sonyps4.ru

Виды носителей информации. Хранение информации

Человек хранит информацию в собственной памяти, а также в виде записей на различных внешних (по отношению к человеку) носителях: на камне, папирусе, бумаге, магнитных и оптических носителях и пр. Благодаря таким записям информация передается не только в пространстве (от человека к человеку), но и во времени - из поколения в поколение.

Разнообразие носителей информации

Информация может храниться в различных видах: в виде текстов, в виде рисунков, схем, чертежей; в виде фотографий, в виде звукозаписей, в виде кино- или видеозаписей. В каждом случае применяются свои носители. Носитель - это материальная среда, используемая для записи и хранения информации.

К основным характеристикам носителей информации относятся: информационный объем или плотность хранения информации, надежность (долговечность) хранения.

Бумажные носители

Носителем, имеющим наиболее массовое употребление, до сих пор остается бумага . Изобретенная во II веке н.э. в Китае, бумага служит людям уже 19 столетий.

Для сопоставления объемов информации на разных носителях будем пользоваться универсальной единицей - байт , считая, что один символ текста “весит” 1 байт. Книга, содержащая 300 страниц, при размере текста на странице примерно 2000 символов имеет информационный объем 600 000 байт, или 586 Кб. Информационный объем средней школьной библиотеки, фонд которой составляет 5000 томов, приблизительно равен 2861 Мб = 2,8 Гб.

Что касается долговечности хранения документов, книг и прочей бумажной продукции, то она очень сильно зависит от качества бумаги, от красителей, используемых при записи текста, от условий хранения. Интересно, что до середины XIX века (с этого времени в качестве бумажного сырья начали использовать древесину) бумага делалась из хлопка и текстильных отходов - тряпья. Чернилами служили натуральные красители. Качество рукописных документов того времени было довольно высоким, и они могли храниться тысячи лет. С переходом на древесную основу, с распространением машинописи и средств копирования, с использованием синтетических красителей срок хранения печатных документов снизился до 200–300 лет.

Магнитные носители

В XIX веке была изобретена магнитная запись. Первоначально магнитная запись использовалась только для сохранения звука. Самым первым носителем магнитной записи была стальная проволока диаметром до 1 мм. В начале XX столетия для этих целей использовалась также стальная катаная лента. Качественные характеристики всех этих носителей были весьма низкими. Для производства 14-часовой магнитной записи устных докладов на Международном конгрессе в Копенгагене в 1908 г. потребовалось 2500 км, или около 100 кг проволоки.

В 20-х годах прошлого века появляется магнитная лента сначала на бумажной, а позднее - на синтетической (лавсановой) основе, на поверхность которой наносится тонкий слой ферромагнитного порошка. Во второй половине XX века на магнитную ленту научились записывать изображение, появляются видеокамеры, видеомагнитофоны.

На ЭВМ первого и второго поколений магнитная лента использовалась как единственный вид сменного носителя для устройств внешней памяти. На одну катушку с магнитной лентой, использовавшейся в лентопротяжных устройствах первых ЭВМ, помещалось приблизительно 500 Кб информации.

С начала 1960-х годов в употребление входят компьютерные магнитные диски : алюминиевый или пластмассовый диск, покрытый тонким магнитным порошковым слоем толщиной в несколько микрон. Информация на диске располагается по круговым концентрическим дорожкам. Магнитные диски бывают жесткими и гибкими, бывают сменными и встроенными в дисковод компьютера. Последние традиционно называют винчестерами, а сменные гибкие диски - флоппи-дисками.

“Винчестер” компьютера - это пакет магнитных дисков, надетых на общую ось . Информационная емкость современных винчестеров измеряется в гигабайтах - десятки и сотни Гб. Наиболее распространенный тип гибкого диска диаметром 3,5 дюйма вмещает 2 Мб данных. Флоппи-диски в последнее время выходят из употребления.

В банковской системе большое распространение получили пластиковые карты. На них тоже используется магнитный принцип записи информации, с которой работают банкоматы, кассовые аппараты, связанные с информационной банковской системой.

Оптические носители

Применение оптического, или лазерного, способа записи информации начинается в 1980-х годах. Его появление связано с изобретением квантового генератора - лазера, источника очень тонкого (толщина порядка микрона) луча высокой энергии. Луч способен выжигать на поверхности плавкого материала двоичный код данных с очень высокой плотностью. Считывание происходит в результате отражения от такой “перфорированной” поверхности лазерного луча с меньшей энергией (“холодного” луча). Благодаря высокой плотности записи оптические диски имеют гораздо больший информационный объем, чем однодисковые магнитные носители. Информационная емкость оптического диска составляет от 190 до 700 Мб. Оптические диски называются компакт-дисками - CD.

Во второй половине 1990-х годов появились цифровые универсальные видеодиски DVD (D igital V ersatile D isk ) с большой емкостью, измеряемой в гигабайтах (до 17 Гб). Увеличение их емкости по сравнению с CD связано с использованием лазерного луча меньшего диаметра, а также двухслойной и двусторонней записи. Вспомните пример со школьной библиотекой. Весь ее книжный фонд можно разместить на одном DVD.

В настоящее время оптические диски (CD - DVD) являются наиболее надежными материальными носителями информации, записанной цифровым способом. Эти типы носителей бывают как однократно записываемыми - пригодными только для чтения, так и перезаписываемыми - пригодными для чтения и записи.

Флэш-память

В последнее время появилось множество мобильных цифровых устройств: цифровые фото- и видеокамеры, МР3-плееры, карманные компьютеры, мобильные телефоны, устройства для чтения электронных книг, GPS-навигаторы и многое другое. Все эти устройства нуждаются в переносных носителях информации. Но поскольку все мобильные устройства довольно миниатюрные, то и к носителям информации для них предъявляются особые требования. Они должны быть компактными, обладать низким энергопотреблением при работе и быть энергонезависимыми при хранении, иметь большую емкость, высокие скорости записи и чтения, долгий срок службы. Всем этим требованиям удовлетворяют флэш-карты памяти. Информационный объем флэш-карты может составлять несколько гигабайт.

В качестве внешнего носителя для компьютера широкое распространение получили флэш-брелоки (“флэшки” - называют их в просторечии), выпуск которых начался в 2001 году. Большой объем информации, компактность, высокая скорость чтения-записи, удобство в использовании - основные достоинства этих устройств. Флэш-брелок подключается к USB-порту компьютера и позволяет скачивать данные со скоростью около 10 Мб в секунду.

“Нано-носители”

В последние годы активно ведутся работы по созданию еще более компактных носителей информации с использованием так называемых “нанотехнологий”, работающих на уровне атомов и молекул вещества. В результате один компакт-диск, изготовленный по нанотехнологии, сможет заменить тысячи лазерных дисков. По предположениям экспертов приблизительно через 20 лет плотность хранения информации возрастет до такой степени, что на носителе объемом примерно с кубический сантиметр можно будет записать каждую секунду человеческой жизни.

