sonyps4.ru

Выбираем лучшее из имеющегося опыта. Выбор и покупка деталей

Желание иметь в своем хозяйстве 3D принтер встречается у многих, но возможность приобрести такой аппарат есть не у всех. Эта статья рассказывает о том, как сделать своими руками очень низкобюджетный принтер, что построенный в основном из переработанных электронных компонентов. В результате работы был построен мелко форматный принтер стоимостью меньше 100$.

Прежде всего, мы узнаем, как работает универсальная систему ЧПУ (сборка и калибровка подшипника, направляющих и пластикового волокна), а затем научимся управлять принтером с помощью инструкций g-кода . После этого добавим небольшой пластиковый экструдер , вставив параметры калибровки, регулятор мощности двигателя и несколько других операций, что приведут принтер к жизни. Следуя данной инструкции, вы получите небольшой «карманный принтер», что на 80% будет состоять из компонентов перерабатываемой электроники, которые придадут ему большой потенциал и помогут значительно снизить стоимость.
Эта статья поможет вам разобраться в более сложных проблемах связанных с утилизацией электронных устройств.

Шаг 1: Координатные оси X, Y и Z

Необходимые компоненты:

  • 2 стандартных CD/DVD привода от старого компьютера.
  • 1 Floppy дисковод.

Все эти компоненты можно приобрести на местных барахолках. Убедитесь в том, что моторы, которые получены от дисковода – шаговые , а не двигатели постоянного тока.

Шаг 2: Подготовка моторов

Компоненты:
3 шаговых двигателя от CD/DVD приводов;
1 NEMA 17 шаговый двигатель, что необходимо приобрести для проекта. Этот тип двигателя будет использован для пластикового экструдера, где необходимо больше мощности для перемещения пластикового волокна;
ЧПУ электроника: RAMPS или RepRap Gen6/7 . Это важно, чем будете пользоваться Sprinter/Marlin открытой прошивкой. В данном примере будем пользоваться электроникой RepRap Gen6, но вы можете выбрать другой вариант в зависимости от цены и доступности;
Блок питания;
Кабели, разъемы, термоусадочные трубки.
Первое что необходимо сделать, когда у вас появятся шаговые двигатели, это припаять к ним провода. В этом случае 4 провода должны быть на своих местах, в соответствии с последовательностью цветов (описание в паспорте двигателя).
Паспортные данные для CD/DVD шаговых моторов: http://robocup.idi.ntnu.no/wiki/images/c/c6/PL15S020.pdf
Паспортные данные для NEMA 17 шагового двигателя: http://www.pbclinear.com/Download/DataSheet/Stepper-Motor-Support-Document.pdf

Шаг 3: Подготовка блока питания

Следующий шаг заключается в подготовке блока питания, чтобы использовать его в проекте. Прежде всего, соединим два кабеля друг с другом (как показано на рисунке), это позволит включать блок. После этого выбираем один желтый (12 В) и один черный кабель (землю) для питания контроллера.

Шаг 4: Arduino IDE

Теперь необходимо проверить двигатели. Для этого скачиваем Arduino IDE (физическая вычислительная среда), что можно найти по адресу: http://arduino.cc/en/Main/Software.
Нужно загрузить и установить версию Arduino 23 .
После этого скачаем прошивку. В проекте выбор пал на Marlin , что уже настроен и может быть загружен по ссылке.
Marlin:
После того, как была установлена Arduino, подключим компьютер к ЧПУ контроллеру Ramps/Sanguino/Gen6-7 с помощью USB кабеля, выбираем соответствующий последующий порт под Arduino IDE => инструменты/ последовательной порт и находим тип контроллера под => инструментами/плата Ramps(Arduino Mega 2560) , Sanguinololu/Gen6(Sanguino W/ ATmega644P – Sanguino должен быть установлен внутри).
Основные параметры, параметры конфигураций находятся в файле «configuration.h »:
В среде Arduino открываем прошивку, загруженный файл и видим параметры конфигурации, прежде чем загрузить прошивку на наш контроллер.
1) #define MOTHERBOARD 3 значение, в соответствии с реальным оборудованием, мы используем (Ramps 1.3 or 1.4 = 33, Gen6 = 5, …);
2) Термистор 7 значение, RepRappro использует «горячее сопло» Honeywell 100k ;
3) PID это значение делает «горячее сопло» более стабильным с точки зрения температуры;
4) Шаги на единицу (Steps per unit ), это важный момент для настройки любого контроллера (шаг 9).

Шаг 5: Управление принтером с помощью программного обеспечения

Управление принтером осуществляется по средствам программного обеспечения: существуют различные программы, что находятся в свободном доступе, позволяют взаимодействовать и управлять принтером (Pronterface, Repetier, …), в проекте использовался Repetier Host , который вы можете скачать http://www.repetier.com/ . Простая установка и интеграция slicer. Slicer — это часть программного обеспечения, что генерирует последовательные секции объекта, что мы хотим напечатать. После генерации происходит соединение секций в слои и генерация g-кода для принтера. Slicer можно настроить с помощью таких параметров как:
высота секции;
скорость печати;
заполнение и т.д., что важны для качества печати.
Обычную конфигурацию slicer можно найти по следующим ссылкам:
Skeinforge конфигурация http://fabmetheus.crsndoo.com/wiki/index.php/Skeinforge
Slic3r конфигурация http://manual.slic3r.org/

О существовании 3D печати слышал, наверняка, каждый, а в новостях то и дело проскакивают факты о новых возможностях этой технологии. Не так давно трехмерная печать использовалась только в производственных условиях и немногими энтузиастами, сегодня же можно запросто купить 3D принтер для использования в быту. С помощью таких устройств печатают самые разные вещи : от декоративных безделушек для дома до протезов, оружия и даже зданий. Перспективы трехмерной печати настолько фантастические, что мало кто сегодня может в полной мере их себе представить. А пока наблюдаем за тем, как будущее наступает , изучаем принципы работы 3D принтера, его возможности и преимущества, а также разбираемся, какой 3D принтер выбрать для использования в быту.

