантированной доставке пакетов, избавляя нас от необходимости включать эту функциональную возможность в прикладной протокол.

Протокол TCP имеет встроенную возможность надежной доставки. Если сообщение не отправлено корректно, мы получим сообщение об ошибке. Протокол TCP определен в RFC 793.

UDP - User Datagram Protocol

В отличие от TCP UDP - очень быстрый протокол, поскольку в нем определен самый минимальный механизм, необходимый для передачи данных. Конечно, он имеет некоторые недостатки. Сообщения поступают в любом порядке, и то, которое отправлено первым, может быть получено последним. Доставка сообщений UDP вовсе не гарантируется, сообщение может потеряться, и могут быть получены две копии одного и того же сообщения. Последний случай возникает, если для отправки сообщений в один адрес использовать два разных маршрута.

UDP не требует открывать соединение, и данные могут быть отправлены сразу же, как только они подготовлены. UDP не отправляет подтверждающие сообщения, поэтому данные могут быть получены или потеряны. Если при использовании UDP требуется надежная передача данных, ее следует реализовать в протоколе более высокого уровня.

Так в чем же преимущества UDP, зачем может понадобиться такой ненадежный протокол? Чтобы понять причину использования UDP, нужно различать однонаправленную передачу, широковещательную передачу и групповую рассылку.

Однонаправленное (unicast) сообщение отправляется из одного узла только в один другой узел. Это также называется связью "точка-точка". Протокол TCP поддерживает лишь однонаправленную связь. Если серверу нужно с помощью TCP взаимодействовать с несколькими клиентами, каждый клиент должен установить соединение, поскольку сообщения могут отправляться только одиночным узлам.

Широковещательная передача (broadcast) означает, что сообщение отправляется всем узлам сети. Групповая рассылка (multicast) - это промежуточный механизм: сообщения отправляются выбранным группам узлов.

UDP может использоваться для однонаправленной связи, если требуется быстрая передача, например для доставки мультимедийных данных, но главные преимущества UDP касаются широковещательной передачи и групповой рассылки.

User Datagram Protocol - UDP

Протокол UDP - это один из двух протоколов транспортного уровня, которые используются в стеке протоколов TCP/IP. UDP позволяет прикладной программе передавать свои сообщения по сети с минимальными издержками, связанными с преобразованием протоколов уровня приложения в протокол IP. Однако при этом, прикладная программа сама должна заботиться о подтверждении того, что сообщение доставлено по месту назначения. Заголовок UDP-датаграммы (сообщения) имеет вид, показанный на рисунке 2.10.

Рис. 2.10. Структура заголовка UDP-сообщения

Единица данных протокола UDP называется UDP-пакетом или пользовательской дейтаграммой (user datagram). UDP-пакет состоит из заголовка и поля данных, в котором размещается пакет прикладного уровня. Заголовок имеет простой формат и состоит из четырех двухбайтовых полей:

    UDP source port - номер порта процесса-отправителя,

    UDP destination port - номер порта процесса-получателя,

    UDP message length - длина UDP-пакета в байтах,

    UDP checksum - контрольная сумма UDP-пакета

Не все поля UDP-пакета обязательно должны быть заполнены. Если посылаемая дейтаграмма не предполагает ответа, то на месте адреса отправителя могут помещаться нули. Можно отказаться и от подсчета контрольной суммы, однако следует учесть, что протокол IP подсчитывает контрольную сумму только для заголовка IP-пакета, игнорируя поле данных

Порты в заголовке определяют протокол UDP как мультиплексор, который позволяет собирать сообщения от приложений и отправлять их на уровень протоколов. При этом приложение использует определенный порт. Взаимодействующие через сеть приложения могут использовать разные порты, что и отражает заголовок пакета. Всего можно определить 216 разных портов. Первые 256 портов закреплены за, так называемыми "well known services", к которым относятся, например, 53 порт UDP, который закреплен за сервисом DNS.

Поле Length определяет общую длину сообщения. ПолеChecksum служит для контроля целостности данных. Приложение, которое использует протокол UDP должно само заботится о целостности данных, анализируя поля Checksum и Length. Кроме этого, при обмене данными по UDP прикладная программа сама должна заботится о контроле доставки данных адресату. Обычно это достигается за счет обмена подтверждениями о доставке между прикладными программами.

Наиболее известными сервисами, основанными на UDP, является служба доменных имен BIND и распределенная файловая система NFS. Если возвратиться к примеру traceroute, то в этой программе также используется транспорт UDP. Собственно, именно сообщение UDP и засылается в сеть, но при этом используется такой порт, который не имеет обслуживания, поэтому и порождается ICMP-пакет, который и детектирует отсутствие сервиса на принимающей машине, когда пакет наконец достигает машину-адресата.

