sonyps4.ru

Амплитудная модуляция для чайников. Сравнение амплитудной, частотной и фазовой модуляций

Общие сведения о модуляции

Модуляция это процесс преобразования одного или нескольких информационных параметров несущего сигнала в соответствии с мгновенными значениями информационного сигнала.

В результате модуляции сигналы переносятся в область более высоких частот.

Использование модуляции позволяет:

  • согласовать параметры сигнала с параметрами линии;
  • повысить помехоустойчивость сигналов;
  • увеличить дальность передачи сигналов;
  • организовать многоканальные системы передачи (МСП с ЧРК).

Модуляция осуществляется в устройствах модуляторах . Условное графическое обозначение модулятора имеет вид:

Рисунок 1 - Условное графическое обозначение модулятора

При модуляции на вход модулятора подаются сигналы:

u(t) — модулирующий , данный сигнал является информационным и низкочастотным (его частоту обозначают W или F);

S(t) — модулируемый (несущий) , данный сигнал является неинформационным и высокочастотным (его частота обозначается w 0 или f 0);

Sм(t) — модулированный сигнал , данный сигнал является информационным и высокочастотным.

В качестве несущего сигнала может использоваться:

  • гармоническое колебание, при этом модуляция называется аналоговой или непрерывной ;
  • периодическая последовательность импульсов, при этом модуляция называется импульсной ;
  • постоянный ток, при этом модуляция называется шумоподобной .

Так как в процессе модуляции изменяются информационные параметры несущего колебания, то название вида модуляции зависит от изменяемого параметра этого колебания.

1. Виды аналоговой модуляции:

  • амплитудная модуляция (АМ), происходит изменение амплитуды несущего колебания;
  • частотная модуляция (ЧМ), происходит изменение частоты несущего колебания;
  • фазовая модуляция (ФМ), происходит изменение фазы несущего колебания.

2. Виды импульсной модуляции:

  • амплитудно-импульсная модуляция (АИМ) , происходит изменение амплитуды импульсов несущего сигнала;
  • частотно-импульсная модуляция (ЧИМ) , происходит изменение частоты следования импульсов несущего сигнала;
  • Фазо-импульсная модуляция (ФИМ) , происходит изменение фазы импульсов несущего сигнала;
  • Широтно-импульсная модуляция (ШИМ) , происходит изменение длительности импульсов несущего сигнала.

Амплитудная модуляция

Амплитудная модуляция — процесс изменения амплитуды несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

амплитудно-модулированного (АМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

u (t )= Um u sin ? t (1)

на несущее колебание

S (t )= Um sin (? 0 t + ? ) (2)

происходит изменение амплитуды несущего сигнала по закону:

Uам(t)=Um+ а ам Um u sin ? t (3)

где а ам — коэффициент пропорциональности амплитудной модуляции.

Подставив (3) в математическую модель (2) получим:

Sам(t)=(Um+ а ам Um u sin ? t) sin(? 0 t+ ? ). (4)

Вынесем Um за скобки:

Sам(t)=Um(1+ а ам Um u /Um sin ? t) sin (? 0 t+ ? ) (5)

Отношение а ам Um u /Um = m ам называется коэффициентом амплитудной модуляции . Данный коэффициент не должен превышать единицу, т. к. в этом случае появляются искажения огибающей модулированного сигнала называемые перемодуляцией . С учетом m ам математическая модель АМ сигнала при гармоническом модулирующем сигнале будет иметь вид:

Sам(t)=Um(1+m ам sin ? t) sin(? 0 t+ ? ). (6)

Если модулирующий сигнал u(t) является негармоническим, то математическая модель АМ сигнала в этом случае будет иметь вид:

Sам(t)=(Um+ а ам u(t)) sin (? 0 t+ ? ) . (7)

Рассмотрим спектр АМ сигнала для гармонического модулирующего сигнала. Для этого раскроем скобки математической модели модулированного сигнала, т. е. представим его в виде суммы гармонических составляющих.

Sам(t)=Um(1+m ам sin ? t) sin (? 0 t+ ? ) = Um sin (? 0 t+ ? ) +

+m ам Um/2 sin((? 0 ? ) t+ j ) m ам Um/2 sin((? 0 + ? )t+ j ). (8)

Как видно из выражения в спектре АМ сигнала присутствует три составляющих: составляющая несущего сигнала и две составляющих на комбинационных частотах. Причем составляющая на частоте ? 0 —? называется нижней боковой составляющей , а на частоте ? 0 + ? верхней боковой составляющей. Спектральные и временные диаграммы модулирующего, несущего и амплитудно-модулированного сигналов имеют вид (рисунок 2).

