sonyps4.ru

Виды топологий. Значение слова топология

— это способ описания конфигурации сети, схема расположения и соединения сетевых устройств. Топология сети позволяет увидеть всю ее структуру, сетевые устройства, входящие в сеть, и их связь между собой.

Выделяют несколько видов топологий: физическую, логическую, информационную и топологию управления обменом. В этой статье мы поговорим о физической топологии сети, которая описывает реальное расположение и связи между узлами локальной сети.

Выделяют несколько основных видов физических топологий сетей:

  1. Шинная топология сети — топология, при которой все компьютеры сети подключаются к одному кабелю, который используется совместно всеми рабочими станциями. При такой топологии выход из строя одной машины не влияет на работу всей сети в целом. Недостаток же заключается в том, что при выходе из строя или обрыве шины нарушается работа всей сети.
  2. Топология сети «Звезда» — топология, при которой все рабочие станции имеют непосредственное подключение к серверу, являющемуся центром "звезды". При такой схеме подключения, запрос от любого сетевого устройства направляется прямиком к серверу, где он обрабатывается с различной скоростью, зависящей от аппаратных возможностей центральной машины. Выход из строя центральной машины приводит к остановке всей сети. Выход же из строя любой другой машины на работу сети не влияет.
  3. Кольцевая топология сети — схема, при которой все узлы соединены каналами связи в неразрывное кольцо (необязательно окружность), по которому передаются данные. Выход одного ПК соединяется с входом другого. Начав движение из одной точки, данные, в конечном счете, попадают на его начало. Данные в кольце всегда движутся в одном и том же направлении. Такая топология сети не требует установки дополнительного оборудования (сервера или хаба), но при выходе из строя одного компьютера останавливается и работа всей сети.
  4. Ячеистая топология сети — топология, при которой каждая рабочая станция соединяется со всеми другими рабочими станциями этой же сети. Каждый компьютер имеет множество возможных путей соединения с другими компьютерами. Поэтому обрыв кабеля не приведет к потере соединения между двумя компьютерами. Эта топология сети допускает соединение большого количества компьютеров и характерна, как правило, для крупных сетей.
  5. При смешанной топологии применяются сразу несколько видов соединения компьютеров между собой. Встречается она достаточно редко в особо крупных компаниях и организациях.

Для чего нужно знать виды топологий и все их минусы и плюсы? От схемы сети зависит состав оборудования и программного обеспечения. Топологию выбирают, исходя из потребностей предприятия. Кроме того, знание топологии сети позволяет оценивать ее слабые места, а также зависимость стабильности ее работы от отдельных составляющих, тщательнее планировать последующие подключения нового сетевого оборудования и ПК. В случае какого-то сбоя, отсутствия связи с каким-либо компьютером сети, на карте всегда можно посмотреть, где данное устройство располагается, на каком этаже, в каком офисе или помещении, на что, прежде всего, нужно обратить внимание и куда идти в первую очередь для устранения неисправности.

И тут мы подошли к одному из ключевых вопросов, интересующих всех системных администраторов, а именно: как нарисовать схему сети с минимальными затратами времени, сил и средств? Если сеть велика и состоит из десятков серверов, сотен компьютеров и еще множества других сетевых устройств (принтеров, свитчей и т.д.), даже опытному системному администратору (не говоря уже о новичке) очень сложно быстро разобраться во всех связях между сетевым оборудованием. О создании топологии сети вручную тут и речи быть не может. К счастью, современный рынок ПО предлагает специальные программы для автоматического исследования и построения схемы сети. Это позволяет системному администратору узнать, где и какое оборудование находится, не прибегая к ручному исследованию проводов.

Таким образом, даже если вы в компании новичок, и предыдущий сисадмин не горел большим желанием «сдавать» вам сеть по всем правилам, программы рисования топологии сети позволят вам быстро включиться в работу и начать ее с построения схемы вашей сети.

Существуют пять основных топологий (рис. 4.1):

    общая шина (Bus);

    кольцо (Ring);

    звезда (Star);

    древовидная (Tree);

    ячеистая (Mesh).

Рис. 4.14 Типы топологий

Общая шина

Общая шина это тип сетевой топологии, в которой рабочие станции расположены вдоль одного участка кабеля, называемого сегментом.

Рис. 4.15 ТопологияОбщая шина

Топология Общая шина (рис. 4.2) предполагает использование одного кабеля, к которому подключаются все компьютеры сети. В случае топологииОбщая шина кабель используется всеми станциями по очереди. Принимаются специальные меры для того, чтобы при работе с общим кабелем компьютеры не мешали друг другу передавать и принимать данные. Все сообщения, посылаемые отдельными компьютерами, принимаются и прослушиваются всеми остальными компьютерами, подключенными к сети.Рабочая станция отбирает адресованные ей сообщения, пользуясьадресной информацией. Надежность здесь выше, так как выход из строя отдельных компьютеров не нарушит работоспособность сети в целом. Поиск неисправности в сети затруднен. Кроме того, так как используется только один кабель, в случае обрыва нарушается работа всей сети. Шинная топология - это наиболее простая и наиболее распространенная топология сети.