Transfer Control Protocol - TCP

Если для приложения контроль качества передачи данных по сети имеет значение, то в этом случае используется протокол TCP. Этот протокол еще называют надежным, ориентированным на соединение и потокоориентированным протоколом. Прежде чем обсудить эти свойства протокола, рассмотрим формат передаваемой по сети датаграммы (рисунок 2.11). Согласно этой структуре, в TCP, как и в UDP, имеются порты. Первые 256 портов закреплены за WKS, порты от 256 до 1024 закреплены за Unix-сервисами, а остальные можно использовать по своему усмотрению. В поле Sequence Number определен номер пакета в последовательности пакетов, которая составляет все сообщение, за тем идет поле подтвержденияAsknowledgment Number и другая управляющая информация.

Рис. 2.11. Структура пакета TCP

    Порт источника (SOURS PORT) занимает 2 байта, идентифицирует процесс-отправитель;

    Порт назначения (DESTINATION PORT) занимает 2 байта, идентифицирует процесс-получатель;

    Последовательный номер (SEQUENCE NUMBER) занимает 4 байта, указывает номер байта, который определяет смещение сегмента относительно потока отправляемых данных;

    Подтвержденный номер (ACKNOWLEDGEMENT NUMBER) занимает 4 байта, содержит максимальный номер байта в полученном сегменте, увеличенный на единицу; именно это значение используется в качестве квитанции;

    Длина заголовка (HLEN) занимает 4 бита, указывает длину заголовка сегмента TCP, измеренную в 32-битовых словах. Длина заголовка не фиксирована и может изменяться в зависимости от значений, устанавливаемых в поле Опции;

    Резерв (RESERVED) занимает 6 битов, поле зарезервировано для последующего использования;

    Кодовые биты (CODE BITS) занимают 6 битов, содержат служебную информацию о типе данного сегмента, задаваемую установкой в единицу соответствующих бит этого поля:

    URG - срочное сообщение;

    ACK - квитанция на принятый сегмент;

    PSH - запрос на отправку сообщения без ожидания заполнения буфера;

    RST - запрос на восстановление соединения;

    SYN - сообщение используемое для синхронизации счетчиков переданных данных при установлении соединения;

    FIN - признак достижения передающей стороной последнего байта в потоке передаваемых данных.

    Окно (WINDOW) занимает 2 байта, содержит объявляемое значение размера окна в байтах;

    Контрольная сумма (CHECKSUM) занимает 2 байта, рассчитывается по сегменту;

    Указатель срочности (URGENT POINTER) занимает 2 байта, используется совместно с кодовым битом URG, указывает на конец данных, которые необходимо срочно принять, несмотря на переполнение буфера;

    Опции (OPTIONS) - это поле имеет переменную длину и может вообще отсутствовать, максимальная величина поля 3 байта; используется для решения вспомогательных задач, например, при выборе максимального размера сегмента;

    Заполнитель (PADDING) может иметь переменную длину, представляет собой фиктивное поле, используемое для доведения размера заголовка до целого числа 32-битовых слов.

Надежность TCP заключается в том, что источник данных повторяет их посылку, если только не получит в определенный промежуток времени от адресата подтверждение об их успешном получении. Этот механизм называется Positive Asknowledgement with Retransmission (PAR) . Как мы ранее определили, единица пересылки (пакет данных, сообщение и т.п.) в терминах TCP носит название сегмента. В заголовке TCP существует поле контррольной суммы. Если при пересылке данные повреждены, то по контрольной сумме модуль, вычленяющий TCP-сегменты из пакетов IP, может определить это. Поврежденный пакет уничтожается, а источнику ничего не посылается. Если данные не были повреждены, то они пропускаются на сборку сообщения приложения, а источнику отправляется подтверждение.

Ориентация на соединение определяется тем, что прежде чем отправить сегмент с данными, модули TCP источника и получателя обмениваются управляющей информацией. Такой обмен называется handshake (буквально "рукопожатие"). В TCP используется трехфазный hand-shake:

    Источник устанавливает соединение с получателем, посылая ему пакет с флагом "синхронизации последовательности номеров" (Synchronize Sequence Numbers - SYN). Номер в последовательности определяет номер пакета в сообщении приложения. Это не обязательно должен быть 0 или единица. Но все остальные номера будут использовать его в качестве базы, что позволит собрать пакеты в правильном порядке;

    Получатель отвечает номером в поле подтверждения получения SYN, который соответствует установленному источником номеру. Кроме этого, в поле "номер в последовательности" может также сообщаться номер, который запрашивался источником;

    Источник подтверждает, что принял сегмент получателя и отправляет первую порцию данных.

Графически этот процесс представлен на рисунке 2.12.

Рис. 2.12. Установка соединения TCP

После установки соединения источник посылает данные получателю и ждет от него подтверждений о их получении, затем снова посылает данные и т.д., пока сообщение не закончится. Заканчивается сообщение, когда в поле флагов выставляется бит FIN, что означает "нет больше данных".

