sonyps4.ru

Визуализация данных в науке и технике. Методы визуализации

Создание визуального контента - это порой дорого, трудно и отнимает много времени. Резонный вопрос: стоит ли этим заниматься?

Данные везде, данные повсюду.

Как говорит Дэвид Маккэндлесс, дизайнер, писатель и журналист в области инфографики, а также автор известной книги «Инфографика. Самые интересные данные в графическом представлении», сегодня человечество живет в информационных джунглях.

Каждую минуту в нашей жизни появляется немыслимое количество новой информации. Мы даже не замечаем этого. Одни лишь твиты, лайки и загрузки фотографий на социальные платформы исчисляются цифрами с 5-6 нулями. Не говоря уже о бесконечном количестве статей, видео-роликов, финансовых операций, аналитических отчетов и многих других вещей, которые сразу могут не прийти в голову, но, безусловно, существует в нашей жизни.

Если верить исследованиям компании Domosphere, предоставляющей программные решения для обработки, систематизации и визуализации бизнес-информации, то с 2013 года количество интернет-пользователей во всем мире выросло с 2,4 млрд. человек до 3,2 млрд человек.

Такой стремительный рост дает огромный толчок развитию высоких технологий и в результате буквально каждый год мы видим, как на рынок выходят все новые системы и гаджеты.

Например, компания, разработавшая мобильное приложение Vine для создания коротких (менее 6 секунд длительностью) видео-роликов, была основана буквально 3 года назад, в июне 2012 года. Twitter выкупила стартап в октябре и открыла для широкой публики в январе 2013. Сегодня каждую секунду в мире просматривается более 1 млн. вайн-роликов, а популярные вайнеры зарабатывают десятки сотен долларов на ведении аккаунтов компаний или на размещении срытой рекламы в своих видео.

Если говорить о других популярных социальных платформах, блогах и приложениях, то с 2013 года

  • количество твитов, отправляемых пользователями за в минуту, увеличилось со 100 до 347 тыс,
  • количество часов видео, загружаемого на YouTube – c 72 до 300 часов,
  • число скачиваний приложений Apple – c 48 до 51 тыс,
  • а количество пинов на Pinterest – c 3,5 до 9,7 тыс.

Как результат, общая картина роста информации в интернете за 1 минуту времени сегодня выглядит приблизительно следующим образом.

Инфографика: рост количества информации в интернете за минуту в 2015 году.

Добро пожаловать в 2015 год!

По прогнозам Комиссии по широкополосному соединению и развитию цифровых технологий число интернет-пользователей к 2020 году увеличится в 2 раза. Соответственно также возрастут объемы информации, которые уже сейчас измеряются в огромными числами.

Петабайт

Если верить Векипедии, то сегодня:

– Google ежедневно обрабатывает около 24 петабайт данных.

– Через сети американского провайдера AT&T еженедельно проходит 19 петабайт трафика.

– Размер результатов экспериментов, проводимых на большом адронном коллайдере за год, достигает 4 петабайта .

Для сравнения:

Все письменное наследие человечества на всех языках мира с момента зарождения письменности составляет всего около 50 петабайт информации. (Из книги «Игфографика. Визуальное представление данных» Рэнди Крам)

Конечно, доступ к таким большим объемам данных открывает перед человечеством безграничные возможности. Позволяет более детально изучать окружающий мир, ломает стереотипы и помогает прогнозировать будущее. Тем не менее, если использовать только традиционные способы работы с информацией, то человек физически не способен справится с объемами и вынужден искать варианты решения проблемы.

Сила визуализации

Как наш мозг воспринимает информацию

Данные, которые выглядят, как абсолютная тарабарщина в обычном виде, становятся понятными и логичными, стоит их преобразовать в графики, диаграммы или видео. Если у нас получается грамотно представить информацию визуально, то мы получаем возможность лучше понимать окружающих людей. Тем не менее, очень многие беспокоятся о том, что визуальное представление значительно упрощает информацию и мы теряем много важный данных в процессе преобразования цифр и текста в графику. Так ли это на самом деле?

Теряем ли мы данные, когда преобразуем цифры и текст в графику?

