sonyps4.ru

С тактовой частотой 1 7. Процессоры в бюджетных ноутбуках: что выбрать? Alpha тоже получит заслуженный гигагерц

Индустрия смартфонов с каждым днем прогрессирует, и, как результат, пользователи получают всё более новые, современные и мощные гаджеты. Все производители смартфонов стремятся сделать свое творение особенным и незаменимым. Поэтому на сегодняшний день большое внимание уделяется разработке и производству процессоров для смартфонов.

Сложная часть вводит в цикл 1-тиковый импульс. Если импульс слишком длинный, повторители будут постоянно работать, и единственный способ исправить это - сломать, а затем исправить цепь. Простое решение этого - использовать рычаг; перевернув его, а затем выключить 1 тик. Самый распространенный метод, похоже, состоит в том, чтобы поставить фонарь красного цвета рядом с часами, а затем быстро сломать его. Это может предпринять несколько попыток сделать правильно, требуя, чтобы часы были разбиты и зафиксированы между попытками.

Более надежный способ заключается в том, чтобы поставить факел на блок питания - факел будет включен, когда он будет установлен, но отключит 1 галочку позже, потому что он подключен к блоку питания. Затем факел и блок питания могут быть удалены, но Вариации: пыль перед репитерами может быть заменена блоками для сохранения на красном фоне. Дополнительные повторители могут быть добавлены в петлю, увеличивая период синхронизации. Пока все повторители с задержкой в ​​1 тик импульс будет оставаться только на 1 такт независимо от количества повторителей.

Наверняка, у многих любителей «умных телефонов» не раз возникал вопрос, что такое процессор, и какие его основные функции? А также, несомненно, покупателей интересует, что обозначают все эти циферки и буквы в названии чипа.
Предлагаем немного ознакомиться с понятием «процессор для смартфона» .

Процессор в смартфоне - это самая сложная деталь и отвечает она за все вычисления, производимые устройством. По сути, говорить, что в смартфоне используется процессор, неправильно, так как процессоры как таковые в мобильных устройствах не используются. Процессор вместе с другими компонентами образуют SoC (System on a chip – система на кристалле), а это значит, что на одной микросхеме находится полноценный компьютер с процессором, графическим ускорителем и другими компонентами.

Если задержка увеличивается на любом из повторителей, длительность импульса увеличивается в соответствии с самой длинной задержкой повторителя. Переключаемая петля повторителя 1-часовая. Переключаемая петля повторителя 1-часовая - поршень липкий. Эта петля ретранслятора может быть включена и выключена, перемещая блок для завершения или прерывания контура цепи. Как это работает: Когда рычаг включается, липкий поршень начинает расширяться.

С этого момента он просто продолжается как 1 такт, пока рычаг не выключится, мгновенно нарушая петлю. Эти часы генерируют тактовый сигнал 10 Гц, состоящий из импульсов 1-тикового импульса, разделенных импульсами 0-тика. Запустите часы с импульсом 1-тик. Остановите часы, сломав кусок красно-коричневой пыли. В качестве альтернативы можно использовать описанный выше способ переключения. Частота 10 Гц работает слишком быстро, чтобы реагировать на некоторые компоненты из красного камня. Командные блоки и блоки заметок могут обрабатывать быструю активацию.

Если речь заходит о процессоре, то сперва надо разобраться с таким понятием, как «архитектура процессора» . Современные смартфоны используют процессоры на архитектуре ARM, разработкой которой занимается одноименная компания ARM Limited. Можно сказать, что архитектура - это некий набор свойств и качеств, присущий целому семейству процессоров. Компании Qualcomm, Nvidia, Samsung, MediaTek, Apple и другие, занимающиеся производством процессоров, лицензируют технологию у ARM и затем продают готовые чипы производителям смартфонов или же используют их в собственных устройствах. Производители чипов лицензируют у ARM отдельные ядра, наборы инструкций и сопутствующие технологии. Компания ARM Limited не производит процессоры, а только продает лицензии на свои технологии другим производителям.

Двери, люки и заборные ворота будут воспроизводить звуки, как если бы они были быстро активированы и деактивированы, но появятся и действуют так, как будто они постоянно активируются. Поршни будут действовать так, как если бы они постоянно активировались, но импульсы 0-тика будут выдавать мерцающий вид дезактивированного поршня, перекрывающего активированный поршень.