Потоковый характер протокола определяется тем, что SYN определяет стартовый номер для отсчета переданных байтов, а не пакетов. Это значит, что если SYN был установлен в 0, и было передано 200 байтов, то номер, установленный в следующем пакете будет равен 201, а не 2.

Понятно, что потоковый характер протокола и требование подтверждения получения данных порождают проблему скорости передачи данных. Для ее решения используется "окно" - поле - window. Идея применения window достаточно проста: передавать данные не дожидаясь подтверждения об их получения. Это значит, что источник предает некоторое количество данных равное window без ожидания подтверждения об их приеме, и после этого останавливает передачу и ждет подтверждения. Если он получит подтверждение только на часть переданных данных, то он начнет передачу новой порции с номера, следующего за подтвержденным. Графически это изображено на рисунке 2.13.

Рис. 2.13. Механизм передачи данных по TCP

В данном примере окно установлено в 250 байтов шириной. Это означает, что текущий сегмент - сегмент со смещением относительно SYN, равном 250 байтам. Однако, после передачи всего окна модуль TCP источника получил подтверждение на получение только первых 100 байтов. Следовательно, передача будет начата со 101 байта, а не с 251.

Таким образом, мы рассмотрели все основные свойства протокола TCP. Осталось только назвать наиболее известные приложения, которые использует TCP для обмена данными. Это в первую очередь TELNET и FTP, а также протокол HTTP, который является сердцем World Wide Web.

Прервем немного разговор о протоколах и обратим свое внимание на такую важнейшую компоненту всей системы TCP/IP как IP-адреса.

8 ответов

TCP - ориентированный на соединение поток по IP-сети. Он гарантирует, что все отправленные пакеты достигнут адресата в правильном порядке. Это подразумевает использование пакетов подтверждения, отправленных обратно отправителю, и автоматическую повторную передачу, вызывая дополнительные задержки и общую менее эффективную передачу, чем UDP .

UDP - протокол без подключения. Связь ориентирована на датаграмму. Целостность гарантируется только на одной дейтаграмме. Дейтаграммы достигают цели и могут выходить из строя или вообще не поступать. Он более эффективен, чем TCP , потому что он использует не ACK. Он обычно используется для обмена в режиме реального времени, когда небольшой процент потери пакетов лучше, чем накладные расходы на соединение TCP .

В определенных ситуациях используется UDP , поскольку он позволяет передавать пакетную передачу. Это иногда является фундаментальным в таких случаях, как протокол DHCP , поскольку клиентская машина еще не получила адрес IP (это протокол протокола t26 >), и не будет никакого способа установить TCP поток без адреса IP .

UDP (User Datagram Protocol) - это обычный широко используемый протокол в Интернете. Однако UDP никогда не используется для отправки важных данных, таких как веб-страницы, сведения о базе данных и т.д.; UDP обычно используется для потоковой передачи аудио и видео. Потоковые медиа, такие как аудиофайлы Windows Media (.WMA), Real Player (.RM) и другие, используют UDP, потому что он предлагает скорость! Причина, по которой UDP работает быстрее, чем TCP, заключается в том, что нет контроля потока или исправления ошибок. На данные, отправленные через Интернет, влияют столкновения, и ошибки будут присутствовать. Помните, что UDP касается только скорости. Это основная причина, по которой потоковые медиа не являются качественными.

1) TCP является ориентированным на соединение и надежным, когда UDP является соединением меньше и ненадежным.

2) TCP требует дополнительной обработки на уровне сетевого интерфейса, где, как и в UDP, нет.

3) TCP использует трехстороннее рукопожатие, управление перегрузкой, управление потоком и другой механизм, чтобы обеспечить надежную передачу.

4) UDP в основном используется в случаях, когда задержка пакета более серьезна, чем потеря пакетов.

Подумайте о TCP как о запланированном расписании UPS/FedEx по расписанию UPS/FedEx пакетов между двумя местоположениями, в то время как UDP эквивалентен отправке открытки в почтовый ящик.

UPS/FedEx сделает все возможное, чтобы убедиться, что пакет, на который вы отправляете почту, попадает туда и получает его вовремя. С почтовой карточкой вам повезло, если она вообще придет, и она может выйти из строя или поздно (сколько раз вы получили открытку от кого-то ПОСЛЕ того, как они вернулись домой из отпуска?)

TCP как можно ближе к гарантированному протоколу доставки, так как вы можете получить UDP - это просто "лучшее усилие".

Причины UDP используются для DNS и DHCP:

DNS - TCP требует больше ресурсов с сервера (который прослушивает подключения), чем от клиента. В частности, когда соединение TCP закрыто, сервер должен помнить данные соединения (удерживая их в памяти) в течение двух минут во время состояния, известного как TIME_WAIT_2. Это функция, которая защищает от ошибочно повторяющихся пакетов из предыдущего соединения, которые интерпретируются как часть текущего соединения. Поддержание TIME_WAIT_2 использует память ядра на сервере. Запросы DNS небольшие и часто поступают от разных клиентов. Эта модель использования усугубляет нагрузку на сервер по сравнению с клиентами. Считалось, что использование UDP, не имеющего соединений и не поддерживающего состояние на клиенте или сервере, улучшит эту проблему.