В 2011 году учеными Эмре Сойер и Рибином Хогартом было проведено исследование среди экономистов. Испытуемых разделили на три группы в зависимости от формы представления информации, которую им предстояло изучить, и попросили ответить на 3 вопроса. В итоге были получены следующие результаты:

1 группа: получила данные в виде классической статистической отчетности - 72% человек дали неверный ответ;

2 группа: получила данные в виде классической статистической отчетности и в виде графика - 61% дали неверный ответ;

3 группа: получила данные только в виде графической информации - ошиблись только 3%.

Вывод очевиден: визуализация данных в некоторых случаях позволяет намного лучше воспринимать информацию, чем цифры и текст!

Посмотрите выступление Дэвида Маккэндлесса на TED Talks. Насколько очевидными становятся многие вещи, когда мы получаем возможность оценить их визуально.

Дэвид Маккэндлесс на TED Talks.

Визуализация информации и развитие технологий.

Безусловно, рост спроса на визуализацию данных стимулирует развитие технологий. Хотя обратное тоже верно и новые технологии повышают требования к качеству графики. В любом случае, сегодня составить презентацию на основе графиков и диаграмм, сделать инфографику или снять видео-ролик, не является большой проблемой. Огромное количество графических онлайн и оффлайн программ можно легко найти, изучить и реализовать с их помощью свои самые фантастические идеи.

Можно установить Photoshop или Illustrator и создать визуализацию с нуля. Можно воспользоваться более специализированными графическими приложениями, такими как Piktochart, Easel.ly или Visual.ly и разрабатывать графику на основе шаблонов. Даже не буду пытаться перечислить то бесконечное количество фотостоков, стоков с 3D- и видео-графикой, которые сегодня существует на бескрайних просторах интернета. За небольшую плату их ресурсы смогут стать достойным украшением любой вашей инфографики или видео-презентации

Picktochart

Визуализация и социальные платформы.

Взгляните еще раз на инфографику о росте скорости информации и посчитайте, какое примерное количество ресурсов, перечисленных в ней, являются графическими платформами. Instagram, Pinterest, YouTube, Vine, Netflix, Snapchart – все они были разработаны специально для публикации визуального контента. Частично к этой группе можно также отнести Twitter, Facebook и другие популярные социальные сети, так как их интерфейс не предполагает публикацию длинных текстовых зарисовок. Зато на них очень хорошо смотрятся видео-материалы, фотографии и любая другая графика. Стоит ли упоминать, что среди всех перечисленных ресурсов, вы не найдете ни одного, где бы графический контент вообще не использовался.

Все интернет-исследования из года в год повторяют одно и тоже: визуальные материалы способствуют популяризации аккаунтов, групп и блогов. Использование графического контента в Twitter увеличивает число репостов на 35%, в Facebook – на 87%. Популярность блогов с графикой возрастает на 47%.

Статистика по Twitter

Статистика по Facebook

Сравните два варианта передачи информации, по смыслу абсолютно равнозначные. Какой из них больше привлечет ваше внимание?

Графика vs. Текст

Как визуализация влияет на уровень доверия читателей?

Научно доказано, что визуальный контент способствует росту доверия к текстовым материалам.

Некоторой группе интернет-пользователей было предложено подтвердить или опровергнуть ряд высказываний. Один из примеров: «Орехи макадамия и персики принадлежат к одному и тому же семейству.» В 50 случаях из 100 утверждения, сопровождающиеся картинками, были оценены, как правдивые вне зависимости от того, являются они таковыми или нет.

Орехи макадамия

Другими словами, участники в большей степени доверяли именно тем высказываниям, которые сопровождались фотографиями.

Заключение

В заключении хочется отметить, что любая визуализация данных - инфографика, видео-ролики или просто обычные фотографии - приносит пользу, тогда и только тогда, когда она интересно придумана, талантливо реализована и вовремя и к месту опубликована. Волшебство происходит, только если хорошая идея сочетается с грамотным дизайном и поддерживается умелым маркетингом. В противном случае все вышеперечисленные плюсы мгновенно самоликвидируются и вы принесете проекту больше вреда, чем пользы.