Рисунок 2 - Временные и спектральные диаграммы модулирующего (а), несущего (б) и ампдтудно-модулированного (в) сигналов

D? ам =(? 0 + ? ) (? 0 ? )=2 ? (9)

Если же модулирующий сигнал является случайным, то в этом случае в спектре составляющие модулирующего сигнала обозначают символически треугольниками (рисунок 3).

Составляющие в диапазоне частот (? 0 — ? max) ? (? 0 — ? min) образуют нижнюю боковую полосу (НБП), а составляющие в диапазоне частот (? 0 + ? min) ? (? 0 + ? max) образуют верхнюю боковую полосу (ВБП)

Рисунок 3 - Временные и спектральные диаграммы сигналов при случайном модулирующем сигнале

Ширина спектра для данного сигнала будет определятся

D ? ам =(? 0 + ? max ) (? 0 ? min )=2 ? max (10)

На рисунке 4 приведены временные и спектральные диаграммы АМ сигналов при различных индексах m ам. Как видно при m ам =0 модуляция отсутствует, сигнал представляет собой немодулированную несущую, соответственно и спектр этого сигнала имеет только составляющую несущего сигнала (рисунок 4,

Рисунок 4 - Временные и спектральные диаграммы АМ сигналов при различных mам: а) при mам=0, б) при mам=0,5, в) при mам=1, г) при mам>1

а), при индексе модуляции m ам =1 происходит глубокая модуляция, в спектре АМ сигнала амплитуды боковых составляющих равны половине амплитуды составляющей несущего сигнала (рисунок 4в), данный вариант является оптимальным, т. к. энергия в большей степени приходится на информационные составляющие. На практике добиться коэффициента равного едините тяжело, поэтому добиваются соотношения 01 происходит перемодуляция, что, как отмечалось выше, приводит к искажению огибающей АМ сигнала, в спектре такого сигнала амплитуды боковых составляющих превышают половину амплитуды составляющей несущего сигнала (рисунок 4г).

Основными достоинствами амплитудной модуляции являются:

  • узкая ширина спектра АМ сигнала;
  • простота получения модулированных сигналов.

Недостатками этой модуляции являются:

  • низкая помехоустойчивость (т. к. при воздействии помехи на сигнал искажается его форма — огибающая, которая и содержит передаваемое сообщение);
  • неэффективное использование мощности передатчика (т. к. наибольшая часть энергии модулированного сигнала содержится в составляющей несущего сигнала до 64%, а на информационные боковые полосы приходится по 18%).

Амплитудная модуляция нашла широкое применение:

  • в системах телевизионного вещания (для передачи телевизионных сигналов);
  • в системах звукового радиовещания и радиосвязи на длинных и средних волнах;
  • в системе трехпрограммного проводного вещания.

Балансная и однополосная модуляция

Как отмечалось выше, одним из недостатков амплитудной модуляции является наличие составляющей несущего сигнала в спектре модулированного сигнала. Для устранения этого недостатка применяют балансную модуляцию. При балансной модуляции происходит формирование модулированного сигнала без составляющей несущего сигнала. В основном это осуществляется путем использования специальных модуляторов: балансного или кольцевого. Временная диаграмма и спектр балансно-модулированного (БМ) сигнала представлен на рисунке 5.

Рисунок 5 - Временные и спектральные диаграммы модулирующего (а), несущего (б) и балансно-модулированного (в) сигналов

Также особенностью модулированного сигнала является наличие в спектре двух боковых полос несущих одинаковую информацию. Подавление одной из полос позволяет уменьшить спектр модулированного сигнала и, соответственно, увеличить число каналов в линии связи. Модуляция при которой формируется модулированный сигнал с одной боковой полосой (верхней или нижней) называется однополосной. Формирование однополосно-модулированного (ОМ) сигнала осуществляется из БМ сигнала специальными методами, которые рассматриваются ниже. Спектры ОМ сигнала представлены на рисунке 6.

Рисунок 6 - Спектральные диаграммы однополосно-модулированных сигналов: а) с верхней боковой полосой (ВБП), б) с нижней боковой полосой (НБП)

Частотная модуляция

Частотная модуляция — процесс изменения частоты несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

Рассмотрим математическую модель частотно-модулированного (ЧМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

u (t ) = Um u sin ? t

на несущее колебание

S (t ) = Um sin (? 0 t + ? )

происходит изменение частоты несущего сигнала по закону:

w чм (t) = ? 0 + а чм Um u sin ? t (9)

где а чм — коэффициент пропорциональности частотной модуляции.

Поскольку значение sin ? t может изменятся в диапазоне от -1 до 1, то наибольшее отклонение частоты ЧМ сигнала от частоты несущего сигнала составляет

? ? m = а чм Um u (10)

Величина Dw m называется девиацией частоты. Следовательно, девиация частоты показывает наибольшее отклонение частоты модулированного сигнала от частоты несущего сигнала.