Двухъядерный или четырехъядерный процессор – в чем разница?

Другие компоненты из красного камня будут просто действовать так, как если бы они постоянно работали. Начиная с введения ретранслятора, часы с синхронизацией факела обычно заменяются петлями-репитерами. В этих часах большая часть задержки поступает от повторителей, при этом один факел обеспечивает колебания. Такие часы могут быть короче 3-х тактных, но их можно продлить почти на неопределенный срок.

Сейчас давайте рассмотрим такие понятия, как ядро и тактовая частота, которые всегда встречаются в обзорах и статьях о смартфонах и телефонах, когда речь идет о процессоре.

Ядро

Начнем с вопроса, а что такое ядро? Ядро – это элемент чипа, который определяет производительность, энергопотребление и тактовую частоту процессора. Очень часто мы сталкиваемся с понятием двухъядерный или четырехъядерный процессор. Давайте разберемся, что же это значит.

Повторители должны иметь полную задержку не менее 2 тиков, или горелка будет гореть. Включение блока отключит часы. Так как много повторителей по мере необходимости можно добавить, и петля может быть расширена по мере необходимости с помощью пыли для поворота.

Схема, показанная на рисунке, является плоской, но большие петли можно запускать на несколько уровней, чтобы сократить разрастание. Его минимальный размер составляет 1 × 5 × 4, но его можно продлить неограниченно, добавив 2 повторителя для каждого блока расширения. Для вывода могут использоваться розовые и пурпурные шерстяные блоки или тропы из красного камня; пурпурная сторона будет инвертирована.

Двухъядерный или четырехъядерный процессор – в чем разница?

Очень часто покупатели думают, что двухъядерный процессор в два раза мощнее, чем одноядерный, а четырехъядерный, соответственно, в четыре раза. А теперь мы расскажем вам правду. Казалось бы, вполне логично, что переход с одного ядра к двум, а с двух к четырем увеличивает производительность, но на самом деле редко когда эта мощность возрастает в два или четыре раза. Увеличение количества ядер позволяет ускорить работу девайса за счет перераспределения выполняемых процессов. Но большинство современных приложений являются однопотоковыми и поэтому одновременно могут использовать только одно или два ядра. Естественно возникает вопрос, для чего тогда четырехъядерный процессор? Многоядерность, в основном, используется продвинутыми играми и приложениями по редактированию мультимедийных файлов. А это значит, что если вам нужен смартфон для игр (трехмерные игры) или съемки Full HD видео, то необходимо приобретать аппарат с четырехъядерным процессором. Если же программа сама по себе не поддерживает многоядерность и не требует затраты больших ресурсов, то неиспользуемые ядра автоматически отключаются для экономии заряда батареи. Часто для самых неприхотливых задач используется пятое ядро-компаньон, например, для работы устройства в спящем режиме или при проверке почты.

Период будет задержка повторителя плюс 1, но ретранслятор должен быть установлен как минимум на 2 тика или горелкой будет гореть. Рычаг или сигнал красного цвета к любому из четырех сплошных блоков могут остановить часы. Выход можно взять практически в любом месте, за несколькими исключениями: блоки «крест-накрест» из пыли из красного камня.

  • Факел будет принудительно отключен, а пыль будет гореть.
  • Блок под ретранслятором.
  • Выход со стороны пыли будет иметь обратную фазу.
Длительность минут, часов и даже дней может быть создана с использованием минимального количества деталей.

Если вам нужен обыкновенный смартфон для общения, интернет-серфинга, проверки почты или для того, чтобы быть в курсе всех последних новостей, то вам вполне подойдет и двухъядерный процессор. Да и зачем платить больше? Ведь количество ядер прямо влияет на цену устройства.

Тактовая частота

Следующее понятие, с которым нам предстоит познакомиться - это тактовая частота. Тактовая частота – это характеристика процессора, которая показывает, сколько тактов способен отработать процессор за единицу времени (одну секунду). Например, если в характеристиках устройства указана частота 1,7 ГГц - это значит, что за 1 секунду его процессор осуществит 1 700 000 000 (1 миллиард 700 миллионов) тактов .