Компьютерная графика -- это область информатики, в которой рассматриваются алгоритмы и технологии визуализации данных. Развитие компьютерной графики определяется в основном двумя факторами: реальными потребностями потенциальных пользователей и возможностями аппаратного и программного обеспечения. Потребности потребителей и возможности техники неуклонно растут, и на сегодняшний день компьютерная графика активно используется в самых различных сферах. Можно выделить следующие области применения компьютерной графики:

  1. Визуализация информации.
  2. Моделирование процессов и явлений.
  3. Проектирование технических объектов.
  4. Организация пользовательского интерфеса.

Визуализация информации

В большинстве научных статей и отчетов не обойтись без визуализации данных. Достойная форма представления данных -- это хорошо структурированная таблица с точными значениями функции в зависимости от некоторых переменных. Но часто более наглядной и эффективной формой визуализации данных является графическая, а, например, при моделировании и обработке изображений -- единственно возможная. Некоторые виды отображения информации различного происхождения перечислены в следующей таблице:

Многие программы для финансовых, научных, технических расчётов используют эти и некоторые другие способы визуализации данных. Визуальное представление информации является прекрасным инструментом при проведении научных исследований, наглядным и веским аргументом в научных статьях и дискуссиях.

Моделирование процессов и явлений

Современные графические системы обладают достаточной производительностью для создания сложных анимационных и динамических изображений. В системах моделирования, которые также называются симуляторами, пытаются получить и визуализировать картину процессов и явлений, которые происходят или могли бы происходить в реальности. Самым известным и наиболее сложным примером такой системы является симулятор полётов, который используют для моделирования обстановки и процесса полёта при обучении пилотов. В оптике симуляторы используются для моделирования сложных, дорогостоящих или опасных явлений. Например, моделирование формирования изображения или моделирования процессов в лазерных резонаторах.

Проектирование технических объектов

Проектирование является одной из основных стадий создания изделия в технике. Современные графические системы позволяют наглядно визуализировать проектируемый объект, что способствует скорейшему выявлению и решению многих проблем. Разработчик судит о своей работе не только по цифрам и косвенным параметрам, он видит предмет проектирования на свойм экране. Компьютерные системы позволяют организовать интерактивное взаимодействие с проектируемым объектом и иммитировать изготовление макета из пластичного материала. CAD-системы существенно упрощают и ускоряют работу инженера-конструктора, освобождая его от рутинного процесса черчения.

Организация пользовательского интерфеса

В последние 5-7 лет визуальная парадигма при организации интерфеса между компьютером и конечным пользователем стала доминирующей. Оконный графический интерфейс встроен во многие современные операционные системы. Уже достаточно стандартизован набор элементов управления, которые используются при построении такого интерфейса. Большинство пользователей уже привыкло к такой организации интерфейса, который позволяет пользователям чувствовать себя более комфортно и повышать эффективность взаимодействия.

Всё это, говорит о том, что в самой операционной системе должны быть уже реализованы достаточно большое количество функций для визуализации элементов управления. Например, операционная система Windows предоставляет разработчикам GDI (Graphics Device Interface). Как показывает практика для некоторых приложений возможностей, предоставляемых системной API, вполне достаточно для визуализации обрабатываемых данных (построения простейших графиков, представления моделируемых объектов и явлений). Но такие недостатаки, как низкая скорость отображения, отсутствие поддержки трехмерной графики не способствуют ее использованию для визуализации научных данных и компьютерного моделирования. В некоторых научных и технических программах со сложным графическим выводом требуются функции для более быстрой, мощной и гибкой визуализации вычисленных данных, моделируемых явлений, проектируемых объектов.

Технологии компьютерной графики

В современных научных и технических приложениях сложный графическая вызуализация реализуется с использованием библиотеки OpenGL, которая стала стандартом de facto в области трёхмерной визуализации. Библиотека OpenGL представляет собой высокоэффективный программный интерфейс к графическому аппаратному обеспечению. Наибольшую призводительность эта библиотека позволяет достичь в аппаратных системах работающих на основе современных графических ускорителей (аппаратное обеспечение, освобождающее процессор и выполняющее вычисления, необходимые для визуализации).