Организация информационных хранилищ

Информация сохраняется на носителях для того, чтобы ее можно было просматривать, искать нужные сведения, нужные документы, пополнять и изменять, удалять данные, потерявшие актуальность. Иначе говоря, хранимая информация нужна человеку для работы с ней. Удобство работы с такими информационными хранилищами сильно зависит от того, как информация организована.

Возможны две ситуации: либо данные никак не организованы (такую ситуацию иногда называют кучей), либо данные структурированы . С увеличением объема информации вариант “кучи” становится все более неприемлемым из-за сложности ее практического использования (поиска, обновления и пр.).

Под словами “данные структурированы” понимается наличие какой-то упорядоченности данных в их хранилище: в словаре, расписании, архиве, компьютерной базе данных. В справочниках, словарях, энциклопедиях обычно используется линейный алфавитный принцип организации (структурирования) данных.

Крупнейшими хранилищами информации являются библиотеки. Упоминания о первых библиотеках относятся к VII веку до н.э. С изобретением книгопечатания (XV век) библиотеки стали распространяться по всему миру. В библиотечном деле имеется многовековой опыт организации информации.

Для организации и поиска книг в библиотеках создаются каталоги: списки книжного фонда. Первый библиотечный каталог был создан в знаменитой Александрийской библиотеке в III веке до н.э. С помощью каталога читатель определяет наличие в библиотеке нужной ему книги, а библиотекарь находит ее в книгохранилище. При использовании бумажной технологии каталог - это организованный набор картонных карточек со сведениями о книгах.

Существуют алфавитные и систематические каталоги. В алфавитных каталогах карточки упорядочены в алфавитном порядке фамилий авторов и образуют линейную (одноуровневую ) структуру данных . В систематическом каталоге карточки систематизированы по тематике содержания книг и образуют иерархическую структуру данных . Например, все книги делятся на художественные, учебные, научные. Учебная литература делится на школьную и вузовскую. Книги для школы делятся по классам и т.д.

В современных библиотеках происходит смена бумажных каталогов на электронные. В таком случае поиск книг осуществляется автоматически информационной системой библиотеки.

Данные, хранящиеся на компьютерных носителях (дисках), имеют файловую организацию. Файл подобен книге в библиотеке. Аналогично библиотечному каталогу операционная система создает каталог диска, который хранится на специально отведенных дорожках. Пользователь ищет нужный файл, просматривая каталог, после чего операционная система находит этот файл на диске и предоставляет пользователю. На первых дисковых носителях небольшого объема использовалась одноуровневая структура хранения файлов. С появлением жестких дисков большого объема стали использовать иерархическую структуру организации файлов. Наряду с понятием “файл” появилось понятие папки (см. “Файлы и файловая система ”).

Более гибкой системой организации хранения и поиска данных являются компьютерные базы данных (см. Базы данных ”).

Надежность хранения информации

Проблема надежности хранения информации связана с двумя видами угроз для хранимой информации: разрушение (потеря) информации и кража или утечка конфиденциальной информации. Бумажные архивы и библиотеки всегда были подвержены опасности физического исчезновения. Огромный ущерб для цивилизации принесло разрушение упомянутой выше Александрийской библиотеки в I веке до н.э., поскольку большая часть книг в ней существовала в единственном экземпляре.

Основной способ защиты информации в бумажных документах от потери - их дублирование. Использование электронных носителей делает дублирование более простым и дешевым. Однако переход на новые (цифровые) информационные технологии создал новые проблемы защиты информации.

В процессе изучения курса информатики ученики приобретают определенные знания и умения, относящиеся к хранению информации.

Ученики осваивают работу с традиционными (бумажными) источниками информации. В стандарте для основной школы отмечается, что ученики должны научиться работать с некомпьютерными источниками информации: справочниками, словарями, каталогами библиотек. Для этого их следует ознакомить с принципами организации этих источников и с приемами оптимального поиска в них. Поскольку данные знания и умения имеют большое общеучебное значение, то желательно дать их ученикам как можно раньше. В некоторых программах пропедевтического курса информатики этой теме уделяется большое внимание.

Ученики должны овладеть приемами работы со сменными компьютерными носителями информации. Все реже в последнее время используются гибкие магнитные диски, на смену которым пришли емкие и быстрые флэш-носители. Ученики должны уметь определять информационную емкость носителя, объем свободного пространства, сопоставлять с ним объемы сохраняемых файлов. Ученики должны понимать, что для длительного хранения больших объемов данных наиболее подходящим средством являются оптические диски. При наличии пишущего CD-дисковода следует научить их организации записи файлов.

Важным моментом обучения является разъяснение опасностей, которым подвергается компьютерная информация со стороны вредоносных программ - компьютерных вирусов. Следует научить детей основным правилам “компьютерной гигиены”: осуществлять антивирусный контроль всех вновь поступающих файлов; регулярно обновлять базы антивирусных программ.

Информатика и ИКТ 10-11 класс Семакин, Информатика 10-11 класс Семакин, Хранение информации, Использование магнитных носителей информации, Использование оптических дисков и флэш-памяти