DHCP - DHCP является расширением BOOTP. BOOTP - это протокол, который клиентские компьютеры используют для получения информации о конфигурации с сервера, в то время как клиент загружается. Чтобы найти сервер, широковещательная передача отправляется с запросом на серверы BOOTP (или DHCP). Трансляция может быть отправлена ​​только через протокол без установления соединения, такой как UDP. Поэтому BOOTP требовал хотя бы одного UDP-пакета для широковещательной передачи на сервере. Кроме того, поскольку BOOTP работает, пока клиент... загружается, и это период времени, когда клиент может не загружать и запускать весь свой стек TCP/IP, UDP может быть единственным протоколом, который клиент готов обрабатывать при этом время. Наконец, некоторые клиенты DHCP/BOOTP имеют только UDP на борту. Например, некоторые IP-термостаты реализуют только UDP. Причина в том, что они построены с такими крошечными процессорами и небольшим объемом памяти, которые не могут выполнять TCP, но им все равно нужно получить IP-адрес при загрузке.

Как уже упоминалось, UDP также полезен для потоковой передачи мультимедиа, особенно аудио. Разговоры лучше звучат в зависимости от сетевого отставания, если вы просто отбрасываете задержанные пакеты. Вы можете сделать это с помощью UDP, но с TCP все, что вы получаете во время задержки, - это пауза, за которой следует звук, который всегда будет задерживаться на столько, сколько он уже приостановил. Для двусторонних телефонных разговоров это неприемлемо.

Одним из отличий является сокращение

UDP . Отправляйте сообщение и не смотрите назад, если он достиг цели, протокол без установления соединения
TCP : отправить сообщение и гарантировать, что вы достигнете адресата, протокол, ориентированный на соединение

Протокол UDP

User Datagram Protocol (UDP) - это простой, ориентированный на дейтаграммы протокол без организации соединения, предоставляющий быстрое, но необязательно надежное транспортное обслуживание. Он поддерживает взаимодействия "один со многими" и поэтому часто применяется для широковещательной и групповой передачи дейтаграмм.

Internet Protocol (IP) является основным протоколом Интернета. Transmission Control Protocol (TCP) и UDP - это протоколы транспортного уровня, построенные поверх лежащего в основе протокола.

TCP/IP - это набор протоколов, называемый также "пакетом протоколов Интернета" (Internet Protocol Suite), состоящий из четырех уровней. Запомните, что TCP/IP не просто один протокол, а семейство или набор протоколов, который состоит из других низкоуровневых протоколов, таких, как IP, TCP и UDP. UDP располагается на транспортном уровне поверх IP (протокола сетевого уровня). Транспортный уровень обеспечивает взаимодействие между сетями через шлюзы. В нем используются IP-адреса для отправки пакетов данных через Интернет или другую сеть с помощью разнообразных драйверов устройств.

Прежде чем приступать к изучению работы UDP, обратимся к основной терминологии, которую нужно хорошо знать. Ниже вкратце определим основные термины, связанные с UDP:

Пакеты

В передаче данных пакетом называется последовательность двоичных цифр, представляющих данные и управляющие сигналы, которые передаются и коммутируются через хост. Внутри пакета эта информация расположена в соответствии со специальным форматом.

Дейтаграммы

Дейтаграмма - это отдельный, независимый пакет данных, несущий информацию, достаточную для передачи от источника до пункта назначения, поэтому никакого дополнительного обмена между источником, адресатом и транспортной сетью не требуется.

MTU (Maximum Transmission Unit)

MTU характеризует канальный уровень и соответствует максимальному числу байтов, которое можно передать в одном пакете. Другими словами MTU - это самый большой пакет, который может переносить данная сетевая среда. Например, Ethernet имеет фиксированный MTU, равный 1500 байтам. В UDP, если размер дейтаграммы больше MTU, протокол IP выполняет фрагментацию, разбивая дейтаграмму на более мелкие части (фрагменты) так, чтобы каждый фрагмент был меньше MTU.

Порты

Чтобы поставить в соответствие входящим данным конкретный процесс, выполняемый в компьютере, UDP использует порты. UDP направляет пакет в соответствующее место, используя номер порта, указанный в UDP-заголовке дейтаграммы. Порты представлены 16-битными номерами и, следовательно, принимает значения в диапазоне от 0 до 65 535. Порты, которые также называют конечными точками логических соединений, разделены на три категории:

    Хорошо известные порты - от 0 до 1023

    Регистрируемые порты - от 1024 до 49151

    Динамические / частные порты - от 49152 до 65535

Заметим, что порты UDP могут получать более одного сообщения в каждый промежуток времени. В некоторых случаях сервисы TCP и UDP могут использовать одни и те же номера портов, например 7 (Echo) или 23 (Telnet).