Значение ? чм (t) непосредственно подставить в S(t) нельзя, т. к. аргумент синуса ? t+j является мгновенной фазой сигнала?(t) которая связана с частотой выражением

? = d ? (t )/ dt (11)

Отсюда следует что, чтобы определить? чм (t) необходимо проинтегрировать ? чм (t)

Причем в выражении (12) ? является начальной фазой несущего сигнала.

Отношение

Мчм = ?? m / ? (13)

называется индексом частотной модуляции .

Учитывая (12) и (13) математическая модель ЧМ сигнала при гармоническом модулирующем сигнале будет иметь вид:

S чм (t)=Um sin(? 0 t Мчм cos ? t+ ? ) (14)

Временные диаграммы, поясняющие процесс формирования частотно-модулированного сигнала приведены на рисунке 7. На первых диаграммах а) и б) представлены соответственно несущий и модулирующий сигналы, на рисунке в) представлена диаграмма показывающая закон изменения частоты ЧМ сигнала. На диаграмме г) представлен частогтно-модулированный сигнал соответствующий заданному модулирующему сигналу, как видно из диаграммы любое изменение амплитуды модулирующего сигнала вызывает пропорциональное изменение частоты несущего сигнала.

Рисунок 7 - Формирование ЧМ сигнала

Для построения спектра ЧМ сигнала необходимо разложить его математическую модель на гармонические составляющие. В результате разложения получим

S чм (t)= Um J 0 (M чм ) sin(? 0 t+ ? )

Um J 1 (M чм ) {cos[(? 0 ? )t+ j ]+ cos[(? 0 + ? )t+ ? ]}

Um J 2 (M чм ) {sin[(? 0 2 ? )t+ j ]+ sin[(? 0 +2 ? )t+ ? ]}+

+ Um J 3 (M чм ) {cos[(? 0 — 3 ? )t+ j ]+ cos[(? 0 +3 ? )t+ ? ]}

Um J 4 (M чм ) {sin[(? 0 4 ? )t+ j ]+ sin[(? 0 +4 ? )t+ ? ]} (15)

где J k (Mчм) — коэффициенты пропорциональности.

J k (Mчм) определяются по функциям Бесселя и зависят от индекса частотной модуляции. На рисунке 8 представлен график содержащий восемь функций Бесселя. Для определения амплитуд составляющих спектра ЧМ сигнала необходимо определить значение функций Бесселя для заданного индекса. Причем как

Рисунок 8 - Функции Бесселя

видно из рисунка различные функции имеют начало в различных значениях Мчм, а следовательно, количество составляющих в спектре будет определятся Мчм (с увеличивается индекса увеличивается и количество составляющих спектра). Например необходимо определить коэффициенты J k (Мчм) при Мчм=2. По графику видно, что при заданном индексе можно определить коэффициенты для пяти функций (J 0 , J 1 , J 2 , J 3 , J 4) Их значение при заданном индексе будет равно: J 0 =0,21; J 1 =0,58; J 2 =0,36; J 3 =0,12; J 4 =0,02. Все остальные функции начинаются после значения Мчм=2 и равны, соответственно, нулю. Для приведенного примера количество составляющих в спектре ЧМ сигнала будет равно 9: одна составляющая несущего сигнала (Um J 0) и по четыре составляющих в каждой боковой полосе (Um J 1 ; Um J 2 ; Um J 3 ; Um J 4).

Еще одной важной особенностью спектра ЧМ сигнала является то, что можно добиться отсутствия составляющей несущего сигнала или сделать ее амплитуду значительно меньше амплитуд информационных составляющих без дополнительных технических усложнений модулятора. Для этого необходимо подобрать такой индекс модуляции Мчм, при котором J 0 (Мчм) будет равно нулю (в месте пересечения функции J 0 с осью Мчм), например Мчм=2,4.

Поскольку увеличение составляющих приводит к увеличению ширины спектра ЧМ сигнала, то значит, ширина спектра зависит от Мчм (рисунок 9). Как видно из рисунка, при Мчм?0,5 ширина спектра ЧМ сигнала соответствует ширине спектра АМ сигнала и в этом случае частотная модуляция является узкополосной , при увеличении Мчм ширина спектра увеличивается, и модуляция в этом случае является широкополосной . Для ЧМ сигнала ширина спектра определяется

D ? чм =2(1+Мчм) ? (16)

Достоинством частотной модуляции являются:

  • высокая помехоустойчивость;
  • более эффективное использование мощности передатчика;
  • сравнительная простота получения модулированных сигналов.

Основным недостатком данной модуляции является большая ширина спектра модулированного сигнала.