Несмотря на то, что технология трехмерной печати находится у всех на слуху только последние несколько лет, ее появление стоит искать еще в прошлом веке. Пионером в данной области стала компания Charles Hull, которая в 1984 году разработала технологию трехмерной печати, а чуть позже запатентовала технику стереолитографии, которая сегодня используется повсеместно. Тогда же компания разработала и создала первый промышленный трехмерный принтер, который фактически стал началом новой эпохи.

90-е годы стали временем появления новых разработок в сфере трехмерной печати, благодаря которым 3D принтеры нашли применение в производственных условиях и стали использоваться для прототипирования. Пик развития технологии приходится на XXI век, и мы сами становимся очевидцами того, как семимильными шагами трехмерная печать покоряет новые вершины. Сегодня печать может осуществляться разными материалами, причем не только пластиками и металлом , но и тканью, бумагой, керамикой, пищевыми продуктами и даже живыми клетками.

В 2005 году появилась возможность печатать в цвете, а в 2006 году был создан принтер, который может распечатать около половины всех собственных комплектующих. В 2014 году появились первые принтеры с областью печати, практически неограниченной в размере. С помощью этого устройства уже попытались создать полноценный дом, используя в качестве основного материала бетон. На возведение такого сооружения было потрачено не более суток. Уже в 2016 году было представлено первое здание, построенное с помощью трехмерной печати в Дубае. В феврале 2017 года Россия также представила дом, целиком напечатанный на стройплощадке. В этом году также был разработан принтер с шестью осями, с помощью которого сложные элементы будет печатать намного проще, без необходимости использовать поддерживающие конструкции. На данный момент вовсю ведутся разработки принтеров, которые смогут печатать органы человека, протезы, имплантаты, корпусы автомобилей и даже еду.

Как работает 3D принтер? Просто о сложном

Если коротко, то 3D принтер – это устройство для создания трехмерных объектов методом послойной печати. Спектр используемых для печати материалов постоянно расширяется и можно смело предполагать, что в будущем он будет включать большинство известных нам веществ. Пока самыми популярными материалами для печати остаются термопластики и фотополимерные смолы.

Общий принцип работы 3 D принтера можно представить следующим образом:


Особенности печати зависят той технологии, которую использует принтер, поэтому имеет смысл разобраться с самыми распространенными на данный момент.

Типы 3D-принтеров и особенности печати каждого

Чаще всего сегодня используют технологию FDM -печати, а также SLA -печати. Что стоит за этими непонятными аббревиатурами, и какими еще разработки существуют в данной сфере?

Метод FDM-печати

FDM -технология (Fused Deposition Modeling) – это технология послойного наплавления нити. Сегодня этот способ 3D-печати считается самым распространенным, одновременно он относится и к одним из самых старых методов. Принцип заключается в послойном наплавлении нити пластика по контуру модели.

Для печати используются термопластики, которые поставляются в виде катушек или прутков. Чаще всего печатают PLA и ABS пластиками , в числе которых нейлон, полиамид, поликарбонат, PET (он же полиэтилентерефталат, который используется для создания пластиковых бутылок) и некоторые другие вещества.

Принцип работы заключаются в следующем:

  • нить материала помещается в экструдер, где она плавится под воздействием нагревательного элемента, а потом выдавливается через сопло на рабочую поверхность;
  • экструдер двигается по траектории, заданной ей программным обеспечением, и слой за слоем строит объект;
  • если необходимо напечатать сложный предмет, то могут использоваться два типа материала: один – для модели, второй – для создания опор (он, как правило, растворимый, или же просто очень легко отламывается от объекта). Опоры необходимо печатать , если объект имеет повисшие в воздухе элементы, которые без поддерживающих элементов создать невозможно – принтеру будет просто не на чем печатать. Наглядно все представлено на рисунках ниже;
  • после формирования первого слоя платформа опускается вниз на толщину одного слоя, а экструдер выдавливает новую порцию материала, процесс повторяется много раз;
  • по окончанию печати остается отделить вспомогательные элементы.

Модель и поддерживающие элементы

FDM-технология позволяет использовать термопластики производственного класса, поэтому распечатанные объекты получают отличную механическую, химическую и термическую прочность. Технология простая, чистая и пригодна для использования в условиях офиса или дома.

По такому же принципу работают 3 D -ручки. Это фактически миниатюрные принтеры. Такие ручки предназначены для рисования трехмерных рисунков. Пользователь может выдавливать из нее мгновенно застывающий пластик, придавая ему любую форму и получая забавные изделия. Устройство больше предназначено для баловства, но идея интересная, а дизайнеры смогут сделать много интересных предметов декора для дома.

Метод SLA-печати, или стереолитография

SLA-технология (laser stereolithography) предполагает использование для печати жидких фотополимерных смол, которые имеют свойство застывать под воздействием лазера или подобного источника энергии. Метод позволяет получать предметы с очень точной геометрией , ведь толщина слоя может достигать рекордных 15 микрон, поэтому уже широко применяется в стоматологии при изготовлении имплантатов и в ювелирном деле для создания заготовок с обилием сложных деталей.

