sonyps4.ru

Задачи линейного программирования (ЗЛП). Различные формы записи задачи линейного программирования

Каноническая форма ЗЛП - задача линейного программирования вида ax = b где a - матрица коэффициентов, b - вектор ограничений.

Назначение сервиса . Онлайн-калькулятор предназначен для перехода ЗЛП к КЗЛП. Приведение задачи к канонической форме означает, что все ограничения будут иметь вид равенств, путем ввода дополнительных переменных.
Если на какую-либо переменную x j не наложено ограничение, то она заменяется на разность дополнительных переменных, x j = x j1 - x j2 , x j1 ≥ 0, x j2 ≥ 0.

Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word .

Количество переменных 2 3 4 5 6 7 8 9 10
Количество строк (количество ограничений) 2 3 4 5 6 7 8 9 10
Как привести задачу линейного программирования к канонической форме

Математическая модель ЗЛП называется основной , если ограничения в ней представлены в виде уравнений при условии неотрицательности переменных.

Математическая модель называется канонической , если ее система ограничений представлена в виде системы m линейно независимых уравнений (ранг системы r=m), в системе выделен единичный базис , определены свободные переменные и целевая функция выражена через свободные переменные. При этом правые части уравнений неотрицательны (b i ≥ 0).

Переменные, входящие в одно из уравнений системы с коэффициентом один и отсутствующие в других уравнениях называются базисными неизвестными , а все другие - свободными .

Решение системы называется базисным , если в нем свободные переменные равны 0, и оно имеет вид:
X баз = (0, 0; b 1 , …, b m), f(X баз) = c 0

Базисное решение является угловой точкой множества решений системы, т.е. определяет вершину многоугольника решений модели. Среди таких решений находится и то, при котором целевая функция принимает оптимальное значение .

Базисное решение называется опорным, если оно допустимо, т.е. все правые части уравнений системы (или неравенств) положительны b i ≥ 0.

Компактная форма канонической модели имеет вид:
AX = b
X ≥ 0
Z = CX(max)

Понятие допустимого решения, области допустимых решений, оптимального решения задачи линейного программирования .
Определение 1 . Вектор X, удовлетворяющий системе ограничений ЗЛП, в том числе и условиям неотрицательности, если они имеются, называется допустимым решением ЗЛП.
Определение 2 . Совокупность всех допустимых решений образует область допустимых решений (ОДР) ЗЛП.
Определение 3 . Допустимое решение, для которого целевая функция достигает максимума (или минимума), называется оптимальным решением.

Пример №1 . Следующую задачу ЛП привести к каноническому виду: F(X) = 5x 1 + 3x 2 → max при ограничениях:
2x 1 + 3x 2 ≤20
3x 1 + x 2 ≤15
4x 1 ≤16
3x 2 ≤12
Модель записана в стандартной форме. Введем балансовые неотрицательные переменные x 3 , x 4 , x 5 , x 6 , которые прибавим к левым частям ограничений-неравенств. В целевую функцию все дополнительные переменные введем с коэффициентами, равными нулю:
В первом неравенстве смысла (≤) вводим базисную переменную x 3 . Во 2-ом неравенстве смысла (≤) вводим базисную переменную x 4 . В третьем неравенстве вводим базисную переменную x 5 . В 4-м неравенстве - базисную переменную x 6 . Получим каноническую форму модели:
2x 1 + 3x 2 + 1x 3 + 0x 4 + 0x 5 + 0x 6 = 20
3x 1 + 1x 2 + 0x 3 + 1x 4 + 0x 5 + 0x 6 = 15
4x 1 + 0x 2 + 0x 3 + 0x 4 + 1x 5 + 0x 6 = 16
0x 1 + 3x 2 + 0x 3 + 0x 4 + 0x 5 + 1x 6 = 12
F(X) = 5x 1 + 3x 2 + 0x 3 + 0x 4 + 0x 5 + 0x 6 → max

Пример №2 . Найти два опорных решения системы
x 1 + 2x 4 - 2x 5 = 4
x 3 + 3x 4 + x 5 = 5
x 2 + 3x 5 = 2

Запись целевой функции и системы ограничений в различных задачах линейного программирования неодинаков: в одних задачах требуется найти минимум целевой функции, а в других – максимум; в одних случаях искомые переменные зависят от одного индекса, а в других – от двух; в одних задачах ограничения заданы в виде системы линейных неравенств, а в других – в виде системы линейных уравнений. На практике возможны также задачи, в которых часть ограничений имеет вид линейных неравенств, а часть – линейных уравнений. Также не во всех задачах может требоваться неотрицательность переменных .