Примерами использования топологии общая шина является сеть 10Base–5 (соединение ПК толстым коаксиальным кабелем) и 10Base–2 (соединение ПК тонким коаксиальным кабелем).

Рис. 4.16 ТопологияКольцо

Кольцо – это топология ЛВС, в которой каждая станция соединена с двумя другими станциями, образуя кольцо (рис.4.3). Данные передаются от одной рабочей станции к другой в одном направлении (по кольцу). Каждый ПК работает как повторитель, ретранслируя сообщения к следующему ПК, т.е. данные, передаются от одного компьютера к другому как бы по эстафете. Если компьютер получает данные, предназначенные для другого компьютера, он передает их дальше по кольцу, в ином случае они дальше не передаются. Очень просто делается запрос на все станции одновременно. Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них, вся сеть парализуется. Подключение новой рабочей станции требует краткосрочного выключения сети, т.к. во время установки кольцо должно быть разомкнуто. Топология Кольцо имеет хорошо предсказуемое время отклика, определяемое числом рабочих станций.

Чистая кольцевая топология используется редко. Вместо этого кольцевая топология играет транспортную роль в схеме метода доступа. Кольцо описывает логический маршрут, а пакет передается от одной станции к другой, совершая в итоге полный круг. В сетях TokenRingкабельная ветвь из центрального концентратора называется MAU (MultipleAccessUnit). MAU имеет внутреннее кольцо, соединяющее все подключенные к нему станции, и используется как альтернативный путь, когда оборван или отсоединен кабель одной рабочей станции. Когда кабель рабочей станции подсоединен к MAU, он просто образует расширение кольца: сигналы поступают к рабочей станции, а затем возвращаются обратно во внутреннее кольцо

Звезда – это топология ЛВС (рис.4.4), в которой все рабочие станции присоединены к центральному узлу (например, к концентратору), который устанавливает, поддерживает и разрывает связи между рабочими станциями. Преимуществом такой топологии является возможность простого исключения неисправногоузла . Однако, если неисправен центральный узел, вся сеть выходит из строя.

В этом случае каждый компьютер через специальный сетевой адаптер подключается отдельным кабелем к объединяющему устройству. При необходимости можно объединять вместе несколько сетей с топологией Звезда, при этом получаются разветвленные конфигурации сети. В каждой точке ветвления необходимо использовать специальные соединители (распределители, повторители или устройства доступа).

Рис. 4.17 ТопологияЗвезда

Примером звездообразной топологии является топология Ethernetс кабелем типаВитая пара 10BASE-T, центромЗвезды обычно являетсяHub.

Звездообразная топология обеспечивает защиту от разрыва кабеля. Если кабель рабочей станции будет поврежден, это не приведет к выходу из строя всего сегмента сети. Она позволяет также легко диагностировать проблемы подключения, так как каждая рабочая станция имеет свой собственный кабельный сегмент, подключенный к концентратору. Для диагностики достаточно найти разрыв кабеля, который ведет к неработающей станции. Остальная часть сети продолжает нормально работать.

Однако звездообразная топология имеет и недостатки. Во-первых, она требует много кабеля. Во-вторых, концентраторы довольно дороги. В-третьих, кабельные концентраторы при большом количестве кабеля трудно обслуживать. Однако в большинстве случаев в такой топологии используется недорогой кабель типа витая пара . В некоторых случаях можно даже использовать существующие телефонные кабели. Кроме того, для диагностики и тестирования выгодно собирать все кабельные концы в одном месте. По сравнению с концентраторамиArcNetконцентраторыEthernetи MAUTokenRingдостаточно дороги. Новые подобные концентраторы включают в себя средства тестирования и диагностики, что делает их еще более дорогими.