Архитектура и алгоритмы были библиотеки разработаны в 1992 году специалистами фирмы Silicon Graphics, Inc. (SGI) для собственного аппаратного обеспечения графических рабочих станций Iris. Через несколько лет библиотека была портирована на многие аппаратно-программные платформы (в том числе Intel+Windows) и сегодня является надёжной многоплатформенной библиотекой.

Библиотека OpenGL является бесплатно распространяемой, что является ее несомненным достоинством и причиной столь широкого использования.

OpenGL является не объектно-ориентированной, а процедурной библиотекой (около сотни комманд и функций), написанная на языке С. С одной стороны - это недостаток (компьютерная графика - благодатная область использования объектно-ориентированного программирования), но зато работать с OpenGL могут программисты работающие на C++, Delphi, Fortran и даже Java и Python.

Совместно с OpenGL обычно используется несколько вспомогательных библиотек, которые помогают наcтроить работу библиотеки в данной среде или выполнить более сложные, комплексные функции визуализации, которые реализуются посредством примитивных функций OpenGL. Кроме того существует большое количество графических библиотек специализированного назначения, которые используют библиотеку OpenGL в качестве низкоуровневого базиса, своеобразного ассемблера, на основе которого строятся сложные функции графического вывода (OpenInventor, vtk, IFL и многие другие). С сообществом пользователей OpenGL можно познакомиться на сайте www.opengl.org

Фирма Microsoft тоже разработала и предлагает использовать для подобных целей мультимедийную библиотеку DirectX. Эта библиотека широко используется в игровых и мультимедийных приложениях, а в научных и технических приложениях распространения не получила. Причина заключатся, скорее всего в том, что DirectX работает только под Windows.

    Визуализация - ИЗОБРАЖЕНИЙ 24. Визуализация Display Визуальное представление данных Источник: ГОСТ 27459 87: Системы обработки информации. Машинная графика. Термины и определения …

    Способ отображения информации о состоянии технологического оборудования и параметрах технологического процесса на мониторе компьютера или операторской панели в системе автоматического управления в промышленности, предусматривающий также… … Википедия

    В общем смысле метод представления информации в виде оптического изображения (например, в виде рисунков и фотографий, графиков, диаграмм, структурных схем, таблиц, карт и т. д.). Очень эффективно визуализация используется для представления… … Словарь бизнес-терминов

    Египетские иероглифы позволяли интуитивно наглядно описывать понятия … Википедия

    Визуализация типовой формы - 98. Визуализация типовой формы Form flash Визуальное представление типовой формы Источник: ГОСТ 27459 87: Системы обработки информации. Машинная графика. Термины и определения … Словарь-справочник терминов нормативно-технической документации

    Визуализация - (лат. visualis зрительный) 1. формирование зрительного наглядного или мысленного образа (например, можно «воочию» представить себе страницу книги, где находится нужный текст); 2. в психопатологии присоединение к нарушениям мышления зрительных… … Энциклопедический словарь по психологии и педагогике

    ГОСТ 27459-87: Системы обработки информации. Машинная графика. Термины и определения - Терминология ГОСТ 27459 87: Системы обработки информации. Машинная графика. Термины и определения оригинал документа: 5. Абсолютная команда визуализации Absolute command Команда визуализации, в которой используются абсолютные координаты… … Словарь-справочник терминов нормативно-технической документации

    Содержание 1 Как это работает 2 Безопасность 3 Действующие службы передачи дорожной … Википедия

    извлечение информации из данных - разведка данных Технология анализа хранилищ данных, базирующаяся на методах ИИ и инструментах поддержки принятия решений. Процесс обнаружения корреляции, тенденций, шаблонов, связей и категорий. Выполняется путем тщательного исследования данных с … Справочник технического переводчика

    Тип Сист … Википедия

Книги

  • , Кабаков Роберт И.. R -это мощный язык для статистических вычислений и графики, который может справится поистине с любой задачей в области обработки данных. Он работает во всех важных операционных системах и…
  • R в действии. Анализ и визуализация данных на языке R , Роберт И. Кабаков. R– это мощный язык для статистических вычислений и графики, который может справиться поистине с любой задачей в области обработки данных. Он работает во всех важныхоперационных системах и…

Которая занимается проектированием пользовательских интерфейсов. В общих чертах Юрий рассказывает о набирающих в последнее время популярность дизайнерских методиках — визуализации и инфографике, о сферах их применения и классификации, процессе создания, инструментах и примерах из практики.