Ниже приведен пример бесплатного запуска 10-элементных часов, который занимает 2 секунды для цикла. Вот версия, в которой декодер сбрасывает часы на отметке 3 минуты. В электронике это устройство широко известно как «Линейный регистр сдвига обратной связи», вы можете заставить их подсчитывать, отсчитывать, создавать псевдо-случайные двоичные последовательности для тестирования логических схем.

Alpha тоже получит заслуженный гигагерц

Требования к процессору в мобильном компьютере крайне низки. Только тогда можно продлить срок службы батареи. Первым поколением был Баниас. Второе поколение было Дотаном. Это был один из первых процессоров, который был таким же мощным, как обычный настольный процессор, но со значительно меньшим энергопотреблением.

В зависимости от операции, а также типа чипа, количество тактов, затрачиваемое на выполнение чипом одной задачи, может отличаться. Чем выше тактовая частота, тем выше скорость работы. Особенно эта разница чувствуется, если сравнивать одинаковые ядра, работающие на разной частоте.

Иногда производитель ограничивает тактовую частоту с целью уменьшения энергопотребления, потому как чем выше скорость процессора, тем больше энергии он потребляет.

Баниас и Дотан в сравнении

Это показывает, что может сделать этот процессор. Но есть также специальные образцы с более низкой тактовой частотой и более низким рабочим напряжением. Мы видим это на нескольких телефонах среднего класса практически у любого производителя. Те же технологии продолжают растягивать процессоры, которым уже три года. Растяните продукт, который очень хорошо работал на рынке, но он начинает несколько устаревать по сравнению с альтернативами, применяемыми другими производителями. Превосходит ли он своих конкурентов по скорости и мощности?

И опять возвращаемся к многоядерности. Увеличение тактовой частоты (МГц, ГГц) может увеличить выработку тепла, а это крайне нежелательно и даже вредно для пользователей смартфонов. Поэтому многоядерная технология также используется как один из способов увеличения производительности работы смартфона, при этом не нагревая его в вашем кармане.

Результат: этот маленький чип летает, превосходит всех его соперников с большой разницей. Это самый мощный процессор, встроенный прямо сейчас в высококлассный смартфон. Не секрет, что чистые спецификации - всего лишь один показатель. Важно то, как настроено оборудование и как оно интегрируется с программным обеспечением.

Результат можно увидеть на изображении выше, где показана частота средних кадров для графического процессора каждого мобильного устройства. Чем выше частота кадров, тем более плавная графика.

Производительность увеличивается, позволяя приложениям работать одновременно на нескольких ядрах, но есть одно условие: приложения должны последнего поколения. Такая возможность также позволяет экономить расход заряда батареи.

Еще одна важная характеристика процессора, о которой продавцы смартфонов часто умалчивают - это кэш процессора .

Миф спецификаций и четырехъядерных процессоров

В такой компактной температурной среде использование четырехъядерного процессора имеет смысл, если вы можете добавить мощность, когда некоторые ядра простаивают. Пока это не произойдет, эти два ядра являются надлежащей мишенью. Перевод: технология, позволяющая смартфону эффективно использовать четырехъядерную архитектуру, пока не существует. Думать, что, поскольку смартфон имеет четырехъядерный процессор, он будет быстрее и мощнее, чем другой из двух, на данный момент, большая ошибка.

Кэш – это память, предназначенная для временного хранения данных и работающая на частоте процессора. Кэш используется для того, чтобы уменьшить время доступа процессора к медленной оперативной памяти. Он хранит копии части данных оперативной па-мяти. Время доступа уменьшается за счет того, что большинство данных, требуемых процессо-ром, оказываются в кэше, и количество обращений к оперативной памяти снижается. Чем больше объем кэша, тем большую часть необходимых программе данных он мо-жет в себе содержать , тем реже будут происходить обращения к оперативной памяти, и тем выше будет общее быстродействие системы.

Это подводит нас к теме батареи. Но, опять же, с тактовой частотой процессора также ниже и двухъядерной архитектурой, это означает, что операция отлично оптимизирована и приводит к тому, что батареи равны или более длительны, чем батареи конкурентов. Просто материнская плата адаптирована. Разгон, да, но как далеко?