Лента Мебиуса, интересна тем, что имеет только одну поверхность; такие формы являются объектом изучения топологии. Топология (греч. – место, logos – наука) – раздел математики, который приближен к геометрии. В то время как алгебра начинается с рассматривания операций, геометрия – фигур, а математический анализ – функций; фундаментальное понятие топологии – непрерывность. Непрерывное отображение деформирует пространство, не разрывая его, при этом отдельные точки или части пространства могут склеиться (соединиться), но близкие точки остаются близкими. В отличие от геометрии, где рассматриваются преимущественно метрические характеристики, такие как длина, угол и площадь, в топологии эти характеристики считаются несущественными на фоне изучаются такие фундаментальные свойства фигуры, как связность (количество кусков, дыр и т.д.) или возможность непрерывно здеформуваты ее к сферы и обратно (это возможно для поверхности куба, но невозможно для поверхности тора).
Аксиоматика топологии построена на принципах теории множеств, но ведущую роль в исследованиях по современной топологии играют прежде алгебраические и геометрические методы. Объектами исследования топологии является топологические пространства, совместное обобщение таких структур как граф, поверхность в трехмерном пространстве и множество Кантора и отображения между ними. При этом исследуются свойства топологических пространств как в малом (локальные), так и в целом (глобальные). Среди разнообразных направлений топологии отметим приближенную к теории множеств общую топологию, которая изучает такие общие свойства абстрактных топологических пространств как компактность или связность, и алгебраическую топологию, которая пытается описать топологические пространства с помощью их алгебраических инвариантов, например чисел Бетти и фундаментальной группы. Геометрическая топология изучает топологические пространства геометрического происхождения, узлы в трехмерном евклидовом пространстве и трехмерные многообразия. К геометрической топологии принадлежит одна из крупнейших и известнейших математических проблем, гипотеза Пуанкаре, которую наконец (2003 г.) доказал российский математик Григорий Перельман.
Наряду с алгеброй и геометрией, топологические методы широко используются в функциональном анализе, теории динамических систем и современной математической физике.
Срок топология используется для обозначения как математической дисциплины, так и для определенной математической структуры, смотри топологическое пространство.
Семь мостов Кенигсберга – первая задача топологии, которая была рассмотрена Л. Эйлером. Начальные исследования по топологии принадлежат Леонарду Эйлеру. Считается, что статья Эйлера «Solutio problematis ad geometriam situs pertinentis» («Решение вопроса, связанного с геометрией положения»), напечатанная в 1736 г., содержала первые результаты по топологии. Новая точка зрения, предложенная Эйлером, заключалась в том, чтобы во время изучения определенных вопросов по геометрии отказаться от рассмотрения метрических свойств геометрических фигур, таких как длина и площадь. Так, в 1750 г. в письме Гольдбаха Эйлер сообщил о своей славной формулу