Принцип работы 3 D -принтеров , использующих метод лазерной стереолитографии, коротко можно описать так:

  • рабочая платформа погружается в ванну с жидким фотополимером на толщину одного слоя (15-150 микрон);
  • воздействие лазера на стенки будущего объекта. Лазерный луч в буквальном смысле вычерчивает на фотополимере форму объекта, которая, в свою очередь, задается программным обеспечением. Облучение лазера вызывают полимеризацию материала в точках соприкосновения с лучом и его затвердевание;
  • платформа погружается еще чуть глубже в ванну с жидким фотополимером, причем глубина погружения соответствует величине слоя. Лазер снова воздействует на зоны материала, которые должны быть частями печатаемого объекта;
  • процесс повторяется слой за слоем, пока не будет распечатан смоделируемый объект;
  • технология также требует печати поддерживающих элементов. Они выполняются из того же фотополимера;
  • после завершения печати объект погружают в ванну в специальные растворы для удаления излишков и очистки модели;
  • финал – облучение ультрафиолетом для окончательного застывания фотополимера.

Технология прогрессивная, но требует покупки дорогих расходных материалов.

Другие типы печати

Менее распространенными, но не менее интересными и перспективными являются следующие способы трехмерной печати:

Какой 3D-принтер лучше выбрать для бытового использования?

Забегая наперед, отметим, что пока стоимость бытовых 3D-принтеров остается относительно высокой, но в дальнейшем имеем все шансы наблюдать удешевление технологии. Вспомните, когда появились мобильные телефоны, они также были доступны только очень богатым людям.

Цели использования домашнего 3Д-принтера могут быть совершенно любыми: от простого баловства и знакомства с новой технологии до печати полезных в хозяйстве мелочей и моделей-прототипов для бизнеса. В любом случае, при выборе обращайте внимание на такие ключевые характеристики устройства:

  • разрешение печати (точность печати) – это минимально возможная высота слоя, которую может напечатать принтер. Обозначают разрешение в микрометрах (тысячная доля миллиметра). Чем меньше высота слоя, тем менее заметным будет переход между ними, и тем более гладкой будет поверхность печатаемого объекта. С другой стороны, чем меньше слой, тем больше времени принтеру понадобится на печать и тем выше нагрузка на все его элементы. Разрешение зависит от технологии (SLA позволяет печатать точнее, чем FDM), точности работы печатающих головок, настроек программного обеспечения и выбранного материала для печати;

    Образцы с разной толщиной слоя

  • скорость печати напрямую зависит от точности: чем выше точность, тем меньше скорость выращивания модели.
  • область печати говорит о том, какого размера объект можно напечатать на принтере. Другими словами, это зона возможной досягаемости печатающей головки по горизонтальным осям X и Y, а также по вертикальной оси Z. Обычно область печати выражают тремя цифрами – это высота, длина и ширина условного параллелепипеда (например, 20*30*30 мм). У дельта-принтеров область печати имеет форму цилиндра, поэтому указывается его высота и диаметр;
  • тип используемых для печати пластиков. В бытовых условиях используются именно пластики, и это могут быть ABS и PLA пластики, некоторые модели могут печатать обоими видами материалов. Возможность печати тем или иным типом пластиков объясняется наличием или отсутствием подогрева платформы. Если вы пока не решили, чем будете печатать, то лучше выбрать модель, которая поддерживает максимальное количество материалов;
  • страна-производитель . Европейские страны и США производят качественные, но дорогие устройства, завозятся в небольших количествах, сервисное обслуживание затруднено. Китайские устройства стоят недорого, качество часто оставляет желать лучшего, но для того, чтобы побаловаться, такие принтеры пойдут. Есть еще принтеры российского производства: при неплохом качестве они радуют возможностью сервисного обслуживания.

Интересные варианты бытовых 3D-принтеров

MakerBot Replicator 2

Качественный принтер американского производства, печатает по FDM-технологии, минимальная толщина слоя – 100 микрон (0,1 мм). Область печати – 285*153*155 мм, для печати используются PLA и ABS пластики. Максимальная скорость печати – 40 мм в секунду, или 24 см 3 /час. Корпус выполнен из стали, есть ЖК-экран, вес 11,5 кг. Модель хоть и выпущена в 2013 году, до сих пор активно используется для бытовой печати. Стоимость 3100$.

PrintBox3D One

Принтер отечественного производства, печатает по технологии FDM, минимальная толщина слоя – 50 мкм, размеры рабочей платформы – 185*160*150 мм. Устройство печатает ABS и PLA пластиками, оснащено подогреваемой платформой. Цена около 1700$, разработано для использования в сфере образования и дизайна.

PICASO 3D Designer

Печатает по FDM-технологии, как и все бытовые 3D-принтеры на сегодняшний день, использует для печати ABS и PLA пластики, в т.ч. нейлон. Точность печати — 50 мкм, рабочая платформа размерами 200*200*210 мм, максимальная скорость – 30 см 3 /час. Устройство оснащено подогреваемой платформой, стоимость 1700$.

3D принтер Hercules

Неплохое устройство от российской компании IMPRINTA, печатает разными видами пластика, точность печати – 50 мкм. Платформа подогреваемая, максимальная температура – 120 0 С. Скорость печати – 40 см 3 /час. Цена 1150$.

В качестве итога об основных плюсах и минусах трехмерной печати

3D-печать – направление перспективное и с большим потенциалом. Чтобы расставить все точки над «i» в изучении вопроса трехмерной печати, приведем основные ее преимущества:


Существующие минусы :


Трехмерная печать – это будущее медицины и промышленности, а также возможность быстрого создания прототипов и моделей, а это бесценно для инженерии. Кто знает, может, через 5-10 лет мы так же просто будем скачивать модели чашек или обуви и печатать их на собственном домашнем принтере, как сегодня скачиваем и просматриваем фильмы.