Помимо производительности, функциональности и цены, энергоэффективности и энергопотребления стали важными элементами в выборе своего процессора, а также в том, что он делает. Несколько лет назад, когда разгон был еще не столь популярен и распространен, как сейчас, его практикам хотелось прежде всего максимизировать производительность своих машин. Частотные гонки, вероятно, имели больше смысла тогда, когда даже компьютер начального уровня достаточно быстр, чтобы правильно запускать все распространенные приложения, за исключением некоторых игр.


Особенно актуален кэш в современных системах, где разрыв между скоростью работы процес-сора и скоростью работы оперативной памяти довольно большой. Конечно, возникает вопрос, почему же эту характеристику не желают упоминать? Всё очень просто. Наведем пример. Предположим, что есть два всем известных процессора (условно A и B) с абсолютно одинаковым числом ядер и тактовой частотой, но почему-то А работает намного быстрее, чем В. Объяснить это очень просто: у процессора А кэш больше, следовательно, и сам процессор работает быстрее.

Коротко о многогигагерцевых амбициях IBM

Мы не измеряли потребление на выходе, как сегодня, но мы сделали все, чтобы противостоять рассеиванию тепла разогнанными процессорами. Именно тогда некоторые люди начали задаваться вопросом, увеличилось ли увеличение на 20% вдвое больше, чем потребление. Мы уже пытались найти.

Руководство по выбору лучшей видеокарты

Какую видеокарта следует покупать? Мы тратим справедливую сумму? Будет ли он совместим с нашим компьютером? Это лишь некоторые из вопросов, возникающих при попытке навигации среди бесконечных предложений видеокарт на рынке. Это руководство используется, чтобы помочь вам выбрать правильную модель.

Особенно разница в объеме кэша ощущается между китайскими и брендовыми телефонами. Казалось бы, по циферках характеристик всё вроде как совпадает, а вот цена устройств отличается. И вот здесь покупатели решают сэкономить с мыслью «а зачем платить больше, если нет никакой разницы?» Но, как видим, разница есть и очень существенная, только вот продавцы о ней часто умалчивают и продают китайские телефоны по завышенным ценам.

Функции, которые не должны отсутствовать. Шаг 1 - Отличная видеокарта необходима в играх. Разумеется, наиболее сложный выбор заключается в том, что касается видеокарты. Не зря принципиально важно выбрать лучшую видеокарту, понять, как она создана, как она работает, так как важно также знать, какие наилучшие параметры нужно оценивать, чтобы сделать лучшую покупку видеокарты.

Оптимальным подходом было бы рассмотреть различные элементы, составляющие видеокарту, исходя из того, что им действительно нужно, и насколько они важны. Несомненно, самый простой аспект касается графического процесса. В общем, лучшие частоты будут гарантированы частотой.

Вот так коротко мы разобрались с главными характеристиками CPU для мобильного телефона. Каждый день мы слышим о новых разработках и проектах, и даже ходили слухи о восьмиядерном процессоре. Но на сегодняшний день самыми популярными остаются гаджеты с четырехъядерным процессором. Как говорится, время покажет, какой чип зарекомендует себя лучше.

Более просто сказал: чем выше он, тем лучше, очевидно, с тем же графическим чипом. Даже если мы идем на разгон платы, это тот же параметр: чем выше будут частоты, тем лучше будет производительность, очевидно, всегда в ожидаемых пределах стабильности и температуры.

Другой фундаментальный момент касается памяти. В этом аспекте существуют различные мифы, которые трепещут, как тот, который считает, что между джигом и лучшими выступлениями существует единообразное соответствие. Выбор видеокарты зависит от многих факторов. Еще одним важным фактором, который следует учитывать при покупке видеокарты, является ширина шины.

Магазин запчастей для электроники ВСЕ ЗАПЧАСТИ продолжает следить за событиями мира коммуникационных технологий и обращает ваше внимание, что все запчасти для новинок вы всегда сможете заказать и купить на нашем сайте по самым доступным ценам.

Гигагерц взят, продвижение продолжается

Если он состоит из четырех полос движения, две точки будут иметь большее количество материала для передачи с более высокой скоростью, чем дорога, сделанная с одной полосой. Вместо этого память - это место, где вы будете запоминать все, что связано с графикой в ​​видеоигре, в то время как модуль обработки графики обрабатывает иллюминации, например тени. Суждение - это только результат личного опыта, а также тот факт, что вы можете предпочесть функцию или то, что такое программное обеспечение. Но помимо личных мнений решение о покупке модели или другой может быть сделано исключительно на оптимизациях.