Частотная модуляция используется:

  • в системах телевизионного вещания (для передачи сигналов звукового сопровождения);
  • системах спутникового теле- и радиовещания;
  • системах высококачественного стереофонического вещания (FM диапазон);
  • радиорелейных линиях (РРЛ);
  • сотовой телефонной связи.

Рисунок 9 - Спектры ЧМ сигнала при гармоническом модулирующем сигнале и при различных индексах Мчм: а) при Мчм=0,5, б) при Мчм=1, в) при Мчм=5

Фазовая модуляция

Фазовая модуляция — процесс изменения фазы несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

Рассмотрим математическую модель фазо-модулированного (ФМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

u (t ) = Um u sin ? t

на несущее колебание

S (t ) = Um sin (? 0 t + ? )

происходит изменение мгновенной фазы несущего сигнала по закону:

? фм(t) = ? 0 t+ ? + а фм Um u sin ? t (17)

где а фм — коэффициент пропорциональности частотной модуляции.

Подставляя ? фм(t) в S(t) получаем математическую модель ФМ сигнала при гармоническом модулирующем сигнале:

Sфм(t) = Um sin(? 0 t+ а фм Um u sin ? t+ ? ) (18)

Произведение а фм Um u =Dj m называется индексом фазовой модуляции или девиацией фазы .

Поскольку изменение фазы вызывает изменение частоты, то используя (11) определяем закон изменения частоты ФМ сигнала:

? фм (t )= d ? фм(t )/ dt = w 0 +а фм Um u ? cos ? t (19)

Произведение а фм Um u ? =?? m является девиацией частоты фазовой модуляции. Сравнивая девиацию частоты при частотной и фазовой модуляциях можно сделать вывод, что и при ЧМ и при ФМ девиация частоты зависит от коэффициента пропорциональности и амплитуды модулирующего сигнала, но при ФМ девиация частоты также зависит и от частоты модулирующего сигнала.

Временные диаграммы поясняющие процесс формирования ФМ сигнала приведены на рисунке 10.

При разложении математической модели ФМ сигнала на гармонические составляющие получится такой же ряд, как и при частотной модуляции (15), с той лишь разницей, что коэффициенты J k будут зависеть от индекса фазовой модуляции? ? m (J k (? ? m)). Определятся эти коэффициенты будут аналогично, как и при ЧМ, т. е. по функциям Бесселя, с той лишь разницей, что по оси абсцисс необходимо заменить Мчм на? ? m . Поскольку спектр ФМ сигнала строится аналогично спектру ЧМ сигнала, то для него характерны те же выводы что и для ЧМ сигнала (пункт 1.4).

Рисунок 10 - Формирование ФМ сигнала

Ширина спектра ФМ сигнала определяется выражением:

? ? фм =2(1+ ? j m ) ? (20).

Достоинствами фазовой модуляции являются:

  • высокая помехоустойчивость;
  • более эффективное использование мощности передатчика.
  • недостатками фазовой модуляции являются:
  • большая ширина спектра;
  • сравнительная трудность получения модулированных сигналов и их детектирование

Дискретная двоичная модуляция (манипуляция гармонической несущей)

Дискретная двоичная модуляция (манипуляция) — частный случай аналоговой модуляции, при которой в качестве несущего сигнала используется гармоническая несущая, а в качестве модулирующего сигнала используется дискретный, двоичный сигнал.

Различают четыре вида манипуляции:

  • амплитудную манипуляцию (АМн или АМТ);
  • частотную манипуляцию (ЧМн или ЧМТ);
  • фазовую манипуляцию (ФМн или ФМТ);
  • относительно-фазовую манипуляцию (ОФМн или ОФМ).

Временные и спектральные диаграммы модулированных сигналов при различных видах манипуляции представлены на рисунке 11.

При амплитудной манипуляции , также как и при любом другом модулирующем сигнале огибающая S АМн (t) повторяет форму модулирующего сигнала (рисунок 11, в).

При частотной манипуляции используются две частоты? 1 и? 2 . При наличии импульса в модулирующем сигнале (посылке) используется более высокая частота? 2 , при отсутствии импульса (активной паузе) используется более низкая частота w 1 соответствующая немодулированной несущей (рисунок 11, г)). Спектр частотно-манипулированного сигнала S ЧМн (t) имеет две полосы возле частот? 1 и? 2 .

При фазовой манипуляции фаза несущего сигнала изменяется на 180° в момент изменения амплитуды модулирующего сигнала. Если следует серия из нескольких импульсов, то фаза несущего сигнала на этом интервале не изменяется (рисунок 11, д).

Рисунок 11 - Временные и спектральные диаграммы модулированных сигналов различных видов дискретной двоичной модуляции

При относительно-фазовой манипуляции фаза несущего сигнала изменяется на 180° лишь в момент подачи импульса, т. е. при переходе от активной паузы к посылке (0?1) или от посылке к посылке (1?1). При уменьшении амплитуды модулирующего сигнала фаза несущего сигнала не изменяется (рисунок 11, е). Спектры сигналов при ФМн и ОФМн имеют одинаковый вид (рисунок 9, е).