Тема визуализации информации и инфографики регулярно всплывает при работе, да и в целом интересна как практика проектирования и дизайна. Хотя мы в компании работаем над веб-системами, где большинство задач решается стандартными средствами конструирования вроде форм или информационных блоков, иногда требуется емко и компактно подать большое количество информации. Часто это достаточно специфичные задачи, на продумывание интерфейса которых уходит немало времени. Правда, и задачи эти — одни из самых интересных.

У практики отображения информации в графическом виде много синонимов, но в последнее время чаще всего используются два: визуализация данных и инфографика. Существуют эти подходы уже достаточно давно , литературы по этому поводу написано много (среди наиболее известных авторов и дизайнеров: Edward Tufte, Stephen Few, Ben Fry), но в первую очередь интересно, где и как используется инфографика.

Применение

Сейчас существует множество интересных примеров визуализации, но многие из них — скорее объекты искусства, чем практически полезные носители информации. И для тех, и для других можно выделить следующие области использования:

Статистика и отчеты

Самодостаточный жанр, когда данные за некий период времени показываются вместе. Например, статической картинкой в приложении к отчету или настраиваемым графиком в сервисе статистики, с возможностью изменения параметров его отображения.

Справочная информация

Дополнение к основному тексту, наглядно иллюстрирующее его упоминаемыми данными. Скажем, дать общее представление о динамике одного из показателей, либо отобразить какой-то процесс и его этапы; может быть — показать структуру некого явления.

Интерактивные сервисы

Продукты и проекты, в которых инфографика является частью функциональности. Так, в качестве средства навигации по сервисам со сложным workflow может выступать диаграмма процесса. Почти все, что связано с работой с картами и вовсе редко обходится без смешения инфографики и интерактивности, не говоря уже о специализированных системах вроде диспетчерских и большей части компьютерных игр.

Иллюстрации

Не совсем чистый жанр — скорее, использование практик и подходов красивого отображения данных для создания самостоятельных иллюстраций. Они несут некий смысл, но это не основная их задача — основной ценностью является качество исполнения.

Эксперименты и искусство

Визуализация данных без особого практического смысла, скорее в качестве экспериментов или инсталляций. Чаще всего это сложные и громоздкие изображения, которые сложно «прочитать» бегло — объем данных и взаимосвязей между ними таков, что нужно разбираться с картинкой по частям; либо просто абстрактные изображения, автоматически сгенерированные. В последнее время направление все более популярно и периодически выходит за рамки компьютерной графики — например, в виде графиков-скульптур.

(внимание! более 9 мегабайт)

Классификация

Набор инструментов визуализации достаточно обширен — от простейших линейных графиков до сложных отображений множества связей. Разбить их можно на несколько типов:

Графики

Показывают зависимость данных друг от друга. Строятся по осям X и Y, хотя могут быть и трехмерными.

Линейный график (line chart, area chart)

Наиболее распространенный случай. Объединяет линией набор точек, соответствующих значениям по осям. Например, ежедневная посещаемость сайта за месяц. Может показывать сразу несколько наборов данных — например, статистику просмотров для 3 наиболее популярных страниц.

График рассеивания (scatterplot)

Показывает распределение ограниченного набора точек, соответствующих значениям по осям. Между точек часто рисуется выравнивающая кривая — она наглядно показывает закономерности среди значений. Например, связь между стажем работы и производительностью труда среди 50 сотрудников компании (просто соединить полученные точки в виде линейного графика нельзя — и смысл искажается, и линия будет дерганой).

Диаграммы сравнения

Показывают соотношения набора данных. Во многих случаях строятся вокруг осей, хотя и необязательно.

Столбиковая диаграмма (bar chart)

Показывает один или несколько наборов данных, сравнивая их между собой. Существует два варианта отображения в случае нескольких наборов: либо в виде нескольких стоящих рядом столбиков, либо в виде одного, но поделенного внутри в соответствии с долями значений. Например, ежегодная прибыль трёх компаний за последние 5 лет или их доли рынка за это же время.