В – Р + Г = 2,

Которая связывает число вершин В, ребер Р и граней Г выпуклого многогранника.
В 1895 г. Анри Пуанкаре опубликовал цикл статей Analysis Situs, в которых заложил основы алгебраической топологии. Совершенствуя предварительные исследования связности топологических пространств, Пуанкаре ввел понятие гомотопии и гомологии и предоставил определение фундаментальной группы.
В определенном смысле, работы Пуанкаре подвели итог исследованиям Эйлера, Люилье, Гаусса, Римана, листингу, Мебиуса, Жордана, Клейна, Бетти и др. с комбинаторной и геометрической топологии. Важной особенностью почти всех этих работ, включая Пуанкаре, был их интуитивный характер. Вместе с существенным количеством примеров топологических объектов и результатов для их свойств, новой области математики хватало ли не самого главного: строгого определения объектов ее исследования, то есть, современным языком, топологических пространств.
Осознание важности топологической парадигмы в математическом анализе, связанной со строгим обоснованием границ, непрерывности и компактности в работах Больцано, Коши, Вейерштрасса, Кантора и др. привело к аксиоматического определения основных понятий топологии и развития общей топологии, а вместе с ней и топологии векторных пространств, функционального анализа. Таким образом, проблемы анализа образуют вторых, во многом, независимое от вопросов геометрии, источник для развития топологии. Следует отметить что до сих пор пути развития общего и алгебраической топологии почти не пересекаются.
Общепризнанная ныне аксиоматика топологии основывается на теории множеств, которая была образована Георгом Кантором во второй половине 19-го века. В 1872 г. Кантор предоставил определение открытых и замкнутых множеств действительных чисел. Интересно отметить, что Кантор поступил в некоторых идей теории множеств, например, множества Кантора, в пределах своих исследований по рядов Фурье. Систематизируя работы Георга Кантора, Вито Вольтерры, Чезаре Арцела, Жака Адамара и др., в 1906 году Морис Фреше обозначил понятие метрического пространства. Чуть позже было осознано, что метрическое пространство – это частный случай более общего понятия, топологического пространства. В 1914 г. Феликс Хаусдорф использовал термин «топологическое пространство» в близком к современному смысле (рассмотренные им топологические пространства сейчас называют хаусдорфовой).
Происхождение названия
Собственно термин «топология» («topologie» на немецком языке) впервые появился лишь в 1847 г. в статье Листинг Vorstudien zur Topologie. Однако к тому времени Листинг уже более 10 лет использовал этот термин в своих переписки. «Topology», английская форма срока, была предложена в 1883 в журнале Nature для того чтобы различить качественную геометрию от геометрии обычной, в которой превалируют количественные соотношения. Слово topologist – т.е. тополог, в смысле «специалист по топологии" было впервые использовано в 1905 в журнале Spectator. Благодаря влиянию упомянутых выше статей Пуанкаре, топология долгое время была известна еще под названием Analysis Situs (лат. анализ места).
Топологические пространства естественно появляются во многих разделах математики. Это делает топологию чрезвычайно универсальным инструментом для математиков Общая топология определяет и изучает такие свойства пространств и отображений между ними как связность, компактность и непрерывность. Алгебраическая топология использует объекты абстрактной алгебры, а особенно теории категорий для изучение топологических пространств и отображений между ними.
Чтобы понять, для чего нужна топология, можно привести такой пример: в некоторых геометрических задачах не так важно знать точную форму объектов, как знать как они расположены. Если рассмотреть квадрат и круг (контуры), казалось бы такие разные фигуры, можно заметить несколько общего: оба объекта являются одномерными и оба разделяют пространство на две части – внутренность и внешность.
Темой одной из самых статей (автор – Леонард Эйлер) по топологии была демонстрация того, что невозможно найти путь в Кенигсберге (ныне Калининград), который бы пролег через каждый из семи городских мостов ровно по одному разу. Этот результат не зависел ни от длины мостов, ни от расстояния между ними. Влияли только свойства связности: какие мосты связывают которые острова или берега. Эта задача Семи мостов Кенигсберга показательна при изучении математики, также она стала основополагающей в разделе математики, называется теория графов.