Учет такого разнообразия задач линейного программирования требует разработки специальных методов для решения отдельных их классов. Мы же сосредоточим свое внимание на изучении общих свойств и методов линейного программирования, записанных в так называемой канонической форме.

Если в задаче линейного программирования система исходных ограничений приобретает вид уравнений типа

и нужно найти максимум линейной целевой функции

то считается, что задача линейного программирования записана в канонической форме.

Любую задачу линейного программирования можно легко свести к канонической форме. В общем случае для этого достаточно уметь, во-первых, свести задачу минимизации целевой функции к задаче ее максимизации, во-вторых, переходить от ограничений-неравенств к ограничениям-равенствам, и в-третьих, менять те переменные, которые не подчинены условию неотрицательности.

В том случае, когда нужно найти минимум функции , можно перейти к нахождению максимума функции , поскольку справедливо утверждение:
.

Ограничение-неравенство исходной задачи, которое имеет вид «» , можно превратить в ограничение-уравнение путем добавления к его левой части дополнительной неотрицательной переменной, а ограничение-неравенство вида «»– путем вычитания из его левой части дополнительной неотрицательной переменной.

Заметим, что количество введенных дополнительных неотрицательных переменных всегда равно количеству неравенств в исходной системе ограничений.

Введены дополнительные переменные имеют вполне конкретный экономический смысл. Так, если в ограничениях исходной задачи линейного программирования отражаются расходы и наличие производственных ресурсов, то числовое значение дополнительной переменной показывает объем соответствующего неиспользованного ресурса.

Отметим также, что если некоторая переменная не подчиняется условию неотрицательности, то ее нужно заменить двумя неотрицавтельными переменными и , приняв
.

Пример . Записать в канонической форме следующую задачу линейной оптимизации: найти минимум функции
при ограничениях

Решение

В данной задаче нужно найти минимум целевой функции, а система ограничений включает четыре неравенства. Для того, чтобы записать ее в канонической форме, нужно перейти от ограничений-неравенств к ограничениям-уравнениям, а также превратить целевую функцию.

Так как количество неравенств, входящих в систему ограничений задачи, равно четырем, то этот переход должен быть осуществлен с введением четырех дополнительных неотрицательных переменных. При этом во втором и четвертом неравенствах стоит знак «» , поэтому к их левой части дополнительные переменные добавляем. В первом и третьем неравенствах – знак «», значит от их левой части дополнительные переменные вычитаем.

Также превращаем целевую функцию, поменяв все знаки на противоположные, и находим ее максимум.

Таким образом, данная задача линейного программирования будет записана в следующем каноническом виде:

найти максимум функции

при ограничениях

В исходной постановке ЗЛП могут допускать различные формы записи. Так, в одних задачах требуется максимизировать целевую функцию, в других - минимизировать; некоторые линейные ограничения могут иметь вид равенств, другие - неравенств и т.д.

Для единообразия записи ЗЛП вводится так называемая каноническая форма записи.

Говорят, что ЗЛП записана в канонической форме, если она имеет следующий вид:

Отметим следующие особенности канонического вида:

1) требуется минимизировать целевую функцию;

2) все линейные ограничения, кроме требований неотрицательности переменных, имеют вид равенств;

    на все переменные наложены требования неотрицательности.

Покажем, что любую ЗЛП можно привести к каноническому виду.

1) Если в ЗЛП требуется максимизировать целевую функцию f, то положим g = - f и потребуем минимизировать функцию g. Получится новая ЗЛП, которая эквивалентна исходной в том смысле, что каждое оптимальное решение исходной задачи будет оптимальным решением новой задачи и наоборот.

2) Предположим, что в ЗЛП есть линейное ограничение вида

Заменим такое ограничение следующими двумя ограничениями:

где z - новая переменная, которая в целевую функцию вводится с коэффициентом 0 (иначе говоря, переменная z не вводится в целевую функцию). Значение переменной z можно не учитывать после решения новой задачи.

Аналогично, ограничение вида заменяется двумя ограничениями:

3) Предположим, что в ЗЛП не ко всем переменным предъявлено требование неотрицательности. Тогда каждую, переменную , на которую не наложено требование неотрицательности, представим в виде разности двух неотрицательных переменных:

Каждое вхождение переменной в целевую функцию или ограничения заменим разностью
. Решив новую задачу с помощью (2.6), вернемся к прежним переменным.

Указанными приемами любая ЗЛП приводится к каноническому виду.