Круговая диаграмма (pie chart)

Отображает процент, занимаемый каждым значением внутри набора данных, в виде разбитого на части круга. Например, доли рынка сотовых операторов. Может отображать сразу несколько наборов данных — в этом случае диаграммы наложены друг на друга, причем каждая из них меньше предыдущей. Например, доли рынка сотовых операторов за последение 3 года.

Площадная диаграмма (bubble chart)

Смесь графика и диаграммы — по двум осям расставлен набор точек, соответствующий значениям. При этом сами точки не соединены и имеют различную величину, которая задается третьим параметром. Например, сравнение количества купленных товаров, общей стоимости покупки и величины общего бюджета покупателя.

Кольцевая диаграмма (ring chart)

Показывает процент от максимального количества, которое занимает одно из значений в наборе данных, в виде частично закрашенного кольца. Например, количество завоеванных на чемпионате медалей относительно максимального. Часто используется сразу несколько таких диаграмм, сравнивающих разные значения.

Диаграмма разброса (span chart)

Показывает минимальную и максимальную величину значений внутри набора данных в виде урезанной столбиковой диаграммы. Начало столбика лежит не на горизонтальной оси, а в точке минимального значения по вертикали. Например, разброс стоимости квадратного метра жилья в разных районах города.

Лепестковая диаграмма (radar chart)

Сравнивает величины нескольких значений, каждая из которых соответствует точке на оси. Количество осей соответствует количеству значений, а точки объединены линями. Например, сравнение рентабельности каждого из 8 направлений деятельности компании.

Облако тегов (tag cloud)

Сравнивает ключевые слова или фразы (значения), содержащиеся внутри фрагмента текста (набора данных), задавая каждому из них свой размер шрифта. Размер шрифта зависит от величины параметра. Например, 25 самых часто упоминаемых в газетах слов за декабрь 2008 года.

Тепловая диаграмма (heat map)

Сравнивает значения внутри набора данных, закрашивая их одним из цветов в заранее выбранном спектре. Основой является изображение или другая диаграмма, на которой расставлены значения. Цвет зависит от величины параметра и чаще всего накладывается в виде пятен. Например, элементы главной страницы сайта, по которым пользователи кликают чаще всего.

Деревья и структурные диаграммы

Показывают структуру набора данных и взаимосвязи между его элементами.

Дерево (tree)

Показывает иерархию набора данных, в которой элементы являются родительскими или дочерними по отношению друг к другу. Выстраивается в виде соединенных линиями узлов, как правило, сверху вниз. Узел обычно отображается кругом или прямоугольником. Например, карта сайта.

Ментальная карта (mind map)

Показывает состав и структуру явления или понятия в виде дерева, в котором каждый узел имеет один или несколько дочерних элементов. Это частный случай дерева, с той разницей, что ветви расходятся из узла, расположенного в центре изображения. Например, конспект книги по управлению проектами, который отражает ее содержание и основные понятия.

Формализованные структурные диаграммы

Показывают состав и структуру системы или ее части в виде карточек, которые описаны с разной степенью детализации и связаны друг с другом как родительские и дочерние.
Отображается в стандартизованном виде — например, с помощью UML (Unified Modeling Language) или IDEFIX (Integration Definition for Information Modeling). Например, все сущности, необходимые для работы одного из модулей программной системы.

Диаграмма Венна-Эйлера (Venn/Euler diagram)

Показывает отношения между значениями набора данных в виде накладывающихся друг на друга кругов (чаще всего трёх). Область, в которой пересекаются все круги, показывает общее между ними. Например, пересечением соблюдения сроков, бюджета и поставленных задач является успех проекта.

Плоское дерево (tree map)

Показывает иерархию набора данных, в которой элементы являются родительскими или дочерними по отношению друг к другу. Отображается в виде набора вложенных прямоугольников, каждый из которых является ветвью дерева, а находящиеся внутри него — дочерними элементами и ветвями. Прямоугольники различаются по размеру в зависимости от параметра и имеют цвет, который задается другим параметром. Например, детальная структура бюджета компании, в котором цветом показан процент изменения каждого пункта по сравнению с предыдущим годом.

В последние десятилетия в области передачи визуальной информации произошли почти революционные изменения:

колоссально возросли объем и количество передаваемой информации;

сложились новые виды визуальной информации и способы ее передачи.