Очень хорошо, когда есть средства на то, чтобы организовать свой бизнес, например, создавать трехмерные детали и закупить все необходимое оборудование. Но что делать тем, у кого нет начального капитала, как найти деньги, чтобы купить 3Д принтер для домашнего бизнеса? Как все организовать так, чтобы можно было пусть небольшими шагами, но идти вперед?

Если умеете держать в руках инструмент и есть небольшая сумма денег на закупку комплектующих, то можно попробовать самостоятельно собрать 3D принтер. Какие запчасти нужны, и как все правильно сделать? Какие возможности даст самодельное устройство?

Как собрать 3D принтер?

Собрать из подручных средств 3Д принтер никак не получится. Чтобы прибор смог в будущем полнофункционально работать и создавать качественные трехмерные детали нужно будет потратиться и приобрести комплектующие. Но даже приобретенные детали придется все равно откалибровать и корректировать под свое устройство. Для изготовления 3D принтера понадобятся:

  • датчики – они нужны для того, чтобы измерять температуру сопла экструдера и нагревательной панели;
  • шаговые двигатели, с их помощью можно будет привести в действие печатную головку и платформу построения модели;
  • контроллер, он следит за шаровым двигателем;
  • концевые датчики, нужны для определения нуля;
  • термисторы;
  • нагреватель экструдера и стол для работы.

Подбирать детали для 3Д принтера нужно исходя из габаритов будущего прибора и целей, которые вы собрались перед ним поставить . Собрать своими руками устройство и наладить его сможет только человек, у которого есть способности или инженеры. Поэтому подумайте и взвесьте свои силы, возможно, стоит найти человека, который поможет его собрать или подскажет, как все правильно организовать.

Если же самостоятельно собрать из отдельно купленных деталей не удастся, так может, стоит приобрести полуфабрикат. Что это такое? Какие модели существуют и что они собой представляют?

Принтеры-полуфабрикаты

В настоящее время можно приобрести 3D принтер в разобранном виде, который каждый сможет собрать, руководствуясь инструкцией, которая прилагается в комплекте. Что можно печатать на таком 3D принтере? Ответ очень простой – все что угодно. Каждая из моделей работает с определенным материалом, поэтому перед тем, как купить ту или иную модель, нужно подумать в каком направлении будет идти бизнес, и что именно вы собираетесь изготавливать. Большим спросом у начинающих предпринимателей, которые начинают свое дело с нуля, пользуются такие модели 3D принтеров:

  1. DLP-принтер Sedgwick v0 Kit – это фотополимерное устройство предназначено, чтобы печатать детали из акрила. Можно выбрать один из двух вариантов с баком, объемом в 50 мм или 120.
  2. Engineer (Prusa i3) – это еще один хороший прибор, который продается комплектом и собирать его нужно самостоятельно, печать идет ABS и PLA пластиком.
  3. PRotos v3 – это лучший мини 3Д принтер для малого бизнеса по мнению тех, кто знает толк в подобного рода устройствах. Появился он на рынке около года назад, модель была максимально усовершенствована и способна печатать трехмерные изделия из любых видов пластика. К тому же в сборке он намного легче предыдущих моделей.

Все три модели получили большое количество положительных отзывов, но именно третья, как нельзя лучше подходит для создания малого бизнеса с минимальными вложениями. В среднем ее стоимость составляет около 50 000 рублей, да и собрать ее можно быстро. Но во сколько же обойдется принтер, собранный из закупленных отдельно комплектующих? В таблице ниже описаны все детали для принтера и их стоимость.

Если взять самые недорогие детали, то 3D принтер обойдется недорого, но стоит помнить, что, к примеру, купленный на рынке контроллер не самый лучший, его нужно будет еще очень долго дорабатывать, чтобы он смог правильно управлять 3Д принтером. Именно поэтому, чтобы не тратить время на создание брака, лучше купить качественный контроллер в тех магазинах, где знают в них толк. Но есть очень интересная идея для малого бизнеса, которая позволит не только организовать свое дело в 3Д индустрии, но и помочь многим, кто никак не может найти свое место в жизни.

Принтер создающий сам себя

Кто бы мог подумать, что изготавливая принтеры, можно не только самому хорошо заработать, но и помочь людям, которые хотят организовать свое дело. Трехмерный прибор открывает перед предпринимателями хорошую возможность для заработка. Если у вас есть небольшие навыки в инженерии, и вы хорошо ладите с электроникой, тогда можно взять на заметку такую идею – печать принтером своего прототипа. Как такое возможно? А все очень даже просто.

RepRap – это трехмерное устройство, способное печатать самого себя. Эта модель принтера послойно создает детали из ABS пластика. Стоит недорого, но производит печать пластиковых элементов отличного качества. Цена ее около 200 тысяч рублей.

Принцип работы этой модели в том, что она способна печатать детали для самого себя. Таким образом, купив одну модель и настроив ее, можно создавать его прототипы и продавать их, такая идея очень быстро окупится. К тому же можно помочь своим друзьям и родным найти свое место в бизнесе и начать свое дело.

Сохраните статью в 2 клика:

3Д принтер как прибыльный бизнес – это отличная идея, которая в настоящее время еще не слишком популярна в нашей стране, поэтому можно быть первым из тех, кто сможет удовлетворить потребности других людей. Ведь очень часто сталкиваешься с проблемой поиска редких деталей или эксклюзивных подарков, а благодаря 3D устройству за очень короткое время можно создать любой предмет. Организовать бизнес с небольшими вложениями можно, главное желание и все обязательно получится.