Похожей является теорема мохнатой шара с алгебраической топологии, в которой говорится следующее: «невозможно причесать волосы на шаре в одну сторону». Этот факт является достаточно наглядным и многие сразу находят понимание, однако ее формальную запись для многих не является очевидным: не существует ненулевого непрерывного поля касательных векторов на сфере. Как и с кенигсбергских мостами, результат не зависит от точной формы сферы; утверждение выполняется и для грушевидных форм, даже для более общих – каплевидных форм (с некоторыми условиями на гладкость поверхности), при общей условии отсутствия дыр.
Так что для того, чтобы решать подобные задачи, которые в действительности не нуждаются сведений о точной форму объектов, нужно четко знать, от каких же свойств зависит решение таких задач. Сразу возникает потребность в определении топологической эквивалентности. Невозможность пройти каждым из мостов по одному разу относится также к любому расположения мостов, эквивалентного Кенигсбергского; теорема мохнатой шара может быть применена к любому объекту топологически эквивалентного шара.
Непрерывная деформация кофейной чашки в баранку (тор). Такое преобразование называют гомотопии. Фазы преобразования чашки в баранку Интуитивно, два топологических пространства эквивалентны (гомеоморфными), если один может быть преобразован в другой без отрезков или склеек. Традиционным есть такая шутка: тополог не может отличить чашку кофе, из которой она пьет, от бублика, которую он ест, так как достаточно гибкий баранку можно легко превратить в форму чашки, создав углубления и увеличивая его, одновременно уменьшая отверстие до размеров ручки.
В качестве простого исходной задачи можно классифицировать буквы латинского алфавита в терминах топологической эквивалентности. (Будем считать, что толщина линий, из которых составлен буквы ненулевая) В большинстве шрифтов что сейчас применяются существует класс букв ровно с одной дыркой {a, b, d, e, o, p, q}, класс букв без дырок: {c, f, h, k, l, m, n, r, s, t, u, v, w, x, y, z}, и класс букв, состоящих из двух кусков: {i, j}. Буква «g» может принадлежать либо классу букв с одной дыркой, или (в некоторых шрифтах) это может быть буква с двумя дырками (если ее хвостик был заперт). Для более сложного примера можно рассмотреть случай нулевой толщины линий; можно рассмотреть различные топологии в зависимости от того, какой шрифт выбрать. Топология букв имеет свое практическое применение в трафаретной типографии: например, шрифт Braggadocio может быть вырезан из плоскости, не распавшись после этого.
Топология – одна из наиболее центрально-расположенных математических дисциплин, в смысле численности связей и степени взаимного влияния с другими разделами математики. Приведем следующие примеры.
Математическая сообщество высоко отметила вклад топологий к развитию математики. За период с 1936 по 2006 г., одна из высших наград в математике, Медаль Филдса, была присуждена 48 математикам, 9 из них за исследования именно в топологии. В работах еще нескольких из лауреатов топологические методы играли важную роль.
Трем из них премия была присуждена за решение гипотезы Пуанкаре: Григорию Перельману за доведение оригинальной гипотезы относительно трехмерной сферы и Майклу Фридману и Стивену Смейла – за решение аналогичного вопроса в четырех (Фридман) и пяти и более измерениях (Смейл). Интересно, что еще две с Филдсовской премий была присуждена за результаты о сферах: Джону Милнору за открытие 28 дифференцируемых структур на семивимирний сфере, и Жану-Пьеру Серра за разработку методов вычисления гомотопических групп сфер. Таким образом, пять из сорока восьми Филдсовской премий получили исследователи сфер!

Локальная сеть - важный элемент любого современного предприятия, без которого невозможно добиться максимальной производительности труда. Однако чтобы использовать возможности сетей на полную мощность, необходимо их правильно настроить, учитывая также и то, что расположение подсоединенных компьютеров будет влиять на производительность ЛВС.

Понятие топологии

Топология локальных компьютерных сетей - это месторасположение рабочих станций и узлов относительно друг друга и варианты их соединения. Фактически это архитектура ЛВС. Размещение компьютеров определяет технические характеристики сети, и выбор любого вида топологии повлияет на:

  • Разновидности и характеристики сетевого оборудования.
  • Надежность и возможность масштабирования ЛВС.
  • Способ управления локальной сетью.

Таких вариантов расположения рабочих узлов и способов их соединения много, и количество их увеличивается прямо пропорционально повышению числа подсоединенных компьютеров. Основные топологии локальных сетей - это "звезда", "шина" и "кольцо".