И все-таки раньше процессорная жизнь была веселее. Приблизительно четверть века назад человечество перешагнуло барьер в 1 кГц, и эта размерность исчезла из процессорного лексикона. «Мощность» процессора стала исчисляться в мегагерцах тактовой частоты (что, строго говоря, неправильно). Еще года три назад каждый 100-мегагерцевый шаг на повышение тактовой частоты отмечался как настоящее событие: с продолжительной маркетинговой артподготовкой, технологическими презентациями и в финале - праздником жизни. Так было приблизительно до тех пор, пока частота «настольных» процессоров не добралась до 600 МГц (когда тезку Mercedes поминали всуе в каждой публикации), а основной технологией производства чипов не стала 0,18 мкм. Потом стало «неинтересно»: повышения тактовой частоты происходили ежемесячно, а под занавес прошлого года Intel и вовсе «подорвала» информационный рынок, объявив одновременно 15 новых процессоров. Пятнадцать кремниевых микросенсаций комом упали на наши головы, и за разбирательством особенностей каждого представленного чипа был утерян общий праздничный дух события. Поэтому ничего удивительно, что два ведущих производителя процессоров для ПК (Intel и AMD) чересчур буднично преодолели планку в 1 ГГц, сделав вид, что ничего особенного не произошло. В ворохе Internet-комментариев попалось лишь одно вычурное сравнение с преодолением звукового барьера, а так - никакого салюта и шампанского. Оно и понятно: планы разработчиков уже давно устремлены в загигагерцевое пространство. Кристалл Intel Willamette с тактовой частотой 1,3-1,5 ГГц мы увидим уже во второй половине этого года, а говорить будем уже об особенностях архитектуры, а не о циклах в секунду.

На моей памяти о заветном гигагерце активно заговорили еще больше года назад, когда жарким калифорнийским утром зимой 1999 года Альберт Ю продемонстрировал Pentium III 0,25 мкм, работающий на частоте 1002 МГц. Под общие аплодисменты зала как-то забылось, что та демонстрация напоминала фокус. Уже позже выяснилось, что процессор «разгонялся» в криогенной установке. Есть даже косвенные свидетельства того, что холодильником послужила серийная установка фирмы KryoTech . Так или иначе, про гигагерц забыли на год , хотя процессоры подобрались к этой частоте достаточно близко. Любопытно, что зимой 2000 года председатель совета директоров Intel, легендарный Энди Гроув при содействии Альберта Ю опять повторил испытанный трюк Intel. На форуме IDF Spring’2000 он продемонстрировал тестовый образец процессора Intel Willamette, работающий на тактовой частоте 1,5 ГГц. Полтора миллиарда циклов в секунду - и все при комнатной температуре! Отрадно, что Willamette - это еще и микропроцессор с новой архитектурой, а не просто слегка улучшенный Pentium III. Но об этом - чуть ниже.

Свой маркетинговый гигагерц давно уже имелся и в запасе AMD. Компания официально сотрудничает с «повелителями холода» из фирмы KryoTech, а Athlon оказался вполне перспективным процессором для разгона в условиях экстремального охлаждения. Гигагерцевое решение на базе охлажденного Athlon 850 МГц было доступно в продаже еще в январе.

Маркетинговая ситуация несколько накалилась, когда в начале марта AMD начала отгрузку в ограниченных количествах комнатно-температурных процессоров Athlon c частотой 1 ГГц. Делать нечего, и Intel пришлось доставать туза из рукава - Pentium III (Coppermine) 1 ГГц. Хотя выпуск последнего планировался на вторую половину года. Но ни для кого не секрет, что взятие гигагерцевого барьера - аг преждевременный как для AMD, так и для Intel. Но им так хотелось быть первыми. Вряд ли можно позавидовать двум респектабельным компаниям, которые бегают вокруг единственного стула с цифрой 1 и с ужасом ждут, когда оборвется музыка. AMD просто удалось усесться первой - и больше это ровным счетом ничего не значит. Как в космонавтике: человека первыми запустили в СССP, а летать стали чаще (и дешевле) «вторые» американцы. Ну и наоборот: они - на Луну, а мы сказали «фи», и весь задор пропал. Впрочем, гонка тактовых частот давно уже имеет чисто маркетинговую подоплеку: люди, как известно, склонны покупать мегагерцы, а не индексы производительности. Тактовая частота процессора, как и прежде, - вопрос престижа и мещанский показатель «навороченности» компьютера.