Из базового курса вам известно:
Человек хранит информацию в собственной памяти, а также в виде записей на различных внешних (по отношению к человеку) носителях: на камне, папирусе, бумаге, магнитных и оптических носителях и пр. Благодаря таким записям, информация передается не только в пространстве (от человека к человеку), но и во времени — из поколения в поколение.
Рассмотрим способы хранения информации более подробно.
Информация может храниться в различных видах: в виде записанных текстов, рисунков, схем, чертежей; фотографий, звукозаписей, кино- или видеозаписей. В каждом случае применяются свои носители.
Носитель — это материальная среда, используемая для записи и хранения информации.
Практически носителем информации может быть любой материальный объект. Информацию можно сохранять на камне, дереве, стекле, ткани, песке, теле человека и т. д. Здесь мы не станем обсуждать различные исторические и экзотические варианты носителей. Ограничимся современными средствами хранения информации, имеющими массовое применение.
Использование бумажных носителей информации
Носителем, имеющим наиболее массовое употребление, до сих пор остается бумага. Изобретенная во II веке н. э. в Китае, бумага служит людям уже 19 столетий.
Для сопоставления объемов информации на разных носителях будем пользоваться единицей — байтом, считая, что один знак текста «весит» 1 байт . Нетрудно подсчитать информационный объем книги, содержащей 300 страниц с размером текста на странице примерно 2000 символов. Текст такой книги имеет объем примерно 600 000 байтов, или 586 Кб. Средняя школьная библиотека, фонд которой составляют 5000 томов, имеет информационный объем приблизительно 2861 Мб = 2,8 Гб.
Что касается долговечности хранения документов, книг и прочей бумажной продукции, то она очень сильно зависит от качества бумаги, красителей, используемых при записи текста, условий хранения. Интересно, что до середины XIX века (с этого времени для производства бумаги начали использовать древесину) бумага делалась из хлопка и текстильных отходов — тряпья. Чернилами служили натуральные красители. Качество рукописных документов того времени было довольно высоким, и они могли храниться тысячи лет. С переходом на древесную основу, с распространением машинописи и средств копирования, с началом использования синтетических красителей срок хранения печатных документов снизился до 200-300 лет.
На первых компьютерах бумажные носители использовались для цифрового представления вводимых данных. Это были перфокарты: картонные карточки с отверстиями, хранящие двоичный код вводимой информации. На некоторых типах ЭВМ для тех же целей применялась перфорированная бумажная лента.
Использование магнитных носителей информации
В XIX веке была изобретена магнитная запись . Первоначально она использовалась только для сохранения звука. Самым первым носителем магнитной записи была стальная проволока диаметром до 1 мм. В начале XX столетия для этих целей использовалась также стальная катаная лента. Тогда же (в 1906 г.) был выдан и первый патент на магнитный диск . Качественные характеристики всех этих носителей были весьма низкими. Достаточно сказать, что для производства 14-часовой магнитной записи устных докладов на Международном конгрессе в Копенгагене в 1908 г. потребовалось 2500 км, или около 100 кг проволоки.
В 20-х годах XX века появляется магнитная лента сначала на бумажной, а позднее — на синтетической (лавсановой) основе, на поверхность которой наносится тонкий слой ферромагнитного порошка. Во второй половине XX века на магнитную ленту научились записывать изображение, появляются видеокамеры, видеомагнитофоны.
На ЭВМ первого и второго поколений магнитная лента использовалась как единственный вид сменного носителя для устройств внешней памяти. Любая компьютерная информация на любом носителе хранится в двоичном (цифровом) виде. Поэтому независимо от вида информации: текст это, или изображение, или звук — ее объем можно измерить в битах и байтах. На одну катушку с магнитной лентой, использовавшейся в лентопротяжных устройствах первых ЭВМ, помещалось приблизительно 500 Кб информации.
С начала 1960-х годов в употребление входят компьютерные магнитные диски: алюминиевые или пластмассовые диски, покрытые тонким магнитным порошковым слоем толщиной в несколько микрон. Информация на диске располагается по круговым концентрическим дорожкам. Магнитные диски бывают жесткими и гибкими, сменными и встроенными в дисковод компьютера.
Последние традиционно называют винчестерскими дисками.
Винчестер компьютера — это пакет магнитных дисков, надетых на общую ось. Информационная емкость современных винчестерских дисков измеряется в гигабайтах (десятки и сотни Гб). Наиболее распространенный тип гибкого диска диаметром 3,5 дюйма вмещает около 1,4 Мб данных. Гибкие диски в настоящее время выходят из употребления.
В банковской системе большое распространение получили пластиковые карты. На них тоже используется магнитный принцип записи информации, с которой работают банкоматы, кассовые аппараты, связанные с информационной банковской системой.
Использование оптических дисков и флэш-памяти
Применение оптического, или лазерного, способа записи информации начинается в 1980-х годах. Его появление связано с изобретением квантового генератора — лазера, источника очень тонкого (толщина порядка микрона) луча высокой энергии. Луч способен выжигать на поверхности плавкого материала двоичный код данных с очень высокой плотностью. Считывание происходит в результате отражения от такой « перфорированной» поверхности лазерного луча с меньшей энергией («холодного» луча). Благодаря высокой плотности записи, оптические диски имеют гораздо больший информационный объем, чем однодисковые магнитные носители. Информационная емкость оптического диска составляет от 190 Мб до 700 Мб. Оптические диски называются компакт-дисками (CD).
Во второй половине 1990-х годов появились цифровые универсальные видеодиски DVD (Digital Versatile Disk) с большой емкостью, измеряемой в гигабайтах (до 17 Гб). Увеличение их емкости по сравнению с CD-дисками связано с использованием лазерного луча меньшего диаметра, а также двухслойной и двусторонней записи. Вспомните пример со школьной библиотекой. Весь ее книжный фонд можно разместить на одном DVD.
В настоящее время оптические диски (CD и DVD) являются наиболее надежными материальными носителями информации, записанной цифровым способом. Эти типы носителей бывают как однократно записываемыми — пригодными только для чтения, так и перезаписываемыми — пригодными для чтения и записи.
В последнее время появилось множество мобильных цифровых устройств: цифровые фото- и видеокамеры, МРЗ-плееры, карманные компьютеры, мобильные телефоны, устройства для чтения электронных книг, GPS-навигаторы и др. Все эти устройства нуждаются в переносных носителях информации. Но поскольку все мобильные устройства довольно миниатюрные, то и к носителям информации для них предъявляются особые требования. Они должны быть компактными, обладать низким энергопотреблением при работе, быть энергонезависимыми при хранении, иметь большую емкость, высокие скорости записи и чтения, долгий срок службы. Всем этим требованиям удовлетворяют флэш-карты памяти. Информационный объем флэш-карты может составлять несколько гигабайтов.
В качестве внешнего носителя для компьютера широкое распространение получили так называемые флэш-брелоки (их называют в просторечии «флэшки»), выпуск которых начался в 2001 году. Большой объем информации, компактность, высокая скорость чтения/записи, удобство в использовании — основные достоинства этих устройств. Флэш-брелок подключается к USB-порту компьютера и позволяет скачивать данные со скоростью около 10 Мб в секунду.
В последние годы активно ведутся работы по созданию еще более компактных носителей информации с использованием так называемых нанотехнологий, работающих на уровне атомов и молекул вещества. В результате один компакт- диск , изготовленный по нанотехнологии, сможет заменить тысячи лазерных дисков. По предположениям экспертов приблизительно через 20 лет плотность хранения информации возрастет до такой степени, что на носителе объемом примерно с кубический сантиметр можно будет записать каждую секунду человеческой жизни.
Система основных понятий

Хранение информации

Носители информации

Нецифровые

Цифровые (компьютерные)

Исторические:

пергамент,

шелк и др.

Современные:

Магнитные

Оптические

Флэш-носители

Ленты Диски Карты

Флэш- Флэш- карты брелоки

Факторы качества носителей

Вместимость - плотность хранения дан-ных, объем данных

Надежность хранения - максимальное время сохранности дан-ных, зависимость от условий хранения

Наибольшей вместимостью и надежностью на сегодня обладают оптические носители CD и DVD

Перспективные виды носителей:

носители на базе нанотехнологий


Хранение и накопление информации вызвано многократным ее использованием, применением постоянной информации, необходимостью комплектации первичных данных до их обработки.