Вконтакте

Пока не настали те времена, когда 3D принтер можно будет купить в любом магазине электроники по цене картриджа для него же, а цены на готовые 3D принтеры в специализированных интернет-магазинах, мягко говоря, вызывают удивление. Поэтому человеку со здраво мыслящей головой проще сделать 3D принтер своими руками из 4-ех моторчиков и нескольких железок, продающихся в любом строительном центре за пару тысяч рублей, тем самым сократив бюджет на постройку 3D принтера как минимум в два, а то и во все десять раз.

Мы тоже не будем отставать от этого человека с головой, и сделаем 3D принтер своими руками из доступных материалов!

Неподготовленного читателя сперва может смутить вид самодельного 3D принтера, но хочу напомнить, что смысл RepRap 3D принтера в том, что он может сам для себя печатать детали. Поэтому собрав изначально 3D принтер своими руками из подручных материалов вы постепенно обновите все его детали и станете обладателем вот такого вот пластикового красавчика, как на фото. Ну или какого-нибудь другого… какого сами захотите

Создавать 3D принтер своими руками я начал с конструкции, относящейся к классу Delta-роботов. Попытался создать так называемый Дельта 3D принтер. Он обладает достаточно простой конструкцией для изготовления своими руками, которую вполне возможно сделать достаточно жесткой, чтобы обеспечить высокую точность при достаточно высоких скоростях 3D печати, характерных именно для Dleta 3D принтеров.

Как видно из фотографии, все оси у Delta 3D принтера располагаются параллельно на трех ребрах жесткости, которые одновременно могут быть и направляющими для кареток осей. Ребра жесткости образуют треугольник с углами в 120°, образуя латинскую букву Δ - Дельта. Отсюда и название.

Но пока я временно заморозил строительство делта 3D принтера своими руками по причине того, что для его печатающей головки требуются шариковые шарниры стоимостью не менее 300 рублей за штуку. А надо их по 4 на каждую ось. Итого выходит 300 руб Х 4 шт Х 3 оси = 3600 рублей только на одни шарниры. Это уже немного не бюджетно, поэтому я в фоновый мозговой процесс погрузил задачу снижения стоимости шарниров для Дельта 3Д принтера.

А пока этот процесс выполняется, я начал делать 3D принтер своими руками по более традиционной конструктивной схеме — в виде кубика с ортогональным размещением осей X и Y, а также подъемным столиком с подогревом в качестве оси Z. И в процессе конструирования у меня появились некоторые мысли по поводу того, как минимизировать размер занимаемого 3D принтером пространства на рабочем столе. В итоге должно получиться не менее компактно по площади, чем у Delta-принтера, и гораздо меньше в высоту. Слишком большая высота — это как раз один из минусов Delta 3D принтеров.

Корпус моего первого 3D принтера выполнен из обычной ламинированной ДСП. Ее всегда можно купить в любом строительном торговом центре или в фирмах по распиловке ДСП. Когда делаешь 3D принтер своими руками в виде кубика, то получаешь дополнительные преимущества в виде защиты от сквозняков, от которых часто страдают модели, печатаемые ABS-пластиком. На круглые дырки в стенке не обращайте внимания — они остались от предыдущего недоделанного проекта, и на самом деле их там быть не должно

Как видите, в верхней крышке короба 3D принтера проделано оконце для подачи пластика в печатающую головку. Я решил сделать выносной экструдер, чтобы максимально облегчить вес печатающей головки, оставив на ней только нагреватель и сопло (так называемый «горячий конец» — HotEnd 3D принтера).

Сама печатающая головка висит на направляющих осей X и Y, которые тоже прикручены к верхней крышке 3D принтера. Когда делаешь 3D принтер своими руками, то нужно стараться выбирать для монтажа только ровные поверхности, полученные промышленным способом. Так, например, поверхность ДСП можно считать условно ровной (укладывающейся в приемлемые допуски по точности). Поэтому мы можем смело разместить в разных концах этой поверхности по одной направляющей, и считать их параллельными (плоскости ДСП, разумеется), без необходимости их юстировки (точного выставления параллельности).

Параллельность этих же направляющих в другой плоскости мы будем выставлять уже при помощи собранной каретки оси X. Сперва мы перемещаем каретку X вдоль оси Y в одно крайнее положение и засверливаем отверстия для крепежа, затем ведем вдоль оси Y в другое крайнее положение и засверливаем уже с другого конца. Фиксируем держатели направляющих винтами также перемещая каретку сперва в одно крайнее положение, затем в другое.

На фотографиях выше также очень хорошо виден подъемный столик с подогревом. Это ось Z нашего 3D принтера. Он тоже сделан своими руками из обычного куска ДСП, у которого по углам вырезаны отверстия для крепления подшипников скольжения, ходящих вдоль четырех направляющих. Направляющие и подшипники скольжения — это то, что в любом случае скорее всего придется купить.

Если же вы хотите сделать 3D принтер своими руками, минимизируя количество покупных компонентов, то направляющие и подшипники скольжения можно вынуть из старых струйных принтеров. Как раз парочку я недавно нашел на помойке, когда вывозил мусор. Но так везет все реже, поэтому что-то все равно придется покупать

Приводом для перемещения каретки по осям X и Y служат зубчатые ремни, вращаемые шаговыми двигателями. На оси X стоит всего один шаговый двигатель, т.к. ему достается самая легкая работа — таскать печатающую головку, состоящую из лёгенького HotEnd’а. Вдоль оси Y будут трудиться уже два шаговых двигателя на зубчатых ремнях, каждый из которых будет тянуть свою сторону каретки оси X. Изготавливая 3D принтер своими руками лучше лишний раз перестраховаться и исключить возможные перекосы каретки из-за недостаточной жесткости, а жесткости будет всегда не хватать, когда во главу угла ставиться максимальная экономия.