Пример. Привести к каноническому виду

Проделаем описанные действия.

Теперь получим ЗЛП в каноническом виде:

2.7. Понятие опорного плана злп.

Пусть ВЛП задана в каноническом виде (2.3 - 2.5). Предположим, что система уравнений (2.4) приведена к жордановой форме с неотрицательными правыми частями:

(2.6)

где
.

Приравняв к нулю свободные переменные, получим базисное решение системы (2.4)

В силу условия
набор значений переменных (2.7) удовлетворяет и ограничениям (2.5). Поэтому (2.6) являетсядопустимым решением ЗЛП .

Допустимое решение (2.7) называется базисным допустимым решением или опорным планом ЗЛП. При этом говорят, что переменные
образуют допустимый базис.

Оказывается, что если ОДР изобразить геометрически, то каждый опорный план ЗЛП соответствует вершине многогранника. Поэтому справедлива следующая теорема.

Если ЗЛП разрешима, то существует оптимальный опорный план.

3. Симплексный метод решения злп

3.1. Общая характеристика и основные этапы симплекс – метода

Основоположниками симплекс-метода являются советский математик Л.В. Канторович и американский математик Дж. Данциг.

Симплекс-методом можно решить любую ЗЛП или обнаружить ее неразрешимость. Многие специальные классы ЗЛП можно решить другими, более эффективными для этих классов методами. Однако преимущество симплекс-метода - его универсальность. Почти для всех ЭВМ разработаны стандартные программы для решения ЗЛП симплекс - методом.

Опишем общую идею симплекс-метода.

Считаем, что ЗЛП записана в каноническом виде и целевую функцию нужно минимизировать. Как мы уже знаем, оптимальный план следует искать среди опорных планов ЗЛП. Симплекс-метод не перебирает все опорные планы (что было бы часто невозможно из-за их огромного количества), а, начиная с некоторого исходного опорного плана, он последовательно переходит к другим опорным планам с уменьшением целевой функции. Симплекс-метод прекращает свою работу тогда, когда либо будет найден оптимальный опорный план, либо установлена неразрешимость задачи.

При решении ЗЛП симплекс-методом можно выделить следующие этапы:

1) приведение ЗЛП к каноническому виду;

2) приведение системы линейных уравнений к жордановой форме с неотрицательными правыми частями с одновременной проверкой на неразрешимость ЗЛП из-за противоречивости системы линейных ограничений;

3) исследование опорного плана на оптимальность;

4) исследование ЗЛП на неразрешимость из-за неограниченности снизу на ОДР целевой функции;

5) переход к новому, "лучшему" опорному плану.

Любую задачу линейного программирования можно свести к задаче линейного программирования в канонической форме. Для этого в общем случае нужно уметь сводить задачу максимизации к задаче минимизации; переходить от ограничений неравенств к ограничениям равенств и заменять переменные, которые не подчиняются условию неотрицательности. Максимизация некоторой функции эквивалента минимизации той же функции, взятой с противоположным знаком, и наоборот.

Правило приведения задачи линейного программирования к каноническому виду состоит в следующем:

  • если в исходной задаче требуется определить максимум линейной функции, то следует изменить знак и искать минимум этой функции;
  • если в ограничениях правая часть отрицательна, то следует умножить это ограничение на -1;
  • если среди ограничений имеются неравенства, то путем введения дополнительных неотрицательных переменных они преобразуются в равенства;
  • если некоторая переменная x j не имеет ограничений по знаку, то она заменяется (в целевой функции и во всех ограничениях) разностью между двумя новыми неотрицательными переменными:
    x 3 = x 3 + - x 3 - , где x 3 + , x 3 - ≥ 0 .

Пример 1 . Приведение к канонической форме задачи линейного программирования:

min L = 2x 1 + x 2 - x 3 ;
2x 2 - x 3 ≤ 5;
x 1 + x 2 - x 3 ≥ -1;
2x 1 - x 2 ≤ -3;
x 1 ≤ 0; x 2 ≥ 0; x 3 ≥ 0.

Введем в каждое уравнение системы ограничений выравнивающие переменные x 4 , x 5 , x 6 . Система запишется в виде равенств, причем в первое и третье уравнения системы ограничений переменные x 4 , x 6 вводятся в левую часть со знаком "+", а во второе уравнение переменная x 5 вводится со знаком "-".

2x 2 - x 3 + x 4 = 5;
x 1 + x 2 - x 3 - x 5 = -1;
2x 1 - x 2 + x 6 = -3;
x 4 ≥ 0; x 5 ≥ 0; x 6 ≥ 0.