Еще один подрастающий игрок микропроцессорного рынка - тайваньская фирма VIA месяц назад официально представила своего первенца. Микропроцессор, известный ранее под кодовым именем Joshua, получил очень оригинальное название Cyrix III и начал конкурировать с Celeron снизу, в нише самых дешевых компьютеров. Конечно, в ближайший год ему не видать частоты в гигагерц как своих ушей, но этот «настольный» чип интересен уже самим фактом своего существования во враждебном окружении.

В данном обзоре речь, как всегда, пойдет о новых продуктах и планах ведущих разработчиков микропроцессоров для ПК, без оглядки на то, преодолели ли они гигагерцевый избирательный барьер.

Intel Willamette - новая архитектура 32-разрядного чипа

32-разрядный процессор Intel с кодовым именем Willamette (по названию реки в штате Орегон, протяженностью 306 км) появится на рынке во второй половине этого года. Основанный на новой архитектуре, он станет самым мощным процессором Intel для настольных систем, а его стартовая частота будет существенно выше 1 ГГц (ожидается 1,3-1,5 ГГц). Поставки тестовых образцов процессора OEM-производителям ведутся уже почти два месяца. Чипсет для Willamette известен под кодовым именем Tehama.

Что же скрывается под загадочным термином «новая архитектура»? Для начала - поддержка внешней тактовой частоты 400 МГц (то есть частоты системной шины). Это в три раза быстрее, чем хваленые 133 МГц, поддерживаемые современными процессорами класса Pentium III. На самом деле 400 МГц – это результирующая частота: то есть шина имеет частоту 100 МГц, но способна передавать четыре порции данных за цикл, что и дает в сумме аналог 400 МГц. Шина будет использовать протокол обмена данными, аналогичный тому, что реализован у шины P6. Скорость передачи данных у этой 64-разрядной синхронной шины составляет 3,2 Гбайт/с. Для сравнения: у шины GTL+ 133 МГц (той, что используют современные Pentium III) пропускная способность составляет чуть больше 1 Гбайт/с.

Вторая отличительная черта Willamette - поддержка SSE-2 (Streaming SIMD Extensions 2). Это набор из 144 новых инструкций для оптимизации работы с видео, шифрованием и Интернет-приложениями. SSE-2, естественно, совместимы с SSE, впервые реализованными в процессорах Pentium III. Поэтому Willamette сможет успешно использовать сотни приложений, разработанных с учетом SSE. Сам Willamette использует для поддержки как целочисленных вычислений, так и операций с плавающей запятой 128-разрядные регистры XMM. Если не вдаваться в подробности, то задача SSE2 - компенсировать не самый сильный на рынке блок операций с плавающей запятой. В случае поддержки SSE2 со стороны сторонних производителей ПО (Microsoft двумя руками «за») никто и не заметит подмены на фоне роста производительности.

И, наконец, третья ключевая особенность Willamette - более глубокая конвейеризация. Вместо 10 стадий теперь используется 20, что позволяет существенно увеличить общую производительность при обработке отдельных сложных математических приложений и повысить тактовую частоту. Правда «глубокий» конвейер - это палка о двух концах: время отработки операции резко сокращается, но увеличивающееся время задержки при отработке взаимозависимых операций может «компенсировать» прирост производительности конвейера. Для того чтобы этого не произошло, разработчикам пришлось увеличить интеллектуальность конвейера - повысить точность предсказания переходов, которая превысила в среднем 90%. Еще один путь повышения эффективности длинного конвейера - приоритезация (упорядочение) инструкций в кэше. Функция кэша в этом случае - расположить инструкции в том порядке, в котором они должны выполняться. Это чем-то напоминает дефрагментацию жесткого диска (только внутри кэша).