Если поставить всего один двигатель на ось Y, расположив его с одной стороны каретки оси X, то вторая сторона каретки будет перемещаться по направляющей рывками. Расположив же сразу два двигателя с разных сторон каретки оси X, мы не только обеспечим синхронное движение подшипников скольжения на направляющих, но также сможем в любое время скорректировать перпендикулярность осей X и Y, немного подкрутив вручную один из двигателей, оставив другой неподвижным. Таким образом, делая 3D принтер своими руками и ставя два двигателя на одну ось, мы оставляем себе большее пространство для маневра в плане регулировки точности 3D принтера.

Одной из самых важных задач при настройке 3D принтера своими руками является регулировка параллельности плоскости XY и плоскости столика с подогревом, перемещаемого по оси Z. В каждой точке столика сопло печатающей головки должно находиться строго на одном и том же расстоянии от поверхности печати. Это необходимо, чтобы при формировании первого слоя детали не произошло отслоения пластика от подогреваемого столика. Если сопло будет слишком далеко от стола, то пластик просто не сможет к нему прилипнуть, что может привести к порче всей детали.

Для обеспечения возможности установки параллельности столика 3D принтера, его делают регулируемым с четырех сторон винтами, внатяг подпертыми пружинами. Регулировка осуществляется поочередным подтягиванием или отпусканием регулировочных винтов в тот момент, когда сопло находится в непосредственной близости от регулируемого в данный момент винта. Придется несколько раз подгонять печатающую головку 3D принтера к каждому из винтов, чтобы выставить плоскость достаточно точно.

Если вы не очень доверяете своему глазомеру, то для выставления одинакового расстояния от сопла печатающей головки до нагревательного столика 3D принтера можно воспользоваться обычным листом бумаги. Если лист перестает двигаться по столу, значит сопло его уже прижало, и регулировочный винт можно оставить в этом положении.

Теперь про ось Z, вдоль которой будет подниматься подогреваемый столик 3D принтера. От разрешающей способности оси Z в большей степени зависит итоговое качество напечатанной детали. Поэтому чем меньший шаг может обеспечить ваша ось Z, тем более детализованной получится итоговая деталь. Но, правда, и печататься она будет гораздо дольше, это мы уже будем решать отдельно для каждой напечатанной детали. Главное, чтобы у нас была возможность печатать максимально точно, если уж мы делаем 3D принтер своими руками.

Для этого привод оси Z обычно делается на винтовой передаче, а не на зубчатом ремне. Если взять в качестве винта строительную шпильку с шагом резьбы в 1 мм и шаговый двигатель с 200 шагами на один оборот (стандартный двигатель с 1,8° на шаг), то минимальное теоретическое перемещение оси Z нашего 3D принтера получится 1/200 мм или 0,005 мм (5 микрон)! На практике такое перемещение вряд ли осуществимо с применением стандартных направляющих и подшипников скольжения, поэтому даже 0,05 мм нам хватит за глаза.

Я решил для своего подъемного столика установить две винтовых передачи с разных сторон и вращать их двумя шаговыми двигателями, подключенными параллельно. Такая возможность уже заложена в ставшую стандартом плату RAMPS 1.4, где под ось Z предполагается подключение сразу двух двигателей. Однако есть риск получить артефакты на итоговой детали в виде волнистых перепадов между напечатанными слоями. Это будет свидетельствовать о несинхронном вращении винтов или о неких перепадах шага резьбы на винтах. В конце концов, строительная шпилька производится, чтобы стянуть две доски опалубки при заливке бетона, а не для оси 3D принтера с микроперемещениями

В любом случае, если такие артефакты появятся, то можно потом будет переделать конструкцию столика, убрав одну ось и переместив его всего на две направляющих, немного удлиннив их при этом. Что в итоге получится, читайте на моем ТехноБлоге Dimanjy и следите за обновлениями.

Кстати, снял небольшое видео 3D принтера. Показан подъемный столик в работе. Вроде движется и не клинит, хотя движочки поставил довольно слабенькие: ток обмотки всего 0,4 А и момент на валу 1,7 кг х см. Покуда движков два и подключены они параллельно, то на драйвере выставил двойной ток — около 800 мА. Не нравятся мне эти стандартные драйвера A4988 — у них после прекращения поступления шагов включается режим удержания, причем его ток значительно превышает номинальный, и движки начинают греться. На винтовой передаче вообще удержание не требуется, но я не знаю, как это отключить на этих драйверах. Прям хоть снова свои драйвера паяй

А вот видео 3D принтера, в котором я испытывал ось X. Перемещения довольно бодрые, но при этом корпус немного пошатывает. При печати это обязательно скажется, поэтому нужно корпус связать треугольными перемычками, которые не дадут ему расшатываться в этой плоскости. У корпусной мебели для этих целей служит обычно задняя стенка из ДВП, которая прибивается по всему периметру и не дает корпусу шататься по диагоналям.

Теперь по поводу экструдера для 3D принтера. Ему я посветил отдельную статью, потому как он является довольно ответственной частью 3D принтера. В этой статье я расскажу, как изготовить .

Обновление от 28.11.2015

Начал усиливать элементы конструкции. Жесткости одних направляющих не хватает. Вернее, хватило бы, но для этого нужно делать более массивные крепления самих направляющих, а это крадет драгоценные сантиметры полезной поверхности, по которой могла бы кататься каретка. Я хочу сделать конструкцию прочной и компактной (хотя одно другому противоречит).