UDP использует следующие известные порты:

Перечень портов UDP и TCP поддерживается агентством IANA (Internet Assigned Numbers Authority) .

IP-адреса

Дейтаграмма IP состоит из 32-битных IP-адресов источника и назначения. IP-адрес назначения задает конечную точку для дейтаграммы UDP, а IP-адрес источника используется для получения информации о том, кто отправил сообщение. В пункте назначения пакеты фильтруются, и те из них, адреса источников которых не входят в допустимый набор адресов, отбрасываются без уведомления отправителя.

Однонаправленный IP-адрес уникально определяет хост в сети, тогда как групповой IP-адрес определяет конкретную группу адресов в сети. Широковещательные IP-адреса получаются и обрабатываются всеми хостами локальной сети или конкретной подсети.

TTL

Значение времени жизни, или TTL (time-to-live), позволяет установить верхний предел числа маршрутизаторов, через которые может пройти дейтаграмма. Значение TTL не дает пакетам попасть в бесконечные циклы. Оно инициализируется отправителем и уменьшается на единицу каждым маршрутизатором, обрабатывающим дейтаграмму. Когда значение TTL становится нулевым, дейтаграмма отбрасывается.

Групповая рассылка

Групповая рассылка - это открытый, базирующийся на стандартах, метод одновременного распространения идентичной информации нескольким пользователям. Групповая рассылка является основным средством протокола UDP, она невозможна для протокола TCP. Групповая рассылка позволяет добиться взаимодействия одного со многими, например, делает возможными такие использования, как рассылка новостей и почты нескольким получателям, интернет-радио или демонстрационные программы реального времени. Групповая рассылка не так сильно нагружает сеть, как широковещательная передача, поскольку данные отправляются сразу нескольким пользователям:

Принцип работы UDP

Когда приложение, базирующееся на UDP, отправляет данные другому хосту в сети, UDP дополняет их восьмибитным заголовком, содержащим номера портов адресата и отправителя, общую длину данных и контрольную сумму. Поверх дейтаграммы UDP свой заголовок добавляет IP, формируя дейтаграмму IP:

На предыдущем рисунке указано, что общая длина заголовка UDP составляет восемь байтов. Теоретически максимальный размер дейтаграммы IP равен 65 535 байтам. С учетом 20 байтов заголовка IP и 8 байтов заголовка UDP длина данных пользователя может достигать 65 507 байтов. Однако большинство программ работают с данными меньшего размера. Так, для большинства приложений по умолчанию установлена длина приблизительно 8192 байта, поскольку именно такой объем данных считывается и записывается сетевой файловой системой (NFS). Можно устанавливать размеры входного и выходного буферов.

Контрольная сумма нужна, чтобы проверить были ли данные доставлены в пункт назначения правильно или были искажены. Она охватывает как заголовок UDP, так и данные. Байт-заполнитель используется, если общее число октетов дейтаграммы нечетно. Если полученная контрольная сумма равна нулю, получатель фиксирует ошибку контрольной суммы и отбрасывает дейтаграмму. Хотя контрольная сумма является необязательным средством, ее всегда рекомендуется включать.

На следующем шаге уровень IP добавляет 20 байтов заголовка, включающего TTL, IP-адреса источника и получателя и другую информацию. Это действие называют IP-инкапсуляцией.

Как упоминалось ранее, максимальный размер пакета равен 65 507 байтам. Если пакет превышает установленный по умолчанию размер MTU, то уровень IP разбивает пакет на сегменты. Эти сегменты называются фрагментами, а процесс разбиения данных на сегменты - фрагментацией . Заголовок IP содержит всю информацию о фрагментах.

Когда приложение-отправитель "выбрасывает" дейтаграмму в сеть, она направляется по IP-адресу назначения, указанному в заголовке IP. При проходе через маршрутизатор значение времени жизни (TTL) в заголовке IP уменьшается на единицу.

Когда дейтаграмма прибывает к заданному назначению и порту, уровень IP по своему заголовку проверяет, фрагментирована ли дейтаграмма. Если это так, дейтаграмма собирается в соответствии с информацией, имеющейся в заголовке. Наконец прикладной уровень извлекает отфильтрованные данные, удаляя заголовок.

Недостатки UDP

По сравнению с TCP UDP имеет следующие недостатки:

    Отсутствие сигналов квитирования . Перед отправкой пакета UDP, отправляющая сторона не обменивается с получающей стороной квитирующими сигналами. Следовательно, у отправителя нет способа узнать, достигла ли дейтаграмма конечной системы. В результате UDP не может гарантировать, что данные будут действительно доставлены адресату (например, если не работает конечная система или сеть).

    Напротив, протокол TCP ориентирован на установление соединений и обеспечивает взаимодействие между подключенными к сети хостами, используя пакеты. В TCP применяются сигналы квитирования, позволяющие проверить успешность транспортировки данных.