Хранение информации осуществляется на машинных носителях в виде информационных массивов, где данные располагаются по установленному в процессе проектирования группировочному признаку.

Поиск данных — ϶ᴛᴏ выборка нужных данных из хранимой информации, включая поиск информации, подлежащей корректировке или замене запроса на нужную информацию.

Основной принцип хранения информации можно сформулировать следующим образом: сохраненная информация всегда имеет форму «следа», оттиска на каком-нибудь носителе.

Тип носителя роли не играет. Это может быть камень, дерево, бумага, магнитная лента или фотопленка. След в форме некᴏᴛᴏᴩого знака-буквы на камне, дереве, бумаге может быть нанесен непосредственно человеческой рукой, вооруженной резцом, кистью или карандашом. Стоит заметить, что он виден невооруженным взглядом и может быть легко прочитан.

Использование в качестве носителей информации фотопленки, магнитной ленты и лазерного диска требует специальных устройств - преобразователей информации. Так, для записи информации на фотопленку требуется фотоаппарат, а для считывания информации - проектор. Магнитная запись и считывание информации осуществляется с помощью более сложного устройства - магнитофона.

Характерной чертой всех данных типов носителей будет необходимость в специальных технических устройствах как для записи, так и для считывания информации. Это означает возможность механизации и автоматизации процессов записи и чтения информации, делает их независимыми от присутствия человека.

Для хранения больших массивов информации применяются разнообразные запоминающие устройства. Очень большие массивы информации хранятся на внешних запоминающих устройствах (ВЗУ) К ним ᴏᴛʜᴏϲᴙтся запоминающие устройства на:

  • дисках (ЗУД);
  • магнитном барабане (МБ);
  • магнитных лентах (МЛ);
  • перфорационных лентах (ПЛ);
  • магнитных картах (МК) и т.п.

Приведенные ВЗУ ᴏᴛʜᴏϲᴙтся к классу ЗУ с перемещением носителя информации. Достоинством таких ЗУ, наряду с большой емкостью, будет низкая стоимость хранения единицы информации, а недостатком - наличие механических узлов перемещения, накладывающим ограничения на скорость работы. С позиции организации хранения информации ВЗУ подразделяются на ЗУ с несменяемым носителем, или ЗУ со сменным носителем (МБ, МК), позволяющими создавать библиотеки и архивы с практически неограниченным объемом данных. Перемещение носителя при считывании может быть непрерывным (МБ, ЗУД) или стартстопным (МЛ, ПЛ), при кᴏᴛᴏᴩом оно происходит только во время обращения к ВЗУ. Выборка блоков информации из ЗУ при ϶ᴛᴏм производится по принципу последовательного или произвольного обращения. В последнем случае блок информации с произвольным адресом выбирается за постоянный промежуток времени. По организации связи различают ВЗУ, работающие под управлением машины (подключающиеся к ней автоматически без вмешательства оператора) и неуправляемые машиной (требующие участия оператора в установке блоков с хранимой информацией) Перспективы ВЗУ, использующие фотооптический способ с высокоскоростным сканированием, способ термопластической записи с применением записи с оптическим воспроизведением и др.

Запоминающее устройство на дисках — ϶ᴛᴏ ЗУ, в кᴏᴛᴏᴩом в качестве накопителя используется магнитный диск. Стоит заметить, что оно состоит из накопителя (пакет дисков), блока выборки (набор магнитных головок с пневматическим или гидравлическим приводом и электронная система преобразования кода адреса в ϲᴏᴏᴛʙᴇᴛϲᴛʙующее перемещение головок), блока записи-считывания числа (набор усилителей воспроизведения и записи) и блока местного управления. Скорость работы ЗУ определяется скоростью вращения дисков и принятой системой выборки. Среднее время обращения к ЗУД составляет 15 — 150 мс, а емкость —10 7 — 8-10 10 бит. Используется в качестве внешнего запоминающего устройства для хранения больших объемов информации и больших библиотек программ.

Запоминающее устройство на магнитном барабане — ϶ᴛᴏ ЗУ, в кᴏᴛᴏᴩом в качестве накопителя информации применяют магнитный барабан (МБ) Стоит сказать, для реализации обращения к ЗУ на МБ используется дорожка синхронизирующих маркеров, нанесенная на МБ, в процессе изготовления. Маркерные сигналы, считываемые магнитной головкой, после усиления подаются на счетчик адресов, устанавливаемый в нулевое положение перед приходом первого синхронизирующего маркера. Содержимое счетчика сравнивается с содержимым регистра адреса. В момент совпадения показателя счетчика с кодом адреса, заданным командой, выдается сигнал обращения, по кᴏᴛᴏᴩому производится запись или считывание числа. Время обращения к ЗУ на МБ определяется временем оборота МБ и составляет десятки миллисекунд. На поверхности МБ размещается до 10 7 — 10 8 бит информации. ЗУ на МБ используют в основном в качестве внешнего запоминающего устройства.

Сегодня совершенствование компьютера как универсального средства обработки информации привело к созданию целого ряда устройств, специально предназначенных для хранения информации в электронной форме.

Нужно помнить, такие современные материалы, как фотопленка и магнитная лента, способны удовлетворить большинству требований, но они не лишены недостатков. Общеизвестно, что со временем фотоснимки темнеют, прослушивание грампластинок сопровождается потрескиванием, а магнитные записи после многократного проигрывания начинают «шуметь». Сегодня самый распространенный способ хранения информации - магнитная запись . Но и она может быть испорчена под воздействием температуры или магнита.

Для хранения информации в автоматизированных системах, управляемых компьютером, все реже могут быть использованы магнитные ленты, их место заняли магнитные диски. Принцип записи информации на магнитный диск такой же, как и на магнитную ленту. Различие исключительно в том, что запись на магнитную ленту производится последовательно, одна за другой, и так же считывается, а на магнитном диске запись последовательна, а считывание можно проводить в любом порядке.

Магнитный диск представляет собой тонкий и гибкий пластмассовый диск, покрытый с двух сторон магнитным порошком, подобным используемому в магнитных лентах. Это позволяет записывать информацию на обе его поверхности, чем достигается двукратное повышение его информационной емкости. Чтобы при работе с диском его не надо было переворачивать, запись и чтение осуществляется двумя магнитными головками (каждая со ϲʙᴏей стороны диска) Этот вид носителя получил название «гибкий магнитный диск» , а устройство для чтения и записи информации не него - дисковод .