Факторы, которые следует учесть при выборе топологии

До того как окончательно определиться с выбором топологии, необходимо учесть несколько особенностей, влияющих на работоспособность сети. Опираясь на них, можно подобрать наиболее подходящую топологию, анализируя достоинства и недостатки каждой из них и соотнеся эти данные с имеющимися для монтажа условиями.

  • Работоспособность и исправность каждой из рабочих станций, подсоединенных к ЛВС. Некоторые виды топологии локальной сети целиком зависят от этого.
  • Исправность оборудования (маршрутизаторов, адаптеров и т. д.). Поломка сетевого оборудования может как полностью нарушить работу ЛВС, так и остановить обмен информацией с одним компьютером.
  • Надежность используемого кабеля. Повреждение его нарушает передачу и прием данных по всей ЛВС или же по одному ее сегменту.
  • Ограничение длины кабеля. Этот фактор также важен при выборе топологии. Если кабеля в наличии немного, можно выбрать такой способ расположения, при котором его потребуется меньше.

О топологии «звезда»

Этот вид расположения рабочих станций имеет выделенный центр - сервер, к которому подсоединены все остальные компьютеры. Именно через сервер происходят процессы обмена данными. Поэтому оборудование его должно быть более сложным.

Достоинства:

  • Топология локальных сетей "звезда" выгодно отличается от других полным отсутствием конфликтов в ЛВС - это достигается за счет централизованного управления.
  • Поломка одного из узлов или повреждение кабеля не окажет никакого влияния на сеть в целом.
  • Наличие только двух абонентов, основного и периферийного, позволяет упростить сетевое оборудование.
  • Скопление точек подключения в небольшом радиусе упрощает процесс контроля сети, а также позволяет повысить ее безопасность путем ограничения доступа посторонних.

Недостатки:

  • Такая локальная сеть в случае отказа центрального сервера полностью становится неработоспособной.
  • Стоимость "звезды" выше, чем остальных топологий, поскольку кабеля требуется гораздо больше.

Топология «шина»: просто и дешево

В этом способе соединения все рабочие станции подключены к единственной линии - коаксиальному кабелю, а данные от одного абонента отсылаются остальным в режиме полудуплексного обмена. Топологии локальных сетей подобного вида предполагают наличие на каждом конце шины специального терминатора, без которого сигнал искажается.

Достоинства:

  • Все компьютеры равноправны.
  • Возможность легкого масштабирования сети даже во время ее работы.
  • Выход из строя одного узла не оказывает влияния на остальные.
  • Расход кабеля существенно уменьшен.

Недостатки:

  • Недостаточная надежность сети из-за проблем с разъемами кабеля.
  • Маленькая производительность, обусловленная разделением канала между всеми абонентами.
  • Сложность управления и обнаружения неисправностей за счет параллельно включенных адаптеров.
  • Длина линии связи ограничена, потому эти виды топологии локальной сети применяют только для небольшого количества компьютеров.

Характеристики топологии «кольцо»

Такой вид связи предполагает соединение рабочего узла с двумя другими, от одного из них принимаются данные, а второму передаются. Главной же особенностью этой топологии является то, что каждый терминал выступает в роли ретранслятора, исключая возможность затухания сигнала в ЛВС.

Достоинства:

  • Быстрое создание и настройка этой топологии локальных сетей.
  • Легкое масштабирование, требующее, однако, прекращения работы сети на время установки нового узла.
  • Большое количество возможных абонентов.
  • Устойчивость к перегрузкам и отсутствие сетевых конфликтов.
  • Возможность увеличения сети до огромных размеров за счет ретрансляции сигнала между компьютерами.

Недостатки:

  • Ненадежность сети в целом.
  • Отсутствие устойчивости к повреждениям кабеля, поэтому обычно предусматривается наличие параллельной резервной линии.
  • Большой расход кабеля.

Типы локальных сетей

Выбор топологии локальных сетей также следует производить, основываясь на имеющемся типе ЛВС. Сеть может быть представлена двумя моделями: одноранговой и иерархической. Они не очень отличаются функционально, что позволяет при необходимости переходить от одной из них к другой. Однако несколько различий между ними все же есть.

Что касается одноранговой модели, ее применение рекомендуется в ситуациях, когда возможность организации большой сети отсутствует, но создание какой-либо системы связи все же необходимо. Рекомендуется создавать ее только для небольшого числа компьютеров. Связь с централизованным управлением обычно применяется на различных предприятиях для контроля рабочих станций.

Одноранговая сеть

Этот тип ЛВС подразумевает равноправие каждой рабочей станции, распределяя данные между ними. Доступ к информации, хранящейся на узле, может быть разрешен либо запрещен его пользователем. Как правило, в таких случаях топология локальных компьютерных сетей «шина» будет наиболее подходящей.

Одноранговая сеть подразумевает доступность ресурсов рабочей станции остальным пользователям. Это означает возможность редактирования документа одного компьютера при работе за другим, удаленной распечатки и запуска приложений.