Кэш кэшем, но наибольшие нарекания в течение длительного времени вызывала производительность блока целочисленных вычислений у современных процессоров. Целочисленные способности процессоров особо критичны при выполнении офисных приложений (всяких там Word и Excel). Из года в год что Pentium III, что Athlon показывали просто смешной прирост производительности на целочисленных вычислениях при повышении тактовой частоты (счет шел на единицы процентов). В Willamettе реализовано два модуля целочисленных операций. Пока о них известно то, что каждый способен выполнять две инструкции за такт. Это значит, что при частоте ядра в 1,3 ГГц результирующая частота целочисленного модуля эквивалентна 2,6 ГГц. А таких модулей, подчеркиваю, два. Что позволяет выполнять, по сути, четыре операции с целыми числами за такт.

О размере кэша в предварительной спецификации Willamette, опубликованной Intel, не упоминается. Но есть «утечки», свидетельствующие о том, что кэш L1 будет иметь размер 256 Кбайт (у Pentium II/III кэш L1 составляет 32 Кбайт - 16 Кбайт для данных и 16 Кбайт для инструкций). Тот же ореол таинственности окружает и объем кэша L2. Наиболее вероятный вариант - 512 Кбайт.

Процессор Willamette, по некоторым данным, будет поставляться в корпусах с матрично-штырьковым расположением контактов для розетки типа Socket-462.

AMD Athlon: 1,1 ГГц - демонстрация, 1 ГГц - поставки

Словно отыгрываясь за предыдущую стратегию следования за лидером, компания AMD проворно щелкнула по носу всей компьютерной индустрии, продемонстрировав в начале зимы процессор Athlon c тактовой частотой 1,1 ГГц (точнее - 1116 МГц). Все решили, что шутит. Дескать, ну есть у нее удачные процессоры, но все знают, насколько велик временной лаг между демонстрацией и массовым производством. Но не тут-то было: спустя месяц Advanced Micro Devices начала серийные поставки процессоров Athlon с тактовой частотой 1 ГГц. А все сомнения в их реальной доступности развеяли компании Compaq и Gateway, предложившие элитные системы на базе этих чипов. Цена, конечно, не оставляла особо приятного впечатления. Гигагерцевый Athlon стоит около 1300 долл. в партиях по тысяче штук. Но у него есть вполне приятные младшие братья: Athlon 950 МГц (1000 долл.) и Athlon 900 МГц (900 долл.) Однако таких процессоров мало, поэтому и цены заоблачные.

Продемонстрированный ранее Athlon 1116 МГц сам по себе был примечательным. Проектные нормы - 0,18 мкм, использованы медные соединения, тепловыделение - нормальное: работает при комнатной температуре с обычным активным радиатором. Но, как оказалось, то был не просто Athlon (у «просто» межсоединения алюминиевые), а Athlon Professional (кодовое название - Thunderbird). Реальное появление такого процессора на рынке ожидается лишь в середине года (предположительно в мае). Только частота будет пониже, и стоить он будет не «гигагерц долларов», а заметно дешевле.

Сейчас о процессоре Athlon на ядре Thunderbird известно пока не очень много. Он будет использовать не Slot A (как современные версии Athlon от 500 МГц), а матричный разъем Socket A. Cooтветственно и корпус у процессора будет «плоский», а не массивный «вертикальный» картридж. Ожидается, что к лету процессоры на ядре Thunderbird будут выпущены с тактовыми частотами от 700 до 900 МГц, а гигагерц появится чуть позже. Вообще, учитывая темпы снижения цен на новые процессоры, вполне реальным становится приобретение к Новому году этакого компьютера начального ценового диапазона на базе Athlon 750 МГц или около того.

С другой стороны, основным претендентом на компьютеры low-end в линейке AMD остается еще не объявленный процессор на ядре Spitfire. Ему отводится роль младшего конкурента Intel Celeron. Spitfire будет корпусироваться для установки в процессорную розетку Socket A (питание - 1,5 В), а его тактовая частота к началу осени может достигнуть 750 МГц.