Сравнивая спектры всех модулированных сигналов можно отметить, что наибольшую ширину имеет спектр ЧМн сигнала, наименьшую — АМн, ФМн, ОФМн, но в спектрах ФМн и ОФМн сигналов отсутствует составляющая несущего сигнала.

В виду большей помехоустойчивости наибольшее распространение получили частотная, фазовая и относительно-фазовая манипуляции. Различные их виды используются в телеграфии, при передаче данных, в системах подвижной радиосвязи (телефонной, транкинговой, пейджинговой).

Импульсная модуляция

Импульсная модуляция — это модуляция, при которой в качестве несущего сигнала используется периодическая последовательность импульсов, а в качестве модулирующего может использоваться аналоговый или дискретный сигнал.

Поскольку периодическая последовательность характеризуется четырьмя информационными параметрами (амплитудой, частотой, фазой и длительностью импульса), то различают четыре основных вида импульсной модуляции:

  • амплитудно-импульсная модуляция (АИМ); происходит изменение амплитуды импульсов несущего сигнала;
  • частотно-импульсная модуляция (ЧИМ), происходит изменение частоты следования импульсов несущего сигнала;
  • фазо-импульсная модуляция (ФИМ), происходит изменение фазы импульсов несущего сигнала;
  • широтно-импульсная модуляция (ШИМ), происходит изменение длительности импульсов несущего сигнала.

Временные диаграммы импульсно-модулированных сигналов представлены на рисунке 12.

При АИМ происходит изменение амплитуды несущего сигнала S(t) в соответствии с мгновенными значениями модулирующего сигнала u(t), т. е. огибающая импульсов повторяет форму модулирующего сигнала (рисунок 12, в).

При ШИМ происходит изменение длительности импульсов S(t) в соответствии с мгновенными значениями u(t) (рисунок 12, г).

Рисунок 12 - Временные диаграммы сигналов при импульсной модуляции

При ЧИМ происходит изменение периода, а соответственно и частоты, несущего сигнала S(t) в соответствии с мгновенными значениями u(t) (рисунок 12, д).

При ФИМ происходит смещение импульсов несущего сигнала относительно их тактового (временного) положения в немодулированной несущей (тактовые моменты обозначены на диаграммах точками Т, 2Т, 3Т и т. д.). ФИМ сигнал представлен на рисунке 12, е.

Поскольку при импульсной модуляции переносчиком сообщения является периодическая последовательность импульсов, то спектр импульсно-модулированных сигналов является дискретным и содержит множество спектральных составляющих. Этот спектр представляет собой спектр периодической последовательности импульсов в котором возле каждой гармонической составляющей несущего сигнала находятся составляющие модулирующего сигнала (рисунок 13). Структура боковых полос возле каждой составляющей несущего сигнала зависит от вида модуляции.

Рисунок 13 - Спектр импульсно-модулированного сигнала

Также важной особенностью спектра импульсно-модулированных сигналов является то, что ширина спектра модулированного сигнала, кроме ШИМ, не зависит от модулирующего сигнала. Она полностью определяется длительностью импульса несущего сигнала. Поскольку при ШИМ длительность импульса изменяется и зависит от модулирующего сигнала, то при этом виде модуляции и ширина спектра также зависти от модулирующего сигнала.

Частоту следования импульсов несущего сигнала может быть определена по теореме В. А. Котельникова как f 0 =2Fmax. При этом Fmax это верхняя частота спектра модулирующего сигнала.

Передача импульсно модулированных сигналов по высокочастотным линиям связи невозможна, т. к. спектр этих сигналов содержит низкочастотные составляющий. Поэтому для передачи осуществляют повторную модуляцию . Это модуляция, при которой в качестве модулирующего сигнала используют импульсно-модулированный сигнал, а в качестве несущего гармоническое колебание. При повторной модуляции спектр импульсно-модулированного сигнала переносится в область несущей частоты. Для повторной модуляции может использоваться любой из видов аналоговой модуляции: АМ, ЧС, ФМ. Полученная модуляция обозначается двумя аббревиатурами: первая указывает на вид импульсной модуляции а вторая — на вид аналоговой модуляции, например АИМ-АМ (рисунок 14, а) или ШИМ-ФМ (рисунок 14, б) и т. д.

Рисунок 14 - Временные диаграммы сигналов при импульсной повторной модуляции

При ам­плитудной модуляции в соответствии с законом передаваемого со­общения меняется амплитуда модулируемого сигнала. Амплитудная модуляция - наиболее распространенный тип аналоговой модуляции в системах радиосвязи, радиовещания и телевидения.