Достоинства однорангового типа ЛВС:

  • Легкость реализации, монтажа и обслуживания.
  • Небольшие финансовые затраты. Такая модель исключает надобность в покупке дорогого сервера.

Недостатки:

  • Быстродействие сети уменьшается пропорционально увеличению количества подсоединенных рабочих узлов.
  • Отсутствует единая система безопасности.
  • Доступность информации: при выключении компьютера данные, находящиеся в нем, станут недоступными для остальных.
  • Нет единой информационной базы.

Иерархическая модель

Наиболее часто используемые топологии локальных сетей основаны именно на этом типе ЛВС. Его еще называют «клиент-сервер». Суть данной модели состоит в том, что при наличии некоторого количества абонентов имеется один главный элемент - сервер. Этот управляющий компьютер хранит все данные и занимается их обработкой.

Достоинства:

  • Отличное быстродействие сети.
  • Единая надежная система безопасности.
  • Одна, общая для всех, информационная база.
  • Облегченное управление всей сетью и ее элементами.

Недостатки:

  • Необходимость наличия специальной кадровой единицы - администратора, который занимается мониторингом и обслуживанием сервера.
  • Большие финансовые затраты на покупку главного компьютера.

Наиболее часто используемая конфигурация (топология) локальной компьютерной сети в иерархической модели - это «звезда».

Выбор топологии (компоновка сетевого оборудования и рабочих станций) является исключительно важным моментом при организации локальной сети. Выбранный вид связи должен обеспечивать максимально эффективную и безопасную работу ЛВС. Немаловажно также уделить внимание финансовым затратам и возможности дальнейшего расширения сети. Найти рациональное решение - непростая задача, которая выполняется благодаря тщательному анализу и ответственному подходу. Именно в таком случае правильно подобранные топологии локальных сетей обеспечат максимальную работоспособность всей ЛВС в целом.

ТОПОЛОГИЯ
раздел математики, занимающийся изучением свойств фигур (или пространств), которые сохраняются при непрерывных деформациях, таких, например, как растяжение, сжатие или изгибание. Непрерывная деформация - это деформация фигуры, при которой не происходит разрывов (т.е. нарушения целостности фигуры) или склеиваний (т.е. отождествления ее точек). Такие геометрические свойства связаны с положением, а не с формой или величиной фигуры. В отличие от евклидовой и римановой геометрий, геометрии Лобачевского и других геометрий, занимающихся измерением длин и углов, топология имеет неметрический и качественный характер. Раньше она носила названия "анализ ситус" (анализ положения), а также "теория точечных множеств". В научно-популярной литературе топологию часто называют "геометрией на резиновом листе", поскольку ее наглядно можно представлять себе как геометрию фигур, нарисованных на идеально упругих резиновых листах, которые подвергаются растяжению, сжатию или изгибанию. Топология - один из новейших разделов математики.
История. В 1640 французский математик Р.Декарт (1596-1650) нашел инвариантное соотношение между числом вершин, ребер и граней простых многогранников. Это соотношение Декарт выразил формулой V - E + F = 2, где V - число вершин, E - число ребер и F - число граней. В 1752 швейцарский математик Л. Эйлер (1707-1783) дал строгое доказательство этой формулы. Еще один вклад Эйлера в развитие топологии - это решение знаменитой задачи о кенигсбергских мостах. Речь шла об острове на реке Прегель в Кенигсберге (в том месте, где река разделяется на два рукава - Старый и Новый Прегель) и семи мостах, соединяющих остров с берегами. Задача состояла в том, чтобы выяснить, можно ли обойти все семь мостов по непрерывному маршруту, побывав на каждом только один раз и вернувшись в исходную точку. Эйлер заменил участки суши точками, а мосты - линиями. Полученную конфигурацию Эйлер назвал графом, точки - его вершинами, а линии - ребрами. Вершины он разделил на четные и нечетные в зависимости от того, четное или нечетное число ребер выходит из вершины. Эйлер показал, что все ребра графа можно обойти ровна по одному разу по непрерывному замкнутому маршруту, лишь если граф содержит только четные вершины. Так как граф в задаче о кенигсбергских мостах содержит только нечетные вершины, мосты невозможно обойти по непрерывному маршруту, побывав на каждом ровно по одному разу и вернувшись к началу маршрута. Предложенное Эйлером решение задачи о кенигсбергских мостах зависит только от взаимного расположения мостов. Оно положило формальное начало топологии как разделу математики. К.Гаусс (1777-1855) создал теорию узлов, которой позднее занимались И.Листинг (1808-1882), П. Тэйт (1831-1901) и Дж. Александер. В 1840 А. Мебиус (1790-1868) сформулировал так называемую проблему четырех красок, которую впоследствии исследовали О. де Морган (1806-1871) и А. Кэли (1821-1895). Первым систематическим трудом по топологии были Предварительные исследования по топологии Листинга (1874). Основателями современной топологии являются Г. Кантор (1845-1918), А. Пуанкаре (1854-1912) и Л. Брауэр (1881-1966).
Разделы топологии. Топологию можно подразделить на три области: 1) комбинаторную топологию, изучающую геометрические формы посредством их разбиения на простейшие фигуры, регулярным образом примыкающие друг к другу; 2) алгебраическую топологию, занимающуюся изучением алгебраических структур, связанных с топологическими пространствами, с упором на теорию групп; 3) теоретико-множественную топологию, изучающую множества как скопления точек (в отличие от комбинаторных методов, представляющих объект как объединение более простых объектов) и описывающую множества в терминах таких топологических свойств, как открытость, замкнутость, связность и т.д. Разумеется, такое деление топологии на области в чем-то произвольно; многие топологи предпочитают выделять в ней другие разделы.
Некоторые основные понятия. Топологическое пространство состоит из множества точек S и набора S подмножеств множества S, удовлетворяющего следующим аксиомам: (1) все множество S и пустое множество принадлежат набору S; (2) объединение любой совокупности множеств из S есть множество из S; (3) пересечение любого конечного числа множеств из S есть множество из S. Множества, входящие в набор S, называются открытыми множествами, а сам этот набор - топологией в S.
См. МНОЖЕСТВ ТЕОРИЯ . Топологическое преобразование, или гомеоморфизм, одной геометрической фигуры S на другую, S", - это отображение (p (r) p") точек p из S в точки p" из S", удовлетворяющее следующим условиям: 1) устанавливаемое им соответствие между точками из S и S" взаимно однозначно, т.е. каждой точке p из S соответствует только одна точка p" из S" и в каждую точку p" отображается только одна точка p; 2) отображение взаимно непрерывно (непрерывно в обе стороны), т.е. если заданы две точки p, q из S и точка p движется так, что расстояние между ней и точкой q стремится к нулю, то расстояние между соответствующими точками p", q" из S" также стремится к нулю, и наоборот. Геометрические фигуры, переходящие одна в другую при топологических преобразованиях, называются гомеоморфными. Окружность и граница квадрата гомеоморфны, так как их можно перевести друг в друга топологическим преобразованием (т.е. изгибанием и растяжением без разрывов и склеиваний, например, растяжением границы квадрата на описанную вокруг него окружность). Сфера и поверхность куба также гомеоморфны. Чтобы доказать гомеоморфность фигур, достаточно указать соответствующее преобразование, но тот факт, что для каких-то фигур найти преобразование нам не удается, не доказывает, что эти фигуры не гомеоморфны. Здесь помогают топологические свойства.