Свободные члены в канонической форме должны быть положительными, для этого два последних уравнения умножим на -1:

2x 2 - x 3 + x 4 = 5;
-x 1 - x 2 + x 3 + x 5 = 1;
-2x 1 + x 2 - x 6 = 3.

В канонической форме записи задач линейного программирования все переменные, входящие в систему ограничений, должны быть отрицательными. Допустим, что x 1 = x 1 " - x 7 , где x 1 " ≥ 0, x 7 ≥ 0 .

Подставляя данное выражение в систему ограничений и целевую функцию и, записывая переменные в порядке возрастания индекса, получим задачу линейного программирования, представленную в канонической форме:

L min = 2x 1 " + x 2 - x 3 - 2x 7 ;
2x 2 - x 3 + x 4 = 5;
-x 1 " - x 2 + x 3 + x 5 + x 7 = 1;
-2x 1 " + x 2 - x 6 + 2x 7 = 3;
x 1 " ≥ 0; x i ≥ 0, i=2, 3, 4, 5, 6, 7.

Условие оптимальности базисного плана канонической задачи ЛП. Симплекс-метод и его сходимость.

Симплексный метод является универсальным, так как позволяет решать практически любую задачу линейного программирования, записанную в каноническом виде.

Идея симплексногометода последовательного улучшения плана, заключается в том, что, начиная с некоторого исходного опорного решения, осуществляется последовательно направленное перемещение по опорным решениям задачи к оптимальному.

Значение целевой функции при этом перемещении для задач на максимум не убывает.

Так как число опорных решений конечно, то через конечное число шагов получим оптимальное опорное решение.

Опорным решением называется базисное неотрицательное решение.

Алгоритм симплексного метода

1. Математическая модель задачи должна быть канонической. Если она неканоническая, то ее надо привести к каноническому виду.

2. Находим исходное опорное решение и проверяем его на оптимальность.
Для этого заполняем симплексную таблицу 1.
Все строки таблицы 1-го шагазаполняем по данным системы ограничений и целевой функции.

Возможны следующие случаи при решении задач на максимум:

1. Если все коэффициенты последней строки симплекс-таблицы Dj ³ 0, то найденное

решение оптимальное.

2 Если хотя бы один коэффициент Dj £ 0, но при соответствующей переменной нет ни одного положительного оценочного отношения, то решение задачи прекращаем , так как F(X) ® ¥ , т.е.целевая функция не ограничена в области допустимых решений.

Если хотя бы один коэффициент последней строки отрицателен, а при соответствующей переменной есть хотя бы одно положительное оценочное отношение, то нужно перейти к другому опорному решению.

4. Если отрицательных коэффициентов в последней строке несколько, то в столбец базисной переменной (БП) вводят ту переменную , которой соответствует наибольший по абсолютной величине отрицательный коэффициент.

5. Если хотя бы один коэффициент Dk < 0 ,то k - тый столбец принимаем за ведущий.

6. За ведущую строку принимаем ту, которой соответствует минимальное отношение свободных членов bi к положительным коэффициентам ведущего, k – того столбца.

7. Элемент, находящийся на пересечении ведущих строк и столбца, называется ведущим элементом.

Заполняем симплексную таблицу 2:

· заполняем базисный столбец нулями и единицей

· переписываем ведущую строку, разделив ее на ведущий элемент

· если ведущая строка имеет нули, то в следующую симплекс-таблицу можно перенести соответствующие столбцы

· остальные коэффициенты находим по правилу “прямоугольника”

Получаем новое опорное решение, которое проверяем на оптимальность:

Если все коэффициенты последней строки Dj ³ 0, то найденное решение максимальное.

Если нет, то заполняем симплексную таблицу 8-го шага и так далее.

Если целевая функция F(X) требует нахождения минимального значения , то критерием оптимальности задачи является неположительность коэффициентов Dj при всех j = 1,2,...n.

Сходимость симплекс-метода. Вырожденность в задачах ЛП. Важнейшим свойством любого вычислительного, алгоритма является сходимость, т. е. возможность получения в ходе его применения искомых результатов (с заданной точно­стью) за конечное число шагов (итераций).

Легко заметить, что проблемы со сходимостью симплекс-ме­тода потенциально могут возникнуть на этапе выбора значения r (п. 2") в случае, когда одинаковые минимальные значения от­ношения

будут достигнуты для нескольких строк таблицы Т (q) одновре­менно. Тогда на следующей итерации столбец b(β(q+1)) будет со­держать нулевые элементы.



Загрузка...