Технический прогресс и формирование новой визуальной культуры неминуемо накладывает свой отпечаток на свод требований, предъявляемых к деятельности педагогов.

Одним из средств улучшения профессиональной подготовки будущих учителей, способных к педагогическим инновациям, к разработке технологий проектирования эффективной учебной деятельности школьника в условиях доминирования визуальной среды, считается формирование у них особых умений визуализации учебной информации. Термин «визуализация» происходит от латинского visualis - воспринимаемый зрительно, наглядный. Визуализация информации представление числовой и текстовой информации в виде графиков, диаграмм, структурных схем, таблиц, карт и т.д. Однако такое понимание визуализации как процесса наблюдения предполагает минимальную мыслительную и познавательную активность обучающихся, а визуальные дидактические средства выполняют лишь иллюстративную функцию. Иное определение визуализации дается в известных педагогических концепциях (теории схем - Р.С. Андерсон, Ф. Бартлетт; теории фреймов - Ч. Фолкер, М. Минский и др.), в которых этот феномен истолковывается как вынесение в процессе познавательной деятельности из внутреннего плана во внешний план мыслеобразов, форма которых стихийно определяется механизмом ассоциативной проекции .

Аналогичным образом понятие визуализации понимает Вербицкий А.А.: «Процесс визуализации - это свертывание мыслительных содержаний в наглядный образ; будучи воспринятым, образ может быть развернут и служить опорой адекватных мыслительных и практических действий» . Данное определение позволяет развести понятия «визуальный», «визуальные средства» от понятий «наглядный», «наглядные средства». В педагогическом значении понятия «наглядный» всегда основано на демонстрации конкретных предметов, процессов, явлений, представление готового образа, заданного извне, а не рождаемого и выносимого из внутреннего плана деятельности человека. Процесс разворачивания мыслеобраза и «вынесение» его из внутреннего плана во внешний план представляет собой проекцию психического образа. Проекция встроена в процессы взаимодействия субъекта и объектов материального мира, она опирается на механизмы мышления, охватывает различные уровни отражения и отображения, проявляется в различных формах учебной деятельности .

Если целенаправленно рассматривать продуктивную познавательную деятельность как процесс взаимодействия внешнего и внутреннего планов, как вынесение будущих продуктов деятельности из внутреннего плана во внешний, как корректировку и реализацию во внешнем плане замыслов, то визуализация выступает в качестве главного механизма, обеспечивающего диалог внешнего и внутреннего планов деятельности. Следовательно, в зависимости от свойств дидактических визуальных средств зависит уровень активизации мыслительной и познавательной деятельности обучающихся.

В связи с этим возрастает роль визуальных моделей представления учебной информации, позволяющие преодолеть затруднения, связанные с обучением, опирающимся на абстрактно-логическое мышление. В зависимости от вида и содержания учебной информации используются приемы ее уплотнения или пошагового развертывания с применением разнообразных визуальных средств. В настоящее время в образовании перспективной представляется применение когнитивной визуализации дидактических объектов . Под это определение фактически подпадают все возможные виды визуализации педагогических объектов, функционирующие на принципах концентрации знаний, генерализации знаний, расширения ориентировочно-презентационных функций наглядных дидактических средств, алгоритмизации учебно-познавательных действий, реализуемая в визуальных средств.

На практике, используются более сотни методов визуального структурирования - от традиционных диаграмм и графов до «стратегических» карт (roadmaps), лучевых схем-пауков (spiders) и каузальных цепей (causal chains). Такое многообразие обусловлено существенными различиями в природе, особенностях и свойствах знаний различных предметных областей. Наибольшей информационной емкостью, на наш взгляд, универсальностью и интегративностью обладают структурно-логические схемы. Такой способ систематизации и визуального отображения учебной информации основывается на выявлении существенных связей между элементами знания и аналитико-синтетической деятельности при переводе вербальной информации в невербальную (образную), синтезирование целостной системы элементов знаний. Освоение перечисленных видов по конкретизации смыслов, разворачиванию логической цепочки размышлений, описанию образов и их признаков мыслительной деятельности, а также операций с помощью вербальных средств обмена информацией формирует продуктивные способы мышления, столь необходимые специалистам при современных темпах развития науки, техники и технологий. Согласно достижениям нейропсихологии «обучение эффективно тогда, когда потенциал мозга человека развивается через преодоление интеллектуальных трудностей в условиях поиска смысла через установление закономерностей» .