    Использование сессий . Ориентированность TCP на соединения поддерживается сеансами между хостами. TCP использует идентификатор сеанса, позволяющий отслеживать соединения между двумя хостами. UDP не имеет поддержки сеансов из-за своей природы, не ориентированной на соединения.

    Надежность . UDP не гарантирует, что адресату будет доставлена только одна копия данных. Чтобы отправить конечной системе большой объем данных, UDP разбивает его на небольшие части. UDP не гарантирует, что эти части будут доставлены по назначению в том же порядке, в каком они создавались в источнике. Напротив, TCP вместе с номерами портов использует порядковые номера и регулярно отправляемые подтверждения, гарантирующие упорядоченную доставку данных.

    Безопасность . TCP более защищен, чем UDP. Во многих организациях брандмауэры и маршрутизаторы не пропускают пакеты UDP. Это связано с тем, что хакеры могут воспользоваться портами UDP, не устанавливая явных соединений.

    Управление потоком . В UDP управление потоком отсутствует, в результате плохо спроектированное UDP-приложение может захватить значительную часть пропускной способности сети.

Преимущества UDP

По сравнению с TCP UDP имеет следующие преимущества:

    Нет установки соединения . UDP является протоколом без организации соединений, поэтому он освобождает от накладных расходов, связанных с установкой соединений. Поскольку UDP не пользуется сигналами квитирования, то задержек, вызванных установкой соединений, также удается избежать. Именно поэтому DNS отдает предпочтение UDP перед TCP - DNS работала бы гораздо медленнее, если бы она выполнялась через TCP.

    Скорость . UDP работает быстрее TCP. По этой причине многие приложения предпочитают не TCP, a UDP. Те же средства, которые делают TCP более устойчивым (например сигналы квитирования), замедляют его работу.

    Топологическое разнообразие . UDP поддерживает взаимодействия "один с одним" и "один с многими", в то время как TCP поддерживает лишь взаимодействие "один с одним".

    Накладные расходы . Работа с TCP означает повышенные накладные расходы, издержки, налагаемые UDP, существенно ниже. TCP по сравнению с UDP использует значительно больше ресурсов операционной системы, и, как следствие, в таких средах, где серверы одновременно обслуживают многих клиентов, широко используют UDP.

    Размер заголовка . Для каждого пакета заголовок UDP имеет длину всего лишь восемь байтов, в то время как TCP имеет 20-байтовые заголовки, и поэтому UDP потребляет меньше пропускной способности сети.

Доброго времени суток, дорогие читатели.
По многочисленным просьбам сегодня я публикую для Вас статью, которая познакомит Вас с основами основ терминов компьютерной сети, а именно:

  • Сетевые протоколы - что это за страшные названия и с чем их едят
  • UDP, TCP, ICMP , - что, зачем и в чем разница
  • IP -адрес, - у всех есть, но не все знают нафига эта штука:-)
  • Маска адреса (подсеть)
  • Шлюз (gateway)
  • Несколько слов о таблицах маршрутизации
  • Порты, - что это на самом деле
  • MAC -адрес

Примерно так.

Статья, думаю, будет полезна всем от мала до велика, ибо содержит не столько набор странных непонятных действий или слов, сколько блок доступным языком изложенной информации, которая, как минимум, даст Вам понимание как вообще это всё работает и зачем это нужно. Поехали.

Сетевые протоколы TCP/IP, NWLink IPX/SPX, NetBEUI

Давайте начнем с того, что вообще такое сетевой протокол и с чем его едят.
Сетевой протокол - это набор программно реализованных правил общения между компьютерами. Этакий язык, на котором компьютеры разговаривают друг с другом и передают информацию. Ранее компьютеры были, так сказать, многоязычны и в старых версиях Windows использовался целый набор протоколов, - TCP/IP, NWLink IPX/SPX, NetBEUI . Ныне же пришли к общей договоренности, и стандартом стало использование исключительно протокола TCP/IP , а посему речь далее пойдет именно о нем.

Когда говорят о TCP/IP , то обычно подразумевают под этим именем множество различных.. правил или, скажем, стандартов, которые прописаны с использованием (или под использование) этого протокола. Так, например, есть правила, по которым осуществляется обмен сообщениями между почтовыми серверами и есть правила, по которым конечный пользователь получает в свой ящик письма. Имеются правила для проведения видео-конференций и правила для организации "телефонных" переговоров по Интернету. Фактически, это даже не то чтобы правила.. Скорее этакая грамматика, что ли. Ну знаете, в английском одна структура построения диалогов, в французском другая.. Вот и в TCP/IP нечто подобное, т.е. некая связка различных грамматических правил представляет собой как раз цельный протокол TCP/IP или, точнее говоря, стек протоколов TCP/IP .

Сетевые протоколы UDP, TCP, ICMP

В рамках протокола TCP/IP для передачи данных используются протоколы - TCP и UDP . Многие наверняка слышали, что есть порты как TCP , так и UDP , но не все знают в чем разница и что это вообще. И так..