Но наряду с удобством (легкость, компактность, долговечность) ему присущи и недостатки: повышенная температура разрушает записанную информацию, тонкий материал требует осторожного обращения, влажность затрудняет считывание. Еще в середине 60-х годов появилась идея создания диска из жесткого материала и помещенного в замкнутый объем, из кᴏᴛᴏᴩого откачан воздух (при ϶ᴛᴏм ни нагрев, ни влажность ему уже не страшны) Такой диск получил название "жесткий диск" (hard disk ) или винчестер .

Для увеличения информационной емкости винчестер делают из нескольких дисков, расположенных на одной оси, а размеры магнитных головок уменьшают, добиваясь получения более узких магнитных дорожек, записываемых на диске. Это позволяет в десятки и сотни раз увеличить количество информации, записываемой на такой диск, при повышенной надежности ее хранения.

При этом увеличение информационной емкости винчестера по сравнению с гибким магнитным диском лишает его мобильности. Материал опубликован на http://сайт
Жесткий диск гораздо тяжелее гибкого диска, сложнее в подключении и его неудобно переносить с одного компьютера на другой. По϶ᴛᴏму сегодня для хранения больших объемов информации используют винчестер, а для передачи небольших порций информации с одного компьютера на другой - гибкий магнитный диск.

Со временем объем информации, с кᴏᴛᴏᴩой работает человек и кᴏᴛᴏᴩую ему надо передать другому человеку, возрастал, пока не превысил информационную емкость гибкого магнитного диска как мобильного (переносного) средства хранения информации. Это привело сначала к "возрождению" кассет с магнитной лентой как мобильных носителей информации (их большая емкость, несмотря на неудобство поиска и считывания информации, дает им преимущество по сравнению с гибкими дисками), а затем к созданию нового типа носителя - лазерного диска .

Лазерный диск - трехслойный диск, изготовленный из стекла или прочной пластмассы. В нем между двумя тонкими защитными слоями пластмассы (стекла) помещен тонкий слой металлической фольги из серебра или даже из золота. Запись информации на такой диск осуществляется лучом лазера, пробегающим по спиральной дорожке от края диска к его центру и выжигающим в металлической фольге микроскопические «дырочки». Информация кодируется количеством «дырочек» и их расположением на спиральной дорожке. Лазерный луч очень тонок, и ширина дорожки получается в десятки раз тоньше человеческого волоса. Это позволяет получить плотность записи информации, недостижимую для магнитных дисков. Считывание информации осуществляется слабым лучом лазера. Выжженные и сохранившиеся участки фольги по-разному отражают луч. Отраженный луч улавливается фотоэлементом и расшифровывается. Лазерные диски иначе называют оптическими , поскольку запись и чтение информации осуществляются с помощью света.

Но записать информацию на лазерный диск можно всего один раз, ведь металлическая фольга уже «испорчена». Это означает, что в отличие от магнитного диска, диск лазерный не позволяет перезаписывать информацию и пригоден только для считывания. По϶ᴛᴏму он не способен заменить магнитные диски и ленты. При этом для хранения неизменяемой информации нет более удобного носителя.

В последние годы найдены материалы, сочетающие в себе достоинства магнитного и оптического носителей и позволяющие перезаписывать информацию, хранящуюся на диске.
Стоит отметить, что основными достоинствами магнитооптических дисков будут большая информационная емкость, компактность, мобильность, возможность перезаписи хранящейся информации.

Под хранением информации (от хранить – содержать в безопасности/целости ) следует понимать содержание информации во внешней памяти компьютера.

С хранением информации связаны такие понятия, как носитель информации (память), внутренняя память, внешняя память, хранилище информации. Носитель информации – это физическая среда, непосредственно хранящая информацию. Основным носителем информации для человека является его собственная биологическая память (мозг человека). Ее можно назвать внутренней памятью, поскольку ее носитель – мозг – находится внутри человека. Все прочие виды носителей информации можно назвать внешними (по отношению к человеку). Виды этих носителей менялись со временем от камня до бумаги. Развитие информационной техники привело к созданию магнитных, оптических и других современных видов носителей информации.

Хранилище информации – это определенным образом организованная совокупность данных на внешних носителях, предназначенная для длительного хранения и постоянного использования. Примерами хранилищ являются архивы документов, библиотеки, справочники, картотеки. Основной информационной единицей хранилища является определенный физический документ – анкета, книга, дело, досье, отчет и пр. Под организацией хранилища понимается наличие определенной структуры, т.е. упорядоченность, классификация хранимых документов. Такая организация необходима для удобства ведения хранилища: пополнения его новыми документами, удаления ненужных документов, поиска информации и пр.

Знания, хранящиеся в памяти человека, можно рассматривать как внутреннее хранилище информации, однако организацию этого хранилища нам понять трудно. Основное свойство человеческой памяти – большая скорость воспроизведения хранящейся в ней информации. Но по сравнению с внешними хранилищами человеческая память менее надежна. Поэтому для более надежного хранения человек использует внешние носители, организует хранилища информации.

Основные свойства хранилища информации – объем хранимой информации, надежность хранения, время доступа (т.е. время поиска нужных сведений), наличие защиты информации.

Информацию, хранимую на устройствах компьютерной памяти, принято называть данными. Организованные хранилища данных на устройствах внешней памяти компьютера принято называть базами данных.

В современных компьютерах основными носителями информации для внешней памяти служат магнитные и оптические диски. Рассмотрим, каким образом организуется хранение информации на магнитных дисках. Такой подход оправдан тем, что оптические диски для этой цели стали использоваться гораздо позже, а потому ради обеспечения совместимости с магнитными устройствами они во многом имитируют структуру последних.



Размещение информации на носителях. Обычный магнитный диск имеет две поверхности, пригодные для размещения информации, которые в технической литературе принято называть сторонами (side) диска. Учитывая, что в накопителях на жестких дисках на одной оси могут устанавливаться несколько дисковых пластин, общее количество сторон может быть и больше .

Каждую поверхность обслуживает собственная магнитная головка (head). Все головки собраны в единый механический блок и могут двигаться вдоль радиуса дисков, причем движение это является дискретным, т.е. головки занимают относительно диска только строго определенные положения. Наконец, каждая дорожка разделена на отдельные секторы (sector) (рис. 1.4). Сектор является неделимой порцией информации и может быть прочитан только целиком. Последней координатой информации на диске служит номер требуемого байта в секторе.

Итак, положение байта информации на магнитном диске определяется четырьмя “координатами”: номером стороны, номером дорожки диска, номером сектора и номером байта в нем. Такая система хранения данных сложна и требует определенных усилий по их извлечению. Поэтому созданы специальные программы, которые позволяют пользователю извлекать необходимые данные, не требуя от него знания всех этих координат.

Единицы хранения данных. При хранении данных решаются две проблемы: как сохранить данные в наиболее компактном виде и как обеспечить к ним удобный и быстрый доступ (если доступ не обеспечен, то это не хранение). Для обеспечения доступа необходимо, чтобы данные имели упорядоченную структуру, а при этом возникает необходимость дополнительно записывать адресные данные. Без них нельзя получить доступ к нужным элементам данных, входящих в структуру .