Простейшая разновидность амплитудной модуляции -однотональная (от слова тон - звук одной частоты), при которой модулирующий сигнал представляет собой гармоническое колебание:

где
- амплитуда модулирующего сигнала (максимальная высота синусоиды) ;

- круговая (угловая) частота,
;

- период модулирующего колебания;

- начальная фаза.

В качестве несущего колебания в системах связи и вещания практически всегда применяется высокочастотный гармонический сигнал.

Примем в качестве тестового аналогового сообщения синусои­дальный сигнал:

(40)

Несущие, т.е. модулируемые колебания

(41)

где частота несущих колебаний
- частоты модулирующего колебания.

В результате воздействия колебания (40) на амплитуду несущих колебаний (41) получим сигнал с амплитудной модуляцией:

где
- коэффициент амплитудной модуляции.

Графики трех названных колебаний приведены на рис. 13 и рис. 14.

С целью наглядности на рис. 15, а , б изображены графики модулирующего колебания при
, несущего – при
.

      1. Спектр амплитудно-модулированного сигнала

Из (42) получим выражение:

которое в соответствии с формулой для произведения тригономет­рических функций приведем к виду

из которого следует, что спектр колебания при амплитудной моду­ляции тональным сигналом состоит из трех составляющих с часто­тами: (совпадает с частотой несущей), (
) (нижняя боковая), (
) (верхняя боковая). Амплитуда боковой состав­ляющей
.

Рис. 15. Амплитудная модуляция

a - модулирующий (управляющий) сигнал; б - несущее колебание (радиочастотный сигнал); в - амплитудно-модулированный сигнал.

Ширина спектра AM колебания
. Следовательно, имея базуB=1, сигнал при ампли­тудной модуляции относится к классу узкополосных.

При модуляции более сложным сообщением, занимающим спектр от
до
(рис. 16,а), соответственно изменится и спектр AM колебания, представленный на рис. 16,б.

Спектр амплитудно-модулированного сигнала - совокупность простых (гармонических) колебаний (составляющих) разных частот и амплитуд, на которые может быть разложен по частотной оси сложный колебательный процесс, т.е. АМ-сигнал. Аналитическое выражение для такого сигнала с учетом тригонометрической формулы произведения косинусов можно представить в виде суммы колебаний:

(45)

Из формулы (44) видно, что при однотональной модуляции спектр АМ-сигнала состоит из трех высокочастотных составляющих: исходного несущего колебания амплитудой
и частотой, а также двух новых гармонических колебаний с разными частотами
и
, но одинаковыми амплитудами
/2 , появляющихся в процессе амплитудной модуляции и отражающих передаваемое сообщение.

Колебания с частотами
и
называют соответственно верхней и нижней боковыми составляющими (частотами). Они расположены симметрично относительно несущей частоты.

Спектр однотонального АМ-сигнала показан на рис. 17. Из рисунка наглядно видно, что ширина спектра АМ-сигнала (
) при однотональной модуляции равна удвоенному значению частоты модуляции:

(46)

где F – циклическая частота модуляции (модулирующего сигнала).

При отсутствии модуляции (M = 0) амплитуды боковых составляющих равны нулю и спектр АМ-сигнала преобразуется в спектр несущего колебания (составляющая
на частоте). В случае модулирования несущей сигналом сложной формы, состоящим из нескольких гармоник разных частот, каждая гармоника модулирующего (управляющего) сигнала создает две боковые частоты в спектре радиосигнала, расположенные симметрично относительно несущей частоты. Следовательно, спектр такого АМ-сигнала состоит из несущей и двух боковых полос - верхней и нижней. Ширина каждой боковой полосы равна
, a ширина спектра сложного АМ-сигнала оказывается равной удвоенному значению наивысшей частоты в спектре модулирующего сигнала (рис. 18).


Введение

В данной статье речь пойдет о разновидностях аналоговой амплитудной модуляции. Предполагается, что читатель понимает смысл комплексной огибающей полосового радиосигнала , а также понятия аналитического сигнала и преобразования Гильберта .

Как было отмечено ранее, процесс модуляции заключается в формировании низкочастотной комплексной огибающей

(1)
после чего производится перенос этой комплексной огибающей на несущую частоту умножением на
(2)
Также было отмечено, что все виды модуляции различаются только способом формирования комплексной огибающей на основе модулирующего сигнала

Формирование сигналов с амплитудной модуляцией

Рассмотрим как производится формирование комплексной огибающей в случае с амплитудной модуляцией (АМ).

