sonyps4.ru

Виды циклов c#. Циклы for, while и do while в языке C

Силовые линии напряженности электрического поля - линии, касательные к которым в каждой точке совпадают с вектором Е По их направлению можно судить, где расположены положительные (+) и отрицательные (–) заряды, создающие электрическое поле. Густота линий (количество линий, пронизывающих единичную площадку поверхности, перпендикулярную к ним) численно равно модулю вектора Е.




Силовые линии напряженности электрического поля Силовые линии напряженности электрического поля не замкнуты, имеют начало и конец. Можно говорить, что электрическое поле имеет «источники» и «стоки» силовых линий. Силовые линии начинаются на положительных (+) зарядах (Рис. а), заканчиваются на отрицательных (–) зарядах (Рис. б). Силовые линии не пересекаются.






Поток вектора напряженности электрического поля Произвольная площадка dS. Поток вектора напряженности электрического поля через площадку dS: - псевдовектор, модуль которого равен dS, а направление совпадает с направление вектора n к площадке dS. Е = constdФ Е = N - числу линий вектора напряженности электрического поля Е, пронизывающих площадку dS.




Поток вектора напряженности электрического поля Если поверхность не плоская, а поле неоднородное, то выделяют малый элемент dS, который считать плоским, а поле – однородным. Поток вектора напряженности электрического поля: Знак потока совпадает со знаком заряда.


Закон (теорема) Гаусса в интегральной форме. Телесный угол – часть пространства, ограниченная конической поверхностью. Мера телесного угла – отношение площади S сферы, вырезаемой на поверхности сферы конической поверхностью к квадрату радиуса R сферы. 1 стерадиан – телесный угол с вершиной в центре сферы, вырезающий на поверхности сферы площадь, равную площади квадрата со стороной, по длине равной радиусу этой сферы.


Теорема Гаусса в интегральной форме Электрическое поле создается точечным зарядом +q в вакууме. Поток d Ф Е, создаваемого этим зарядом, через бесконечно малую площадку dS, радиус вектор которой r. dS n – проекция площадки dS на плоскость перпендикулярную в ектору r. n – единичный вектор положительной нормали к площадке dS.










Если произвольная поверхность окружает k– зарядов, то согласно принципу суперпозиции: Теорема Гаусса: для электрического поля в вакууме поток вектора напряженности электрического поля сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленных на ε 0.






Методика применения теоремы Гаусса для расчета электрических полей – второй способ определения напряженности электрического поля Е Теорема Гаусса применяется для нахождения полей, созданных телами, обладающими геометрической симметрией. Тогда векторное уравнение сводится к скалярному.


Методика применения теоремы Гаусса для расчета электрических полей – второй способ определения напряженности электрического поля Е 1) Находится поток Ф Е вектора Е по определению потока. 2) Находится поток Ф Е по теореме Гаусса. 3) Из условия равенства потоков находится вектор Е.


Примеры применения теоремы Гаусса 1. Поле бесконечной однородно заряженной нити (цилиндра) с линейной плотностью τ (τ = dq/dl, Кл/м). Поле симметричное, направлено перпендикулярно нити и из соображений симметрии на одинаковом расстоянии от оси симметрии цилиндра (нити) имеет одинаковое значение.






2.Поле равномерно заряженной сферы радиуса R. Поле симметричное, линии напряженности Е электрического поля направлены в радиальном направлении, и на одинаковом расстоянии от точки О поле имеет одно и то же значение. Вектор единичной нормали n к сфере радиуса r совпадает с вектором напряженности Е. Охватим заряженную (+q) сферу вспомогательной сферической поверхностью радиуса r.




2.Поле равномерно заряженной сферы При поле сферы находится как поле точечного заряда. При r


(σ = dq/dS, Кл/м 2). Поле симметричное, вектор Е перпендикулярен плоскости с поверхностной плотностью заряда +σ и на одинаковом расстоянии от плоскости имеет одинаковое значение. 3. Поле равномерно заряженной бесконечной плоскости с поверхностной плотностью заряда + σ В качестве замкнутой поверхности возьмем цилиндр, основания которого параллельны плоскости, и который делится заряженной плоскостью на две равные половины.


Теорема Ирншоу Система неподвижных электрических зарядов не может находиться в устойчивом равновесии. Заряд + q будет находиться в равновесии, если при его перемещении на расстояние dr со стороны всех остальных зарядов системы, расположенных вне поверхности S, будет действовать сила F, возвращающая его в исходное положение. Имеется система зарядов q 1, q 2, … q n. Один из зарядов q системы охватим замкнутой поверхностью S. n – единичный вектор нормали к поверхности S.


Теорема Ирншоу Сила F обусловлена полем Е, созданным всеми остальными зарядами. Поле всех внешних зарядов Е должно быть направлено противоположно направлению вектора перемещения dr, то есть от поверхности S к центру. Согласно теореме Гаусса, если заряды не охватываются замкнутой поверхностью, то Ф Е = 0. Противоречие доказывает теорему Ирншоу.