Поскольку адресные данные тоже имеют размер и тоже подлежат хранению, хранить данные в виде мелких единиц, таких, как байты, неудобно. Их неудобно хранить и в более крупных единицах (килобайтах, мегабайтах и т.п.), поскольку неполное заполнение одной единицы хранения приводит к неэффективности хранения.

В качестве единицы хранения данных принят объект переменной длины, называемый файлом. Файл – это последовательность произвольного числа байтов, обладающая уникальным собственным именем. Обычно в отдельном файле хранят данные, относящиеся к одному типу. В этом случае тип данных определяет тип файла.

В определении файла особое внимание уделяется имени. Оно фактически несет в себе адресные данные, без которых данные, хранящиеся в файле, не станут информацией из-за отсутствия метода доступа к ним. Кроме функций, связанных с адресацией, имя файла может хранить и сведения о типе данных, заключенных в нем. Для автоматических средств работы с данными это важно, поскольку по имени файла они могут автоматически определить адекватный метод извлечения информации из файла. Очевидно, что имя файла должно быть уникальным, так как это обеспечивает однозначность доступа к данным.

Понятие о файловой структуре. Хранение файлов организуется в иерархической структуре, которая в данном случае называется файловой структурой. В качестве вершины структуры служит имя носителя, на котором сохраняются файлы. Далее файлы группируются в каталоги (папки), внутри которых могут быть созданы вложенные каталоги (папки). Путь доступа к файлу начинается с имени устройства и включает все имена каталогов (папок), через которые проходит. В качестве разделителя используется символ “\” (обратная косая черта).

Уникальность имени файла обеспечивается тем, что полным именем файла считается собственное имя файла вместе с путем доступа к нему. Понятно, что в этом случае на одном носителе не может быть двух файлов с тождественными полными именами.

Пример записи полного имени файла:

<имя носителя>\<имя каталога1 >\...\<имя каталогаМ >\ <собственное имя файла>

Следует иметь в виду, что сектора с информацией одного файла совсем не обязательно располагаются по порядку в одном месте диска. При записи система активно использует свободные места, которые образуются при удалении ненужных файлов. В результате отдельные части файла вполне могут попасть в разные области диска, что будет заметно замедлять доступ к информации. Для устранения этого явления в состав операционных систем обычно входят специальные служебные программы дефрагментации файлов.

Такой подход к организации хранения данных исторически был обусловлен тем, что в качестве материального носителя данных использовались накопители на магнитных дисках. При этом поверхность диска, на которую осуществлялась запись данных, форматировалась: разбивалась на дорожки и сектора. Программы форматирования обеспечивали создание сектора объемом 512 байт. Таким образом, для записи данных, принадлежащих одному файлу, как правило, требуется нескольких секторов. На рисунке отчетливо видно, что сектора на внешних дорожках диска имеют больший размер, чем ближайшие к центру. Это дает основания считать, что данные дорожки должны записываться более надежно. Поэтому нулевая дорожка, которая служит для хранения наиболее важной системной информации, всегда размещается на внешнем кольце поверхности диска.

Министерство науки и образования Украины

Славянский государственный педагогический университет

Реферат

Хранение информации

Студента 3 курса

Шрам Сергея

Славянск

2. Хранение информации

Компьютер, программа, интерфейс

Персональный компьютер - это электронный прибор, предназначенный для автоматизации создания, хранения, обработки и передачи информации .

Слово электронный в данном определении не очень принципиально. История техники знает и электрические, и механические устройства для обработки информации. Электронный - это просто констатация факта. Именно электронные устройства достигли производительности в сотни миллионов операций в секунду, и именно они сегодня составляют парк мировой вычислительной техники.

Значительно более важным в этом определении является слово автоматизация. Компьютеры отличаются от механических устройств (арифмометров) и электрических счетных приборов тем, что работают по заложенным в них программам.Программа - это упорядоченная последовательность команд .

На первый взгляд может показаться, что если человек работает с компьютером, то компьютер работает не автоматически, а под управлением человека и программы здесь ни при чем. Но это не совсем так. С первой и до последней минуты в компьютере автоматически работает множество программ, благодаря которым и обеспечивается общение с человеком. Это программы отвечают за все, что мы видим на экране, и за все, что мы можем сделать. Каждую секунду компьютер обрабатывает лишь несколько команд, полученных от человека, и в это же время он успевает исполнить миллионы команд, полученных от загруженных в него программ. Поэтому мы и говорим, что компьютер работает автоматически .

Взаимодействие между компьютером и человеком с помощью программ называется программным интерфейсом.

Физические устройства, с помощью которых человек управляет программами и получает информацию от компьютера (клавиатура, мышь, монитор и прочее), называются аппаратным интерфейсом.

Состав компьютерной системы

Компьютер - прибор модульный. Он состоит из различных устройств (модулей), каждое из которых выполняет свои задачи. Поскольку компьютер предназначен для создания, передачи (приема), хранения и обработки информации, то у него должны быть блоки, предназначенные для каждой из этих задач.

Устройства компьютера бывают внешние и внутренние. Блоки внешних устройств мы видим на столе и можем их потрогать. К ним относятся:

Системный блок (в нем хранятся внутренние устройства);

Монитор (служит для выдачи информации в текстовом или графическом виде);

Клавиатура (служит для ввода символов и команд);

Манипулятор «мышь» (предназначен для ввода команд).

Если этих основных устройств недостаточно, то для выполнения специальных задач к компьютеру подключают дополнительное оборудование. Оно тоже может быть внутренним (тогда его вставляют в системный блок) или внешним (подключается с помощью разъемов). Дополнительное внешнее оборудование называют периферийным оборудованием. Принтер для печати информации на бумаге - это пример периферийного оборудования.

От информации к данным

Человек по-разному подходит к хранению информации. Все зависит от того сколько ее и как долго ее нужно хранить. Если информации немного ее можно запомнить в уме. Нетрудно запомнить имя своего друга и его фамилию. А если нужно запомнить его номер телефона и домашний адрес мы пользуемся записной книжкой. Когда информация запомнена (сохранена) ее называют данные.

Для записи данных в книжку требуется больше времени, чем на то чтобы их запомнить. Востребовать данные из записной книжки или из тетрадки тоже не так просто как вспомнить, но если в голове информация не сохранилась, то и записная книжка и тетрадка оказываются более надежными источниками данных.