При АМ производится изменение только амплитуды несущего колебания при постоянной начальной фазе:

(3)
где - закон изменения амплитуды, а - постоянная начальная фаза несущего колебания. Потребуем, чтобы модулирующий сигнал имел нулевую постоянную составляющую и Тогда где носит название глубины АМ и радиосигнал с АМ имеет вид:
(4)
Поясним смысл глубины АМ, для этого возьмем частный случай модулирующего сигнала где В этом случае получим так называемую однотональную АМ. При амплитуда несущего колебания не меняется. На рисунках 1 - 4 приведены графики АМ сигнала при различной глубине модуляции: от 0 до 1,5. Синим показана амплитуда При глубине модуляции от 0 до 1 амплитуда несущего колебания совпадает с , однако при наблюдается перемодуляция, так как пересекает ось абсцисс.

Если глубина АМ выбрана так, что перемодуляции не наблюдается, то измерить глубину АМ можно по осциллограмме радиосигнала. Для этого необходимо померить максимальную и минимальную амплитуду несущего колебания как это показано на рисунке 5, и по ним рассчитать глубину АМ по формуле: Таким образом, комплексная огибающая равна , тогда квадратурные составляющие комплексной огибающей равны: Таким образом, квадратурная составляющая не учитывается, и радиосигнал формируется простым умножением несущего колебания на как это показано на рисунке 7.

Рисунок 7: Упрощенная схема АМ

Спектр сигналов с амплитудной модуляцией

Рассмотрим теперь спектр однотональной АМ. Для этого представим АМ сигнал в виде:
(9)
Таким образом, можно сделать вывод о том, что спектр однотональной АМ имеет три гармоники. Амплитудный и фазовый спектры сигнала с АМ представлены на рисунке 8.


Рисунок 8: Амплитудный и фазовый спектр сигнала с АМ

Центральная гармоника не несет никакой информации, однако ее амплитуда максимальна и не зависит от глубины АМ. Информация заключена в боковых гармониках, при этом их уровень зависит от глубины АМ, чем она выше, тем уровень боковых гармоник больше. Максимальное значение глубины АМ при котором не наблюдается перемодуляции , это означает, что максимальный уровень боковых гармоник в 2 раза ниже уровня несущей частоты. При этом как нетрудно заметить при суммарная мощность информационных гармоник будет в 2 раза ниже мощности несущей частоты, другими словами передатчик бОльшую часть энергии тратит на излучение неинформационной несущей, то есть просто обогревает космос. Также необходимо сделать замечание: спектр АМ сигнала всегда симметричен относительно центральной частоты, если модулирующий сигнал чисто вещественный.

Сигналы с балансной АМ (DSB) и их спектр

Давайте теперь допустим, что у нас есть перемодуляция, т.е. . Тогда при уровень информационных гармоник сравняется с уровнем несущей и при дальнейшем росте глубины модуляции уровень информационных гармоник уже начнет превосходить уровень несущей. Если позволить глубине модуляции расти неограниченно, то можно сделать предельный переход:
(10)
В выражении (10) множитель введен для того, чтобы зафиксировать уровень боковых информационных гармоник (это легко понять рассмотрев выражение ). В результате при увеличении будет наблюдаться падение уровня несущей при фиксированном уровне информационных гармоник, так как все гармоники делятся на Такой предельный переход приводит к балансной АМ с подавлением несущей (DSB). Действительно, уровень несущей будет: Таким образом, спектр однотональной балансной АМ с подавлением несущей содержит всего две гармоники как это представлено на рисунке 9.


Рисунок 9: Спектр однотональной балансной АМ с подавлением несущей

Комплексная огибающая балансной АМ имеет вид где

Cигнал с балансной АМ (10) имеет вид, представленный на рисунке 10. При этом можно заметить, что на осциллограмме видна несущая частота, которая отсутствует в спектре. Однако при пересечении модулирующим сигналом оси абсцисс, несущее колебание меняет знак (фаза сдвигается на ), это видно из рисунка 11 и в результате при излучении несущее колебание скомпенсируется, хотя на осциллограмме его можно увидеть.

При этом при АМ вектор всегда направлен в одну сторону и амплитуда меняется в зависимости от глубины АМ от до согласно (5), а при балансной АМ вектор меняется по амплитуде в пределах , причем в зависимости от модулирующего сигнала, вектор комплексной огибающей меняет знак на противоположный, что означает что фаза меняется на радиан (смотри рисунок 12 б).

Главное преимущество балансной АМ — полное подавление несущей частоты. Вся мощность передатчика идет на излучение информационных составляющих. Как и в случае с АМ, спектр радиосигнала с балансной АМ симметричен относительно несущей частоты. Ширина спектра радиосигнала с балансной АМ равна удвоенной верхней частоте модулирующего сигнала, или в случае однотональной модуляции ширина спектра равна

Выводы

Таким образом, мы рассмотрели формирование АМ радиосигнала. Можно сделать выводы:

АМ сигнал формируется путем управления амплитудой несущего колебания по закону модулирующего сигнала.