0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф 33 Закон Гаусса в дифференциальной форме Дивергенция вектора – число силовых линий, приходящихся на единицу объема, или плотность потока силовых линий. Пример: из объема вытекает и втекает вода. Ф > 0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф title="Закон Гаусса в дифференциальной форме Дивергенция вектора – число силовых линий, приходящихся на единицу объема, или плотность потока силовых линий. Пример: из объема вытекает и втекает вода. Ф > 0 вытекает больше, чем втекает. Ф





а б

Зная вектор напряженности электростатического поля в каждой его точке, можно представить это поле наглядно с помощью силовых линий напряженности (линий вектора ). Силовые линии напряженности проводят так, чтобы касательная к ним в каждой точке совпадала с направлением вектора напряженности(рис. 1.4,а ).

Число линий, пронизывающих единичную площадку dS, перпендикулярную к ним, проводят пропорционально модулю вектора (рис. 1.4,б ).

Силовым линиям приписывают направление, совпадающее с направлением вектора . Полученная картина распределения линий напряженности позволяет судить о конфигурации данного электрического поля в разных его точках. Силовые линии начинаются на положительных зарядах и оканчиваются на отрицательных зарядах. На рис. 1.5 приведены линии напряженности точечных зарядов (рис. 1.5, а , б ); системы двух разноименных зарядов (рис. 1.5, в )  пример неоднородного электростатического поля и двух параллельных разноименно заряженных плоскостей (рис. 1.5, г )  пример однородного электрического поля.

1.5. Распределение зарядов

В некоторых случаях для упрощения математических расчетов истинное распределение точечных дискретных зарядов удобно заменить фиктивным непрерывным распределением. При переходе к непрерывному распределению зарядов используют понятие о плотности зарядов  линейной , поверхностной  и объемной , т. е.

(1.12)

где dq  заряд, распределенный соответственно по элементу длины
, элементу поверхностиdS и элементу объема dV.

С учетом этих распределений формула (1.11) может быть записана в другой форме. Например, если заряд распределен по объему, то вместо q i нужно использовать dq = dV, а символ суммы заменить интегралом, тогда

. (1.13)

1.6. Электрический диполь

Для объяснения явлений, связанных с зарядами в физике используется понятие электрического диполя .

Систему двух равных по величине разноименных точечных зарядов, расстояние между которыми много меньше расстояния до исследуемых точек пространства, называют электрическим диполем. Согласно определению диполя +q=q= q.

Прямую, соединяющую разноименные заряды (полюса), называют осью диполя; точку 0  центром диполя (рис. 1.6). Электрический диполь характеризуется плечом диполя : вектором , направленным от отрицательного заряда к положительному. Основной характеристикой диполя являетсяэлектрический дипольный момент = q. (1.14)

По абсолютной величине

р = q. (1.15)

В СИ электрический дипольный момент измеряется в кулонах умноженных на метр (Кл м).

Рассчитаем потенциал и напряженность электрического поля диполя, считая его точечным, если  r.

Потенциал электрического поля, созданного системой точечных зарядов в произвольной точке, характеризуемой радиусвектором , запишем в виде:

где r 1 r 2  r 2 , r 1  r 2  r =
, так как  r;   угол между радиус-векторами и (рис. 1.6). С учетом этого получим

. (1.16)

Используя формулу, связывающую градиент потенциала с напряженностью, найдем напряженность, создаваемую электрическим полем диполя. Разложим вектор электрического поля диполя на две взаимно перпендикулярные составляющие, т. е.
(рис. 1. 6).

Первая их них определяется движением точки, характеризуемой радиусвектором (при фиксированном значении угла), т. е. значение Е  найдем дифференцированием (1.81) по r, т. е.

. (1.17)

Вторая составляющая определяется движением точки, связанным с изменением угла  (при фиксированном r), т. е. Е  найдем дифференцированием (1.16) по :
, (1.18)

где
,d= rd.

Результирующая напряженность Е 2 = Е  2 + Е  2 или после подстановки
. (1.19)

Замечание : При  = 90 о
, (1.20)

т. е. напряженность в точке на прямой проходящей через центр диполя (т. О) и перпендикулярно оси диполя.

При  = 0 о
, (1.21)

т. е. в точке на продолжении прямой, совпадающей с осью диполя.

Анализ формул (1.19), (1.20), (1.21) показывает, что напряженность электрического поля диполя убывает с расстоянием обратно пропорционально r 3 , т. е. быстрее, чем для точечного заряда (обратно пропорционально r 2).

Электростатическое поле удобно изображать графически с помощью силовых линий и эквипотенциальных поверхностей.