Для бюджетного 3D принтера хорошим конструкционным материалом является фанера, но сконструировать из фанеры квадратные балки — та еще задачка, особенно если используешь для проектирования 3D принтера бесплатный софт вроде QCad Но, используя пространственное мышление, можно-таки нагородить что-то вроде вот этого.

Благодаря точности моего ЧПУ станочка, я могу выпиливать посадочные места для подшипников качения и жестко запрессовывать их туда без необходимости их дополнительного крепежа (хрен их оттуда потом вынешь — приходится ломать всю балку и вытачивать новую). Это куда более надежно, чем пластмассовые затяжки, которые я сперва применял, насмотревшись фоток любительских конструкций 3D принтеров в интернете.

Обновление от 3.12.2015

Работа кипит. Я так вдохновился результатами конструирования 3D принтера из фанеры, что решил построить 3D принтер своими руками из фанеры целиком! Но для такого ответственного мероприятия у меня уже не хватает воображения для плоского моделирования деталей 3D принтера в QCAD, поэтому я переключился на объемное моделирование во FreeCAD. Конечно, освоение параметрического моделирования идет туговато, но кое-что уже получается. Тяжело в учении — легко в бою! Вот примерно так будет выглядеть мой 3D принтер из фанеры:

Особенность данной конструкции 3D принтера будет заключаться в том, что в нее заложена возможность роста в прямом смысле слова. Верхняя печатающая часть будет легко сниматься и переставляться на более высокую коробку с осью Z.

Кстати, я, как и советовали мне в комментариях, решил пересмотреть кинематическую схему и попробовать CoreXY. Кратко об основных преимуществах кинематики CoreXY:

1. Мы не таскаем с собой двигатели — они жестко крепятся на раме. Отсюда возможность получить ускорения, недостижимые со стандартной кинематикой (когда приходится с собой таскать двигатель оси X).

2. Уравновешенность моментов на каретке. Отсутствие сил скручивания, стремящихся нарушить перпендикулярность осей X и Y.

Вот, пожалуй, и все преимущества Но уже их достаточно для того, чтобы отказаться от стандартной кинематики. Тем более, что кинематика CoreXY теперь очень хорошо поддерживается в популярной прошивке Marlin. Как раз с весны по лето разработчики активно допиливали именно эту кинематику.

Посмотрим, что получится.

Обновление от 9.12.2015

Ну вот, работа над корпусом почти закончена. Пробные выпиливания на моем станке с ЧПУ выявили некоторые погрешности проектирования, которые тут же исправляю в файле проекта. Ни разу еще не делал конструкцию по чертежам. 3D принтер своими руками — это мой первый проект, в котором я применил сурьезный инженерский подход — сперва подумать, потом сделать. Обычно делаю все наоборот:)

Тем не менее, то, что у меня получается на данный момент мне и самому нравится. Оказывается, правильно спроектированный 3D принтер из фанеры может быть довольно прочным. Я даже начинаю проникаться уважением к такому материалу, как фанера. Надо будет попробовать сделать из нее ее что-нибудь.

Теперь возвращаясь к моему самодельному 3D принтеру из фанеры, хочу отметить невероятную компактность своей конструкции. По площади основания он получился точь в точь как мой настольный лазерный принтер! Для дома — самое то.

Однако я не забыл про возможности роста. Если внимательно посмотреть на фото 3D принтера, то видно, что верхушка у него съемная. Достаточно открутить несколько винтов и переставить печатающую часть на коробку повыше, и можно печатать высоченные вазы. Более подробно с конструкцией моего 3D принтера из фанеры можно ознакомиться в статье про .

Все, что остается на данный момент — это натянуть зубчатый ремень и установить винтовую передачу на ось Z. Ах, да! Еще экструдер

Обновление от 15.12.2015

Ура! Я сделал 3D принтер своими руками! Переходим теперь к .

  • Направляющие (полированные валы Ф12 мм) 1,5 м = 1 080 руб
  • Линейные подшипники LM12UU — 6 шт х 150 руб = 900 руб
  • Шаговые двигатели Nema 17 — 4шт х 750 руб = 3 000 руб
  • Ремень GT2 300 см по 300 руб/м = 900 руб
  • Шкивы 20 зубов 3 шт в наборе = 840 руб
  • Контроллер (Arduino Mega 2560 r3 + Ramps 1.4 с драйверами шаговиков) = 2 000 руб
  • Стекло с каптоном 200 х 200 мм = 230 руб
  • Нагреватель стола 220 V 200 x 200 мм = 1 000 руб
  • HotEnd E3D v5 с соплом 0,3 мм, фитингом и фторопластовой трубкой = 2 200 руб
  • Блок питания ATX 350 Вт = 650 руб
  • Лист фанеры 8 мм = 300 руб
  • Винты Ф3 х 25, гайки, шайбы = 400 руб

Итого: 13 500 руб

Все детали куплены в специализированных магазинах в Москве. Те, кто любит все заказывать в Китае, наверное, могли бы сэкономить еще больше денег.

3D-принтер – устройство, которое может печатать или создавать объемные изображения.

Современные промышленные модели работают на специализированном пластическом материале (разработчики научили девайсы работать со всеми видами пластиков), который наносится на форму и постепенно создает объемную модель. При этом устройство может работать на любых «чернилах».

О чём пойдет речь:

Как это работает

Принцип создания объекта также может по факту быть разным – от фрезерования, до нанесения пластичного материала в виде заданной формы послойно. Уже сейчас существуют большие строительные модели, которые «печатают» дома из бетона, имеются и сенсационные слухи о попытке печати на принтере живых органов.