Коротко о многогигагерцевых амбициях IBM

Пока весь мир по старинке радуется взятию гигагерца, IBM рассказывает о технологии, позволяющей прибавлять чипам по гигагерцу в год. По крайней мере на 4,5 ГГц при существующих технологиях производства полупроводников вполне можно рассчитывать. Итак, согласно данным IBM, разработанная ею технология IPCMOS (Interlocked Pipelined CMOS) позволит года через три обеспечить массовый выпуск чипов с тактовой частотой 3,3-4,5 ГГц. При этом энергопотребление понизится раза в два относительно параметров современных процессоров. Суть новой процессорной архитектуры состоит в использовании распределенных тактовых импульсов. В зависимости от сложности задачи тот или иной блок процессора будет работать на более высокой или более низкой тактовой частоте. Идея лежала на поверхности: все современные процессоры используют централизованную тактовую частоту - все элементы ядра, все вычислительные блоки синхронизируются с ней. Грубо говоря, пока все операции на одном «витке» не завершатся, к следующей процессор не приступит. В результате «медленные» операции сдерживают быстрые. Кроме того, получается, что если вам требуется выбить пыльный ковер, то вам приходится трясти весь дом. Децентрализованный механизм подачи тактовой частоты в зависимости от потребностей того или иного блока позволяет быстрым блокам микросхемы не ждать отработки медленных операций в других блоках, а заниматься, условно говоря, своим делом. В результате снижается и общее энергопотребление (трясти надо только ковер, а не весь дом). Инженеры IBM совершенно правы, когда говорят о том, что повышать синхронную тактовую частоту из года в год станет все труднее. В этом случае единственный путь - применение децентрализованной подачи тактовой частоты либо и вовсе переход на принципиально новые (квантовые, наверное) технологии создания микросхем.. Из-за подобного названия так и подмывает отнести его к тому же классу, что и Pentium III. Но это ошибка. Сама VIA позиционирует его как конкурента Intel Celeron - процессора для систем начального уровня. Но и это оказалось излишне самонадеянным поступком.

Однако начнем с достоинств нового процессора. Он рассчитан на установку в процессорную розетку Socket 370 (как и Celeron). Однако, в отличие от Celeron, Cyrix III поддерживает внешнюю тактовую частоту (частоту системной шины) не 66 МГц, а 133 МГц - как у самых современных Pentium III семейства Coppermine. Второе ключевое достоинство Cyrix III - интегрированный на кристалле кэш второго уровня (L2) емкостью 256 Кбайт - как у новых Pentium III. Кэш первого уровня - тоже большой (64 Кбайт).

И, наконец, третье достоинство - поддержка набора SIMD-команд AMD Enhanced 3DNow!. Это действительно первый пример интеграции 3Dnow! для Socket 370-процессоров. Мультимедийные инструкции AMD уже широко поддерживаются производителями программного обеспечения, что хоть отчасти поможет компенсировать скоростное отставание процессора на графических и игровых приложениях.

На этом все хорошее заканчивается. Процессор выпускается по 0,18-микронной технологии с шестью слоями металлизации. На момент выхода самый «быстроходный» Cyriх III имел Pentium-рейтинг 533. Реальная тактовая частота ядра - заметно ниже, поэтому со времен самостоятельной Cyrix свои процессоры она маркировала «рейтингами» по отношению к тактовым частотам процессоров Pentium, Pentium II, а позже - Pentium III. Лучше бы уж вели отсчет от Pentium: цифра была бы повнушительнее.

Руководитель VIA Уэн Чи Чен (в прошлом, кстати, процессорный инженер Intel) изначально собирался противопоставить Celeron низкую цену Cyrix III. Насколько это удалось - судите сами. Cyrix III PR 500 стоит от 84 долл., а Cyrix III PR533 - от 99 долл. Короче, Celeron порой стоит и дешевле. Первые испытания процессора (проведенные, конечно, не в России) показали, что его производительность на офисных приложениях (там, где акцент делается на целочисленные вычисления) мало уступает Celeron, а вот на мультимедийных разрыв очевиден. Конечно, не в пользу Cyrix III. Ну что ж, первый блин комом. Однако в резерве VIA есть еще интегрированный процессор Samuel, построенный на ядре IDT WinChip4. Там результат может оказаться лучше.

Alpha тоже получит заслуженный гигагерц

Компания Compaq (владелец части наследства DEC, включая процессор Alpha) намерена во второй половине года выпустить версию серверного RISC-процессора Alpha 21264 с тактовой частотой 1 ГГц. А следующий ее чип - Alpha 21364 - и вовсе стартует именно с этой пороговой частоты. Кроме того, усовершенствованная версия «Альфы» будет оборудована 1,5-мегабайтным кэшем L2 и контроллером памяти Rambus.

КомпьютерПресс 4"2000



Загрузка...