Самые долговременные средства для хранения данных - это книги. В них данные хранятся сотни лет. Благодаря книгам информация распространяется не только в пространстве, но и во времени. Вы знаете что по древним рукописным книгам, созданным сотни и тысячи лет назад, можно приобретать знания и сегодня. Информация в книгах хранится столь долю потому что есть специальные организации которым поручено собирать все выходящие книги и надежно их хранить. Такие организации нам известны - это библиотеки и музеи. Любое знание, занесенное в книгу обязательно кем то сохраняется для других поколений, для этого в каждом государстве есть специальные законы.

Оперативная память компьютера

В компьютере тоже есть несколько средств для хранения информации. Самый быстрый способ запомнить данные - это записать их в электронные микросхемы. Такая память называется оперативной памятью. Оперативная память состоит из ячеек. В каждой ячейке может храниться один байт данных.

У каждой ячейки есть свои адрес. Можно считать, что это как бы номер ячейки поэтому такие ячейки еще называют адресными ячейками. Когда компьютер отправляет данные на хранение в оперативную память он запоминает адреса в которые эти данные помещены. Обращаясь к адресной ячейке компьютер находит в ней байт данных.

Данные в оперативной памяти хранятся байтами. Количество байтов которые можно сохранить в оперативной памяти зависит от ее объема. Объем оперативной памяти измеряют килобайтами (Кбайт) или мега байтами (Мбайт).

1 2 .......... . 255
00000 00001 00002 .......... . 00255
1 00256 00257 00258 .......... . 00511
2 00512 00513 00514 .......... . 00767
255 65280 65281 65282 .......... . 65535

Двумя байтами (от 0 до 255) можно записать адрес для 65 536 ячеек памяти for 0 до 65535). Для большего количества ячеек адрес должен иметь больше байтов.

Условно считаю, что килобайт равен тысяче байтов. На самом деле 1 Кбайт равен 210 то есть 1024 байтам.

Точно так же считают, что один мегабайт равен тысяче килобайтов или миллиону байтов хотя более точно 1 Мбайт = 1024 Кбайт = 1 048 576 байтам (220).

Регенерация оперативной памяти

Адресная ячейка оперативной памяти хранит один байт, а поскольку байт состоит из восьми битов, то в ней есть восемь битовых ячеек. Каждая битовая ячейка микросхемы оперативной памяти хранит электрический заряд.

Заряды не могут храниться в ячейках долго - они «стекают». Всего за несколько десятых долей секунды заряд в ячейке уменьшается настолько, что данные утрачиваются.

Что делает человек, чтобы не забыть информацию? Он регулярно ее повторяет. То же делает и компьютер. Десятки раз в секунду он проверяет, что содержится в ячейках памяти и «подзаряжает» каждую ячейку (как бы повторяет запись). Это называется регенерацией оперативной памяти.

Регенерация памяти происходит очень быстро. Мы не замечаем, как каждую секунду несколько раз обновляются мегабайты памяти, но стоит только на мгновение отключить питание компьютера, как регенерация прекратится. Даже кратковременное исчезновение напряжения в сети приводит к стиранию оперативной памяти и «сбросу» компьютера.

Память на магнитных дисках

Микросхемы оперативной памяти запоминают и выдают данные очень быстро, поэтому они хороши для обработки информации, но для длительного хранения данных они не годятся - здесь нужны другие способы.

Когда человеку надо что-то прочно запомнить, он использует записную книжку. Компьютер тоже имеет «записные книжки» - это магнитные диски.

Магнитные диски бывают двух типов - гибкие и жесткие. Гибкие диски (дискеты) имеют не очень большую емкость и работают сравнительно медленно, но их можно переносить с одного компьютера на другой. Жесткие диски обладают большой емкостью, но они располагаются внутри системного блока и их нельзя переносить. Диск вращается с огромной скоростью, а над магнитной поверхностью парит на воздушной подушке магнитная головка, которая записывает и считывает биты и байты данных. Корпус жесткого диска закрыт кожухом, снимать который нельзя иначе попавшие микрочастицы пыли со временем выведут диск из строя.

Структура данных на магнитном диске

Чтобы данные можно было не только записать на жесткий диск, а потом еще и прочитать, надо точно знать, что и куда было записано. У всех данных должен быть адрес. У каждой книги в библиотеке есть свой зал, стеллаж, полка и инвентарный номер - это как бы ее адрес. По такому адресу книгу можно найти. Все данные, которые записываются на жесткий диск, тоже должны иметь адрес, иначе их не разыскать.

Если запоминать отдельно каждый адрес, в который были записаны байты данных, то хранить эти адреса станет труднее, чем сами данные. К счастью, мы уже знаем, что информация хранится не байтами, а файлами. Файл - наименьшая единица хранения данных. Каждый файл на диске имеет свой адрес. Если нам нужна какая-то информация, компьютер находит на диске нужный файл, а потом байт за байтом считывает из него данные в оперативную память, пока не дойдет до конца файла.

Чтобы у каждого файла на диске был свой адрес, диск разбивают на дорожки, а дорожки, в свою очередь, разбивают на секторы. Размер каждого сектора стандартен и равен 512 байтам. Разбиение диска на дорожки и секторы называется форматированием диска. Его выполняют служебные программы. Форматирование диска чем-то похоже на разлиновывание тетради. Как и для тетради, форматирование диска нужно выполнить только один раз.

Самая первая дорожка магнитного диска (нулевая) считается служебной - там хранится служебная информация. Например, на этой дорожке хранится так называемая таблица размещения файлов ( FA Т-таблица). В этой таблице компьютер запоминает адреса записанных файлов. Когда нам нужен какой-то файл, компьютер по его имени находит в этой таблице номер дорожки и номер сектора, после чего магнитная головка переводится в нужное положение, файл считывается и направляется в оперативную память для обработки.

Если таблица размещения файлов почему-то будет повреждена, то информация, имевшаяся на диске, может быть утрачена. На самом деле она там, конечно, остается, но к ней нельзя обратиться. Поэтому таблица размещения файлов для надежности дублируется. У нее есть копия, и при любых повреждениях компьютер сам восстанавливает эту таблицу. Благодаря этому с компьютером можно работать годами и не терять данные.

Размещение файлов на жестком диске

Сколько файлов может поместиться на жестком диске? Ответ кажется простым. Чем больше диск и чем меньше файлы, тем больше их поместится. До недавних пор так обычно и считали, но в последние годы, когда размеры жестких дисков стали очень большими, с размещением файлов, как ни странно, появились проблемы.

У каждого файла есть свой адрес. Этот адрес записан в таблице размещения файлов двухбайтным числом, то есть, на запись этого адреса предоставлено 16 битов. (Кстати, поэтому таблицу размещения файлов еще называют FAT 16). Мы уже знаем, что с помощью 16 битов можно выразить 216 (65536) разных значений. Это значит, что файлам на жестком диске не может быть предоставлено более, чем 65 536 разных адресов (и самих файлов не может быть более 65536).