При этом можно «спуститься на Землю» и сделать своими руками подходящую модель для поделок, конструирования или других прикладных целей. Итак, собираем 3D принтер своими руками – сколько времени это может занять? Все зависит от выделенного времени, от инструкции, в целом, на сборку уходит максимум несколько дней, устройство помещается на небольшой стол.

Подготовка к сборке

Начнем с того, что соберем 3D принтер H BOT своими руками – речь идет о доступной методологи сборки, включающей схемы и даже видео. В результате устройство поможет вам делать небольшие объемные фигурки.

Это устройство может существенно помочь в моделировании, дизайне или мебельном производств, а также если сделано просто для интереса и домашних дел. В конце концов такую штуку можно просто продать и на этом заработать.

В промышленной сборке используются технологии:

  • лазерного попиксельного нанесения пластичного вещества;
  • лазерного спекания пластика;
  • струйную, выдавливающую на форму разогретый пластик.

С первого взгляда третий метод является самым доступным, но опять же остается вопрос реализации такого оборудования, которое на практике состоит из целого ряда металлических направляющих, позиционирующих печатную головку. Фактически вы можете сделать девайс, печатающий цветы на пирожных или тортах, учитывая специфику создания подобных кондитерских изделий. При этом с девайсом, печатающим из пластика, его будут роднить общие элементы и конструкция.

Что потребуется:

  • датчики, которые будут считывать характеристики наносимого вещества, в случае пластика речь идет о замерах температуры в сопле экструдера и стола, где происходит формовка;
  • шаговые двигатели с функцией микрошага, которые будут заниматься позиционированием печатной головки (есть готовый комплект H bot);
  • концевые датчики, отслеживающие точность движения и соответствие системе координат;
  • термисторы;
  • нагревательные элементы для печатного вещества.

Если вы будете печатать кондитерские изделия из теста или крема, в зависимости от его состава и консистенции может потребоваться нагревание или охлаждение материала, а также перемешивание, чтобы сохранить наносимую массу пластичной. Вариаций на тему может быть множество, но мы рассматриваем общий случай создания 3D-печатного устройства. Для тренировки можно использовать комплекты «сделай сам», H bot и пошаговые инструкции – так называемые Rewrap 3D, предназначенные именно для самостоятельной сборки. Они работают в основном на базе акрила, с помощью которого получают различные фигурки или детали из пластика.

Выбираем лучшее из имеющегося опыта

Итак, собираем 3d принтер своими руками. Сделать его из отдельных комплектующих, например, датчиков и шаговых двигателей, могут себе позволить только инженеры-кулибины. Для большинства людей воплощение в жизнь такой задачи даже при наличии проекта – это не реализуемая идея. Однако, можно пойти другим путем и использовать готовые модули, из которых получается готовое устройство. Общий принцип сборки, надеемся, уже понятен.

Осталось выбрать готовые модули, которые могут быть использованы в самостоятельной сборке такого устройства (на фото):

  • Конструкция представляет собой корпус, собранный из отдельных деталей, выполненных по чертежам из фанеры на лазерной резке. Пример можно посмотреть у UltiMaker Original (предлагаем пошаговую инструкцию на английском в PDF в виде слайд-презентации, всего 109 страниц). Можно начинать работы, сделав стол для 3D принтера.
  • Позиционирующая рамка (ее также называют скоростной кинематикой), самая лучшая и точная – это H BOT. Она есть в продаже и представляет собой уже готовую рельсовую рамку, обеспечивающую отличную базу позиционирования сопла на рельсовом механизме. H BOT впервые показан был в устройстве от Replicator 5, аналог есть MakerBot.

В качестве электроники в самостоятельно собранных моделях себя отлично показал RAMPS 1.4 c прошивкой MARLIN.

Экструдер МК8, требуется небольшая доработка, но вполне реально даже для неопытных мастеров, в качестве хотэнта (термонагревателя для акрила) используется E3D V6, который оптимизирован термотрубкой.

В качестве основы, опыт показывает, лучше всего подходят полупромышленные модели Signum Thingiverse, а также ZAV, которые можно найти на Робофоруме.

Корпусные рамки доступны уже в продаже, но их можно сделать по собственным чертежам, которые составляются по визуальному примеру. На их базе можно увидеть не один 3D принтер, собранный своими руками.

Итоговые параметры самодельного 3D принтера

  1. Размеры заготовки 20*20*20 см.
  2. Материал – любой пластик с диаметром нити 1,6-1,9 мм;
  3. Скорость печати – 200 мм/с, высокоскоростная подача материала.

Некоторые важные дополнения к пошаговой инструкции

  • Необходимо изолировать шаговые двигатели и установить на них охлаждение;
  • Чтобы получить термокамеру, конструкцию собираем со стеклом. Особенно оно актуально при установке второго экструдера с целью повышения скорости печати и создания более сложных форм.
  • Также можно заимствовать позитивный и известный многим опыт китайских разработчиков makeblock на платформе i3 – речь идет о фирменной раме, доступной в продаже. Для управления с компьютера используется arduino mega 2560+ ramps с софтом printrun, который можно свободно скачать.

Что такое Arduino MEGA 2560? Это микроконтролер на основе ATmega2560. В него входит все необходимое для управления периферическим устройством типа 3D принтера. Arduino представляет собой довольно сложное устройство для неопытных пользователей, с которым однако, можно просто разобраться при необходимости. Можно использовать рекомендованный микроконтролер RAMPS 1.4. Для сборки рекомендуем собирать по PDF файлам, показанным выше.



Загрузка...