Силовая линия – это линия, в каждой точке которой касательная совпадает с направлением вектора напряженности (см. рис.). Силовым линиям придают направление стрелкой. Свойства силовых линий:

1 ) Силовые линии непрерывны. Они имеют начало и конец – начинаются на положительных и заканчиваются на отрицательных зарядах.

2 ) Силовые линии не могут пересекаться друг с другом, т.к. напряженность – это сила, а две силы в данной точке от одного заряда не могут быть.

3 ) Силовые линии проводят так, чтобы их количество через единичную перпендикулярную площадку было пропорционально величине напряженности.

4 ) Силовые линии «выходят» и «входят» всегда перпендикулярно поверхности тела.

5 ) Силовую линию не следует путать с траекторией движущегося заряда. Касательная к траектории совпадает с направлением скорости, а касательная к силовой линии – с силой и, следовательно, с ускорением.

Эквипотенциальной поверхностью называют поверхность, в каждой точке которой потенциал имеет одинаковое значение j = const.

Силовые линии всегда перпендикулярны эквипотенциальным поверхностям. Докажем это. Пусть вдоль эквипотенциальной поверхности перемещается точечный заряд q . Элементарная работа, совершаемая при этом равна dA=qE×cosa×dl = q×dj = 0, т.к. dj = 0. Поскольку q ,E и ×dl ¹ 0, следовательно

cosa = 0 и a = 90 о.

На рисунке изображено электростатическое поле двух одинаковых точечных зарядов. Линии со стрелками – это силовые линии, замкнутые кривые – эквипотенциальные поверхности. В центре осевой линии, соединяющей заряды напряженность равна 0. На очень большом расстоянии от зарядов эквипотенциальные поверхности становятся сферическими. .
На этом рисунке показано однородноеполе – это поле, в каждой точке которого вектор напряженности остается постоянным по величине и направлению Эквипотенциальные поверхности – это плоскости, перпендикулярные силовым линиям. Вектор напряженности всегда направлен в сторону убывания потенциала.

Тема 1. Вопрос 6.

Принцип суперпозиции.

На основе опытных данных был получен принципа суперпозиции (наложения) полей: «Если электрическое поле создается несколькими зарядами, то напряженность и потенциал результирующего поля складываются независимо, т.е. не влияя друг на друга». При дискретном распределении зарядов напряженность результирующего поля равна векторной сумме, а потенциал алгебраической (с учетом знака) сумме полей, создаваемых каждым зарядом в отдельности. При непрерывном распределении заряда в теле векторные суммы заменяется на интегралы, где dE и dj – напряженность и потенциал поля элементарного (точечного) заряда, выделенного в теле. Математически принцип суперпозиции можно записать так.

Тема 2. Вопрос 1.

Теорема Гаусса.

Сначала введем понятие «поток вектора » - это скалярная величина

(Н×м 2 /Кл = В×м) элементарный поток вектора напряженности Е , n – нормаль к площадке, dS – элементарная площадка – это такая малая площадка, в пределах которой Е = const; Е n – проекция вектора Е на направление нормали n
поток вектора напряженности через конечную площадку S
-²- -²- -²-через замкнутую поверхность S

1) Сфера, заряженная с поверхностной плотностью заряда s (Кл/м 2)

Рассмотрим области: 1) вне сферы () и внутри ее (). Выберем поверхности: 1) S 1 и 2) S 2 – обе поверхности – сферы, концентрические с заряженной сферой. Сначала найдем потоки вектора Е через выбранные поверхности, а затем воспользуемся теоремой.

(¨) Потоки вектора Е через S 1 () и S 2 . () E ^n , a = 0, cosa = 1.
(¨¨) по теореме Гаусса; F 2 = 0, т.к. S 2 не охватывает никаких зарядов. Приравнивая потоки из (¨) и (¨¨), найдем E(r) .
q = s×2pR 2 полный заряд сферы Вне сферы поле такое же, как поле точечного заряда. На границе сферы происходит скачок напряженности.

Тема 2. Вопрос 2.

Теорема Гаусса.

2)Тонкая длинная нить, заряженная с линейной плотностью заряда t (Кл/м)

В этом случае «гауссова» поверхность – соосный с нитью цилиндр длиной l .

Сначала найдем поток, потом воспользуемся теоремой Гаусса.

Тема 2. Вопрос 3.

Теорема Гаусса.

3) Тонкостенный длинный цилиндр , заряженный:

1) с линейной плотностью заряда t или

2) с поверхностной плотностью заряда s.

Этот пример аналогичен предыдущему. Выбираем гауссову поверхность в виде соосного цилиндра, разбиваем поверхность на боковую и две торциальные. В первом случае при заданной линейной плотности t получим такую же формулу, как идля длинной нити. Во втором случае охватываемый заряд равен (s×2p×R×l) и формула для E несколько иная, хотя зависимость от r – та же.

Тема 2. Вопрос 4.



Загрузка...