Передача данных по протоколу TCP (Transmission Control Protocol - Протокол Управления Передачей) предусматривает наличие подтверждений получения информации. "-Ну, мол, - получил? -Получил!" Если же передающая сторона не получит в установленные сроки необходимого подтверждения, то данные будут переданы повторно. Поэтому протокол TCP относят к протоколам, предусматривающим соединение, а UDP (User Datagram Protocol - Протокол Пользовательских Датаграмм) - нет. UDP применяется в тех случаях, когда не требуется подтверждения приема (например, DNS-запросы или IP-телефония (яркий представитель которой, - Skype)). То есть разница заключается в наличии подтверждения приема. Казалось бы "Всего то!", но на практике это играет важную роль.

Есть еще так же протокол ICMP (Internet Control Message Protocol - межсетевой протокол управляющих сообщений), который используется для передачи данных о параметрах сети. Он включает в себя служебные типы пакетов, таки как ping, distination unreachable, TTL и пр.

Что такое IP-адрес

У всех он есть, но не все имеют представление что за адрес такой и почему вообще без него нельзя. Рассказываю.

IP -адрес - 32 -х битное число, используемое для идентификации компьютера в сети. Адрес принято записывать десятичными значениями каждого октета этого числа с разделением полученных значений точками. Например, 192.168.101.36

IP- адреса уникальны, - это значит, что каждый компьютер имеет свое собственное сочетание цифр, и в сети не может быть двух компьютеров с одинаковыми адресами. IP -адреса распределяются централизованно, интернет-провайдеры делают заявки в национальные центры в соответствии со своими потребностями. Полученные провайдерами диапазоны адресов распределяются дальше между клиентами. Клиенты, в свою очередь, сами могут выступать в роли провайдера и распределять полученные IP -адреса между субклиентами и т.д. При таком способе распределения IP -адресов компьютерная система точно знает "расположение" компьютера, имеющего уникальный IP -адрес; - ей достаточно переслать данные в сеть "владельца", а провайдер в свою очередь проанализирует пункт назначения и, зная, кому отдана эта часть адресов, отправит информацию следующему владельцу поддиапазона IP -адресов, пока данные не поступят на компьютер назначения.

Для построения же локальных сетей выделены спец.диапазоны адресов. Это адреса 10.x.x.x , 192.168.x.x , 10.x.x.x , c 172.16.x.x по 172.31.x.x , 169.254.x.x , где под x - имеется ввиду любое число это от 0 до 254 . Пакеты, передаваемые с указанных адресов, не маршрутизируется, иными словами, попросту не пересылаются через Интернет, а поэтому в различных локальных сетях компьютеры могут иметь совпадающие адреса из указанных диапазонов. Т.е., в компании ООО "Рога и копыта " и ООО "Вася и компания " могут находится два компьютера с адресами 192.168.0.244 , но не могут, скажем, с адресами 85.144.213.122 , полученными от провайдера интернета, т.к. в интернете не может быть два одинаковых IP -адреса. Для пересылки информации с таких компьютеров в Интернет и обратно используются спец.программы и устройства, которые заменяют локальные адреса реальными при работе с интернетом. Иными словами, данные в Сеть пересылаются с реального IP -адреса, а не с локального. Этот процесс происходит не заметно для пользователя и называется трансляцией адресов. Хочется так же упомянуть, что в рамках одной сети, скажем, компании, ООО "Рога и копыта ", не может быть два компьютера с одним локальным IP-адресом, т.е., в указанном выше примере имелось ввиду, что один компьютер с адресом 192.168.0.244 в одной компании, второй с таким же адресом - в другой. В одной же компании два компьютера с адресом 192.168.0.244 попросту не уживутся.

Хотите знать и уметь, больше и сами?

Мы предлагаем Вам обучение по направлениям: компьютеры, программы, администрирование, сервера, сети, сайтостроение, SEO и другое. Узнайте подробности сейчас!

Вы наверняка слышали такие термины как внешний IP и внутренний IP , постоянный (статический IP) и переменный (динамический) IP . В двух словах о них:

  • внешний IP - это как раз тот самый IP , который выдает Вам провайдер, т.е. Ваш уникальный адрес в интернете, например, - 85.144.24.122
  • внутренний IP , - это локальный IP , т.е. Ваш IP в локальной сети, например, - 192.168.1.3
  • статический IP - это IP , который не меняется с каждым подключением, т.е. закреплен за Вами твердо и навсегда
  • динамический IP , - это плавающий IP -адрес, который меняется с каждым подключением

Тип Вашего IP (статический или динамический) зависит от настроек провайдера.

Что такое маска адреса (подсеть)

Понятие подсети введено, чтобы можно было выделить часть IP -адресов одной организации, часть другой и тд. Подсеть представляет собой диапазон IP-адресов, которые считаются принадлежащими одной локальной сети. При работе в локальной сети информация пересылается непосредственно получателю. Если данные предназначены компьютеры с IP-адресом, не принадлежащим локальной сети, то к ним применяются специальные правила для вычисления маршрута для пересылки из одной сети в другую.