Современные жесткие диски имеют очень большие объемы, и им не хватает такого количества адресов. Если, например, размер диска 2 Гбайт (два миллиарда байтов), то на каждый адрес приходится 2 Гбайт / 65 536 = 32 Кбайт.

Представьте себе, что в городе строят только квартиры размером в 32 000 комнат. В таком помещении можно разместить целую армию, но когда семья из трех человек придет получать жилплощадь, ей тоже придется выдавать такую же квартиру. И даже один человек тоже получит 32 тысячи комнат.

Не правда ли, это очень нерациональный расход полезного пространства? Людей, конечно, можно было бы друг к другу подселить, но с файлами так поступать нельзя, ведь каждый файл должен иметь собственный уникальный адрес.

Мы только что вывели новую единицу измерения. Это минимальный размер адресуемого пространства. Такая единица измерения действительно существует и называется кластером. Мы видим, что для жестких дисков, имеющих размер 2 Гбайт, кластер равен 32 Кбайт. Если диск меньше, то и кластер у него тоже меньше. Для дисков 1 Гбайт кластер равен 16 Кбайт.

У современных дисков кластер намного больше сектора, который равен 0,5 Кбайт. В одном кластере могут содержаться десятки секторов, и, каким бы маленьким ни был файл, он все равно займет целый кластер, и все неиспользуемые секторы в нем просто пропадут.

Связь между размером жесткого диска и размером кластера

В ближайшее время компьютеры перейдут на новую систему записи адреса файла на жестком диске, которая называется FAT 32. По названию нетрудно догадаться, что в этой системе адрес записывается не двумя байтами, а четырьмя (32 бита). Тогда адресов станет намного больше, а размеры отдельных кластеров - меньше. Нерациональные потери намного уменьшатся.

Файловая система FAT 32 реализована в новой операционной системе Windows 98. Компьютеры, которые работают в этой системе, гораздо рациональнее используют жесткие диски.

Размеры кластеров для FAT 32

Диски физические и логические

Все, кто работают с компьютером, привыкли ценить рабочее место на жестком диске. Чем больше диск, тем больше полезных и интересных программ и данных можно на нем разместить. С другой стороны, получается, что чем больше жесткий диск, тем больше места на нем пропадает впустую из-за несовершенной системы адресации файлов.

Для борьбы с нерациональными потерями жесткий диск разбивают на несколько разделов. Для этого есть специальные программы. Например, на жестком диске, имеющем размер 2 Гбайт, создают четыре раздела по 0,5 Гбайт. Каждый такой раздел можно рассматривать как один отдельный логический жесткий диск.

Обычный жесткий диск - это устройство физическое. Его можно установить или удалить. Логический жесткий диск нельзя потрогать руками - физически он не существует. Это просто один из разделов физического диска. Работая с компьютером, мы не замечаем разницу между физическими и логическим дисками.

Каждый логический диск имеет собственную таблицу размещения файлов, поэтому на нем действует своя система адресации. В итоге потери из-за размеров кластеров становятся меньше.

Имена дисков

Каждый диск, присутствующий на компьютере, имеет уникальное имя. Неважно, что это за диск: физический, или логический, или еще какой (забегая вперед, скажем, что бывают и другие виды дисков) - у него обязательно должно быть имя. Имя диска состоит из одной буквы английского алфавита и двоеточия, например А: или, скажем, F:.

Когда на компьютере устанавливается новый жесткий диск, он получает букву, следующую за последней использованной буквой. То же самое происходит и при создании нового логического диска на уже установленном физическом диске.

Буквой А: общепринято обозначать дисковод для гибких дисков.

Буквой С: обозначается первый жесткий диск. Следующий диск получает букву D:, потом Е: и так далее.

Здесь пропущена буква В:. Она зарезервирована на тот случай, что в компьютере может быть не один, а два дисковода гибких дисков.

Адрес файла. Понятие о каталоге

Тот факт, что на жестком диске (физическом или логическом) можно сохранить более 65 тысяч разных файлов, еще не означает, что именно так и надо поступать. В портфель тоже можно положить пятьсот отдельных листочков, но так не делают. С тетрадками и книжками работать удобнее.

Для удобства работы с файлами на диске создаются каталоги. Если внутри одного каталога лежит другой, то их имена отделяются друг от друга обратной косой чертой (\). Каждый сам создает себе на диске такие каталоги, какие ему удобны.

Например, на диске С: можно создать следующие каталоги:

С:\Проекты

С:\Статьи

С:\Архивы

Если каталог лежит внутри другого каталога, он называется вложенным.

В каталоге \Проекты можно создать, например, каталоги \Авиация, \Космос, \Компьютеры, а внутри каталога \Космос можно создать каталоги \Венера, \Марс и прочие. Тогда файл, в котором хранится картинка с вулканами Венеры, полученная из Интернета, может иметь следующий адрес:

С:\Проекты\Космос\Венера\имя файла

С тем, как правильно записываются имена файлов, мы познакомимся позже, когда узнаем, что такое операционная система. Дело в том, что в разных операционных системах разные правила записи имен файлов.

Адрес файла еще называют путем доступа к файлу или путем поиска файла. Зная такой адрес (путь), нетрудно найти любой файл из имеющихся на компьютере. Надо только знать, где что лежит. Но это уже задача не для компьютера, а для человека. Если мы иногда наводим порядок в ящике письменного стола или в портфеле, то почему бы и не наводить порядок на жестком диске, раскладывая файлы по тем каталогам, в которых их удобнее хранить.


Контрольные вопросы

1. Назовите общие черты информатики и других известных вам наук.

3. Двоичный код использует биты (0 или 1) для представления информации. Можете ли вы привести пример из жизни, где используется троичное кодирование?

4. В байте 8 битов, и потому байтом можно выразить числа от 0 до 255. Какие числа можно было бы выразить байтом, в котором только 6 битов?

5. Если компьютер одновременно отображает на экране 16 разных цветов, то сколько битов данных необходимо на кодирование цвета каждой точки экрана? Сколько в этом случае потребуется байтов, чтобы запомнить в компьютере квадратный рисунок, длина стороны которого равна 100 точкам?

6. Что общего в записи текстовой, графической и музыкальной информации двоичным кодом? В чем вы видите разницу?

7. Информацию на компьютере хранят в виде файлов. Как вы думаете, в каком случае роль файла важнее: при записи информации или при ее чтении?

8. С помощью каких предметов в классе обеспечивается интерфейс между учителем и учениками?

9. В чем вы видите достоинства и недостатки оперативной памяти компьютера? В чем достоинства и недостатки гибких и жестких дисков?

10. Устройства для хранения данных на магнитных лентах работают крайне медленно. Как вы думаете, почему люди готовы с этим мириться?



Загрузка...