Введено понятие глубины АМ, показано, что при слишком больших значениях глубины АМ может возникнуть перемодуляция, искажающая модулирующий сигнал.

При отсутствии перемодуляции на излучение информации приходится не более 33% мощности сигнала, остальное — излучение несущей, а при балансной АМ несущая подавлена и вся мощность расходуется на излучение информации.

Показано, что спектр АМ всегда симметричен относительно несущей при вещественном модулирующем сигнале и имеет ширину равную удвоенной верхней частоте модулирующего сигнала.

Амплитудная модуляция — вид модуляции, при которой изменяемым параметром несущего сигнала является его амплитуда
Первый опыт передачи речи и музыки по радио методом амплитудной модуляции произвёл в 1906 году американский инженер Р. Фессенден. Несущая частота 50 кГц радиопередатчика вырабатывалась машинным генератором (альтернатором), для её модуляции между генератором и антенной включался угольный микрофон, изменяющий затухание сигнала в цепи. С 1920 года вместо альтернаторов стали использоваться генераторы на электронных лампах. Во второй половине 1930-х годов, по мере освоения ультракоротких волн, амплитудная модуляция постепенно начала вытесняться из радиовещания и радиосвязи на УКВ частотной модуляцией. С середины XX века в служебной и любительской радиосвязи на всех частотах внедряется модуляция с одной боковой полосой (ОБП), которая имеет ряд важных преимуществ перед АМ. Поднимался вопрос о переводе на ОБП и радиовещания, однако это потребовало бы замены всех радиовещательных приёмников на более сложные и дорогие, поэтому не было осуществлено. В конце XX века начался переход к цифровому радиовещанию с использованием сигналов с амплитудной манипуляцией.
Аудиосигнал может модулировать амплитуду (AM) или частоту (ЧМ) несущей. Пусть S(t) — информационный сигнал, |S(t)|<1, U_c(t) — несущее колебание. Тогда амплитудно-модулированный сигнал U_\text{am}(t) может быть записан следующим образом: U_\text{am}(t)=U_c(t).\qquad\qquad(1) Здесь m — некоторая константа, называемая коэффициентом модуляции. Формула (1) описывает несущий сигнал U_c(t), модулированный по амплитуде сигналом S(t) с коэффициентом модуляции m. Предполагается также, что выполнены условия: |S(t)|<1,\quad 0Пример Допустим, что мы хотим промодулировать несущее колебание моногармоническим сигналом. Выражение для несущего колебания с частотой \omega_c имеет вид (начальную фазу положим равной нулю U_c(t)=C\sin(\omega_c t). Выражение для модулирующего синусоидального сигнала с частотой \omega_s имеет вид U_s(t)=U_0\sin(\omega_s t+\varphi), где \varphi — начальная фаза. Тогда U_\mathrm{am}(t)=C\sin(\omega_c t). Приведённая выше формула для y(t) может быть записана в следующем виде: U_\mathrm{am}(t)=C\sin(\omega_c t)+\frac{mCU_0}{2}(\cos((\omega_c-\omega_s)t-\varphi)-\cos((\omega_c+\omega_s)t+\varphi)). Радиосигнал состоит из несущего колебания и двух синусоидальных колебаний, называемых боковыми полосами, каждое из которых имеет частоту, отличную от \omega_c. Для синусоидального сигнала, использованного здесь, частоты равны \omega_c+\omega_s и \omega_c-\omega_s. Пока несущие частоты соседних радиостанций достаточно разнесены, и боковые полосы не перекрываются между собой, станции не будут влиять друг на друга.

Для передачи на расстояние без проводов речи, музыки, изображения используется переменное напряжение высокой частоты (свыше 100 кГц), излучаемое в пространстве антенной радиопередатчика. Чтобы осуществить радиотелефонную передачу сигнала, амплитуда высокой частоты передатчика или его частота должна меняться по закону низкой (звуковой) частоты Амплитудная модуляция характеризуется коэффициентом глубины модуляции (m), который выражает отношение приращения амплитуды высокой частоты (dUm) к ее среднему значению (Um):m= dUm/Um * 100%В процессе радиопередачи он может меняться от 0 до 80 процентов - более увеличивать нецелесообразно, так как могут появляться нелинейные искажения сигнала низкой частоты. Если модуляцию высокой частоты произвести сигналом одной какой-либо низкой частоты (Fн), то промодулированный сигнал будет представлять совокупность трех частот: несущей, верхней боковой и нижней боковой. Если же модуляцию произвести целым спектром частот, то получится спектр высоких частот с верхней и нижней боковыми полосами. Поэтому один вещательный радиопередатчик занимает в высокочастотном диапазоне полосу шириной не менее 10 кГц.



Загрузка...