Структурно-логические схемы создают особую наглядность, располагая элементы содержания в нелинейном виде и выделяя логические и преемственные связи между ними. Такая наглядность опирается на структуру и ассоциативные связи, характерные для долговременной памяти человека. В некотором роде структурно-логические схемы выступают в роли промежуточного звена между внешним линейным содержанием (текст учебника) и внутренним нелинейным содержанием (в сознании). В качестве одного из достоинств структурно-логических схем А.В. Петров выделяет то, что «она выполняет функцию объединения понятий в определенные системы» . Сами по себе понятия ничего не могут сказать о содержании предмета обучения, но будучи связанными определенной системой, они раскрывают структуру предмета, его задачи и пути развития. Понимание и осмысление новой ситуации возникает тогда, когда мозг находит опору в прежних знаниях и представлениях.

Отсюда вытекает важность постоянной актуализации прежнего опыта для овладения новыми знаниями. Процесс изучения нового материала можно представить как восприятие и обработку новой информации путем ее соотнесения с понятиями и способами действий, известными обучающемуся, посредством использования освоенных им интеллектуальных операций. Поступающая в мозг по различным каналам информация концептуализируется и структурируется, образуя в сознании концептуальные сети. Новая информация встраивается в существующие когнитивные схемы, преобразует их и формирует новые когнитивные схемы и интеллектуальные операции. При этом устанавливаются связи между известными понятиями и способами действий и новыми знаниями, возникает структура нового знания .

По данным психологов новая информация усваивается и запоминает лучше тогда, когда знания и умения «запечатлеваются» в системе визуально-пространственной памяти , следовательно представление учебного материала в структурированном виде позволяет быстрее и качественнее усваивать новые системы понятий, способы действий. В качестве примера можно привести визуальную схему: «Цветовая модель RGB» (см. рис. 2).



Рис. 2.

Визуализация учебного материала открывает возможность не только собрать воедино все теоретические выкладки, что позволит быстро воспроизвести материал, но и применять схемы для оценивания степени усвоения изучаемой темы. В практике также широко используется метод анализа конкретной схемы или таблицы, в котором вырабатывают навыки сбора и обработки информации. Метод позволяет включить обучаемых в активную работу по применению теоретической информации в практической работе. Особое место уделяется совместному обсуждению, в процессе которого есть возможность получать оперативную обратную связь, понимать лучше себя и других людей. Обобщая сказанное, заметим, что в зависимости от места и назначения визуальных дидактических материалов в процессе формирования понятия (изучении теории, явления) к выбору определенной структурной модели и наглядному отображению содержания обучения должны быть предъявлены различные психолого-педагогические требования.

При визуализации учебного материала следует учитывать, что наглядные образы сокращают цепи словесных рассуждений и могут синтезировать схематичный образ большей «емкости», уплотняя тем самым информацию. В процессе разработки учебно-методических материалов необходимо контролировать степень обобщения содержания обучения, дублировать вербальную информацию образной и наоборот, чтобы при необходимости звенья логической цепи были полностью восстановлены обучающимися.

Другим важным аспектом использования визуальных учебных материалов является определение оптимального соотношения наглядных образов и словесной, символьной информации. Понятийное и визуальное мышление на практике находятся в постоянном взаимодействии. Они, дополняя друг друга, раскрывают различные стороны изучаемого понятия, процесса или явления. Словесно-логическое мышление дает нам более точное и обобщенное отражение действительности, но это отражение абстрактно. В свою очередь, визуальное мышление помогает организовать образы, делает их целостными, обобщенными, полными.

Визуализация учебной информации позволяет решить целый ряд педагогических задач:

обеспечение интенсификации обучения;

активизации учебной и познавательной деятельности;

формирование и развитие критического и визуального мышления;

зрительного восприятия;

образного представления знаний и учебных действий;

передачи знаний и распознавания образов;

повышения визуальной грамотности и визуальной культуры.



Загрузка...