Маска - это параметр, который сообщает программному обеспечению о том, сколько компьютеров объединено в данную группу (подсеть). Маска адреса имеет такую же структуру как и сам IP-адрес: это набор из четырех групп чисел, каждое из которых может быть в диапазоне от 0 до 255 . При этом, чем меньше значение маски, тем больше компьютеров объединено в данную подсеть. Для сетей небольших компаний маска обычно имеет вид 255.255.255.x (например, 255.255.255.224). Маска сети присваивается компьютеру одновременно с IP-адресом. Так, например, сеть 192.168.0.0 с маской 255.255.255.0 может содержать в себе компьютеры с адресами от 192.168.0.1 до 192.168.254 192.168.0.0 с маской 255.255.255.128 допускает адреса от 192.168.0.1 до 192.168.0.127 . Думаю, смысл понятен. Как правило сети с небольшим возможным числом компьютеров используются провайдерами с целью экономии IP-адресов. Например, клиенту, может быть назначен адрес с маской 255.255.255.252 . Такая подсеть содержит в себе только два компьютера.

После того как компьютер получил IP-адрес и ему стало известно значение маски подсети, программа может начать работу в данной локальной подсети. Однако же, чтобы обмениваться информацией с другими компьютерами в глобальной сети, необходимо знать правила, куда пересылать информацию для внешней сети. Для этого служит такая характеристика как адрес шлюза (Gateway).

Что такое Шлюз (Gateway)

Шлюз - это устройство (компьютер или маршрутизатор), которое обеспечивает пересылку информации между различными IP-подсетями. Если программа определяет (по IP и маске), что адрес назначения не входит в состав локальной подсети, то она отправляет эти данные на устройство, выполняющее функции шлюза. В настройках протокола указывают IP-адрес такого устройства.

Для работы только в локальной сети шлюз может не указываться.

Для индивидуальных пользователей, подключающихся к Интернету, или для небольших предприятий, имеющих единственный канал подключения, в системе должен быть только один адрес шлюза, - это адрес того устройства, которое имеет подключение к Интернету. При наличии нескольких маршрутов будет существовать несколько шлюзов. В этом случае для определения пути передачи данных используется таблица маршрутизации.

Что такое таблицы маршрутизации

И вот мы плавно добрались и до них. И так.. Что же за таблицы такие.

Организация или пользователь может иметь несколько точек подключения к Интернету (например, резервные каналы на случай, если у первого провайдера что-то выйдет из строя, а интернет таки очень нужен) или содержать в своей структуре несколько IP -сетей. В этом случае, чтобы система знала каким путем (через какой шлюз) посылать ту или иную информацию, используются таблицы маршрутизации. В таблицах маршрутизации для каждого шлюза указываются те подсети Интернета, для которых через них должна передаваться информация. При этом для нескольких шлюзов можно задать одинаковые диапазоны, но с разной стоимостью передачи данных: например, информация, будет пересылаться по каналу, имеющему самую низкую стоимость, а в случае выхода его из строя по тем или иным причинам, автоматически будет использоваться следующее доступное наиболее дешевое соединение.

Что такое сетевые порты

При передаче данных кроме IP -адресов отправителя и получателя пакет информации содержит в себе номера портов. Пример: 192.168.1.1:80 , - в данном случае 80 - это номер порта. Порт - это некое число, которое используется при приеме и передаче данных для идентификации процесса (программы), который должен обработать данные. Так, если пакет послан на 80 -й порт, то это свидетельствует, что информация предназначена серверу HTTP .

Номера портов с 1 -го до 1023 -й закреплены за конкретными программами (так называемые well-known-порты). Порты с номерами 1024 -65 535 могут быть использованы в программах собственной разработки. При этом возможные конфликты должны решаться самими программами путем выбора свободного порта. Иными словами, порты будут распределяться динамически: возможно, что при следующем старте программа выберет иное значение порта, если, конечно, Вы вручную через настройки не задавали ей порт.

Что есть MAC-адрес

Дело в том, что пересылаемые пакеты в сети адресуются компьютерам не по их именам и не на IP -адрес. Пакет предназначается устройству с конкретным адресом, который и называется MAC -адресом.

MAC-адрес - это уникальный адрес сетевого устройства, который заложен в него изготовителем оборудования, т.е. это этакий проштампованный номер Вашей сетевой карты. Первая половина MAC -адрес представляет собой идентификатор изготовителя, вторая - уникальный номер данного устройства.

Как правило MAC -адрес бывает требуется для идентификации, скажем, у провайдера (если провайдер использует привязку по мак-адресу вместо логина-пароля) или при настройке маршрутизатора.

Где посмотреть все сетевые настройки

Чуть не забыл сказать пару слов о том где можно поглядеть и поменять всё это.



Загрузка...