Рис. 1. ПОВЕРХНОСТЬ КУБА И СФЕРА гомеоморфны, т.е. могут быть переведены друг в друга топологическим преобразованием, но ни поверхность куба, ни сфера не гомеоморфны тору (поверхности "бублика").


Топологическим свойством (или топологическим инвариантом) геометрических фигур называется свойство, которым вместе с данной фигурой обладает также любая фигура, в которую она переходит при топологическом преобразовании. Любое открытое связное множество, содержащее по крайней мере одну точку, называется областью. Область, в которой любую замкнутую простую (т.е. гомеоморфную окружности) кривую можно стянуть в точку, оставаясь все время в этой области, называется односвязной, а соответствующее свойство области - односвязностью. Если же некоторую замкнутую простую кривую этой области нельзя стянуть в точку, оставаясь все время в этой области, то область называется многосвязной, а соответствующее свойство области - многосвязностью. Представьте себе две круговые области, или диски, одну без дыр, а другую с дырами. Первая область односвязна, вторая многосвязна. Односвязность и многосвязность - топологические свойства. Область с дырой не может перейти при гомеоморфизме в область без дыр. Интересно отметить, что если в многосвязном диске провести по разрезу от каждой из дыр до края диска, то он станет односвязным. Максимальное число замкнутых простых непересекающихся кривых, по которым можно разрезать замкнутую поверхность, не разделяя ее на отдельные части, называется родом поверхности. Род - топологический инвариант поверхности. Можно доказать, что род сферы равен нулю, род тора (поверхности "бублика") - единице, род кренделя (тора с двумя дырками) - двум, род поверхности с p дырами равен p. Отсюда следует, что ни поверхность куба, ни сфера не гомеоморфны тору. Среди топологических инвариантов поверхности можно также отметить число сторон и число краев. Диск имеет 2 стороны, 1 край и род 0. Тор имеет 2 стороны, не имеет краев, а его род равен 1. Введенные выше понятия позволяют уточнить определение топологии: топологией называется раздел математики, изучающий свойства, которые сохраняются при гомеоморфизмах.
Важные проблемы и результаты. Теорема Жордана о замкнутой кривой. Если на поверхности проведена простая замкнутая кривая, то существует ли какое-либо свойство кривой, которое сохраняется при деформации поверхности? Существование такого свойства вытекает из следующей теоремы: простая замкнутая кривая на плоскости делит плоскость на две области, внутреннюю и внешнюю. Эта кажущаяся тривиальной теорема очевидна для кривых простого вида, например, для окружности; однако для сложных замкнутых ломаных дело обстоит иначе. Теорема была впервые сформулирована и доказана К.Жорданом (1838-1922); однако доказательство Жордана оказалось ошибочным. Удовлетворительное доказательство было предложено О.Вебленом (1880-1960) в 1905.
Теорема Брауэра о неподвижной точке. Пусть D - замкнутая область, состоящая из окружности и ее внутренности. Теорема Брауэра утверждает, что для любого непрерывного преобразования, переводящего каждую точку области D в точку этой же области, существует некоторая точка, которая остается неподвижной при этом преобразовании. (Преобразование не предполагается взаимно однозначным.) Теорема Брауэра о неподвижной точке представляет особый интерес потому, что она, по-видимому, является, наиболее часто используемой в других разделах математики топологической теоремой.
Проблема четырех красок. Проблема заключается в следующем: можно ли любую карту раскрасить в четыре цвета так, чтобы любые две страны, имеющие общую границу, были раскрашены в различные цвета? Проблема четырех красок топологическая, так как ни форма стран, ни конфигурация границ не имеют значения. Гипотеза о том, что четырех красок достаточно для соответствующей раскраски любой карты, была впервые высказана в 1852. Опыт показал, что четырех красок действительно достаточно, но строгого математического доказательства не удавалось получить на протяжении более ста лет. И только в 1976 К.Аппель и В. Хакен из Иллинойского университета, затратив более 1000 часов компьютерного времени, добились успеха.
Односторонние поверхности. Простейшей односторонней поверхностью является лист Мебиуса, названный так в честь А. Мебиуса, открывшего его необычайные топологические свойства в 1858. Пусть ABCD (рис. 2,а) - прямоугольная полоска бумаги. Если склеить точку A с точкой B, а точку C с точкой D (рис. 2,б), то получится кольцо с внутренней поверхностью, наружной поверхностью и двумя краями. Одну сторону кольца (рис. 2,б) можно окрасить. Окрашенная поверхность будет ограничена краями кольца. Жук может совершить "кругосветное путешествие" по кольцу, оставаясь либо на окрашенной, либо на неокрашенной поверхности. Но если полоску перед склеиванием концов перекрутить на полоборота и склеить точку A с точкой C, а B с D, то получится лист Мебиуса (рис. 2,в). У этой фигуры есть только одна поверхность и один край. Любая попытка окрасить только одну сторону листа Мебиуса обречена на неудачу, так как у листа Мебиуса всего одна сторона. Жук, ползущий по середине листа Мебиуса (не пересекая края), вернется в исходную точку в положении "вверх ногами". При разрезании листа Мебиуса по средней линии он не распадается на две части.



Узлы. Узел можно представлять себе как запутанный кусок тонкой веревки с соединенными концами, расположенный в пространстве. Простейший пример - из куска веревки сделать петлю, пропустить один из ее концов сквозь петлю и соединить концы. В результате мы получим замкнутую кривую, которая остается топологически той же самой, как бы ее ни растягивать или скручивать, не разрывая и не склеивая при этом отдельные точки. Проблема классификации узлов по системе топологических инвариантов пока не решена.
ЛИТЕРАТУРА
Ху Сы-цзян. Теория гомотопий. М., 1964 Куратовский А. Топология, тт. 1-2. М., 1966, 1969 Спеньер Э. Алгебраическая топология. М., 1971 Александров П.С. Введение в теорию множеств и общую топологию. М., 1977 Келли Дж. Общая топология. М., 1981

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "ТОПОЛОГИЯ" в других словарях:

    Топология … Орфографический словарь-справочник

    топология - Физическое или логическое распределение узлов сети. Физическая топология определяет физические связи (каналы) между узлами. Логическая топология описывает возможные соединения между сетевыми узлами. В локальных сетях наиболее распространены три… … Справочник технического переводчика

    В широком смысле область математики, изучающая топологич. свойства разл. матем. и физ. объектов. Интуитивно, к топологич. относятся качественные, устойчивые свойства, не меняющиеся при деформациях. Матем. формализация идеи о топологич. свойствах… … Физическая энциклопедия

    Наука, учение о местностях. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. топология (гр. topos место, местность + ...логия) раздел математики, изучающий наиболее общие свойства геометрических фигур (свойства, не… … Словарь иностранных слов русского языка

    ТОПОЛОГИЯ, раздел математики, изучающий свойства геометрических фигур, остающиеся неизменными при любой деформации сдавливании, растягивании, скручивании (но без разрывов и склеиваний). Чашка с ручкой топологически эквивалентна бублику; куб,… … Научно-технический энциклопедический словарь

    - (от греч. topos место и...логия) раздел математики, изучающий топологические свойства фигур, т. е. свойства, не изменяющиеся при любых деформациях, производимых без разрывов и склеиваний (точнее, при взаимно однозначных и непрерывных… … Большой Энциклопедический словарь

    ТОПОЛОГИЯ, топологии, мн. нет, жен. (от греч. topos место и logos учение) (мат.). Часть геометрии, исследующая качественные свойства фигур (т.е. не зависящие от таких понятий, как длина, величина углов, прямолинейность и т.п.). Толковый словарь… … Толковый словарь Ушакова



Загрузка...