sonyps4.ru

В статистике регрессия может быть представлена. Чаще всего такой подход применяется при агрегировании данных по месяцам, при исходных данных по дням

В предыдущих заметках предметом анализа часто становилась отдельная числовая переменная, например, доходность взаимных фондов, время загрузки Web-страницы или объем потребления безалкогольных напитков. В настоящей и следующих заметках мы рассмотрим методы предсказания значений числовой переменной в зависимости от значений одной или нескольких других числовых переменных.

Материал будет проиллюстрирован сквозным примером. Прогнозирование объема продаж в магазине одежды. Сеть магазинов уцененной одежды Sunflowers на протяжении 25 лет постоянно расширялась. Однако в настоящее время у компании нет систематического подхода к выбору новых торговых точек. Место, в котором компания собирается открыть новый магазин, определяется на основе субъективных соображений. Критериями выбора являются выгодные условия аренды или представления менеджера об идеальном местоположении магазина. Представьте, что вы - руководитель отдела специальных проектов и планирования. Вам поручили разработать стратегический план открытия новых магазинов. Этот план должен содержать прогноз годового объема продаж во вновь открываемых магазинах. Вы полагаете, что торговая площадь непосредственно связана с объемом выручки, и хотите учесть этот факт в процессе принятия решения. Как разработать статистическую модель, позволяющую прогнозировать годовой объем продаж на основе размера нового магазина?

Как правило, для предсказания значений переменной используется регрессионный анализ. Его цель - разработать статистическую модель, позволяющую предсказывать значения зависимой переменной, или отклика, по значениям, по крайней мере одной, независимой, или объясняющей, переменной. В настоящей заметке мы рассмотрим простую линейную регрессию - статистический метод, позволяющий предсказывать значения зависимой переменной Y по значениям независимой переменной X . В последующих заметках будет описана модель множественной регрессии, предназначенная для предсказания значений независимой переменной Y по значениям нескольких зависимых переменных (Х 1 , Х 2 , …, X k ).

Скачать заметку в формате или , примеры в формате

Виды регрессионных моделей

где ρ 1 – коэффициент автокорреляции; если ρ 1 = 0 (нет автокорреляции), D ≈ 2; если ρ 1 ≈ 1 (положительная автокорреляции), D ≈ 0; если ρ 1 = -1 (отрицательная автокорреляции), D ≈ 4.

На практике применение критерия Дурбина-Уотсона основано на сравнении величины D с критическими теоретическими значениями d L и d U для заданного числа наблюдений n , числа независимых переменных модели k (для простой линейной регрессии k = 1) и уровня значимости α. Если D < d L , гипотеза о независимости случайных отклонений отвергается (следовательно, присутствует положительная автокорреляция); если D > d U , гипотеза не отвергается (то есть автокорреляция отсутствует); если d L < D < d U , нет достаточных оснований для принятия решения. Когда расчётное значение D превышает 2, то с d L и d U сравнивается не сам коэффициент D , а выражение (4 – D ).

Для вычисления статистики Дурбина-Уотсона в Excel обратимся к нижней таблице на рис. 14 Вывод остатка . Числитель в выражении (10) вычисляется с помощью функции =СУММКВРАЗН(массив1;массив2), а знаменатель =СУММКВ(массив) (рис. 16).

Рис. 16. Формулы расчета статистики Дурбина-Уотсона

В нашем примере D = 0,883. Основной вопрос заключается в следующем - какое значение статистики Дурбина-Уотсона следует считать достаточно малым, чтобы сделать вывод о существовании положительной автокорреляции? Необходимо соотнести значение D с критическими значениями (d L и d U ), зависящими от числа наблюдений n и уровня значимости α (рис. 17).

Рис. 17. Критические значения статистики Дурбина-Уотсона (фрагмент таблицы)

Таким образом, в задаче об объеме продаж в магазине, доставляющем товары на дом, существуют одна независимая переменная (k = 1), 15 наблюдений (n = 15) и уровень значимости α = 0,05. Следовательно, d L = 1,08 и d U = 1,36. Поскольку D = 0,883 < d L = 1,08, между остатками существует положительная автокорреляция, метод наименьших квадратов применять нельзя.

Проверка гипотез о наклоне и коэффициенте корреляции

Выше регрессия применялась исключительно для прогнозирования. Для определения коэффициентов регрессии и предсказания значения переменной Y при заданной величине переменной X использовался метод наименьших квадратов. Кроме того, мы рассмотрели среднеквадратичную ошибку оценки и коэффициент смешанной корреляции. Если анализ остатков подтверждает, что условия применимости метода наименьших квадратов не нарушаются, и модель простой линейной регрессии является адекватной, на основе выборочных данных можно утверждать, что между переменными в генеральной совокупности существует линейная зависимость.

Применение t -критерия для наклона. Проверяя, равен ли наклон генеральной совокупности β 1 нулю, можно определить, существует ли статистически значимая зависимость между переменными X и Y . Если эта гипотеза отклоняется, можно утверждать, что между переменными X и Y существует линейная зависимость. Нулевая и альтернативная гипотезы формулируются следующим образом: Н 0: β 1 = 0 (нет линейной зависимости), Н1: β 1 ≠ 0 (есть линейная зависимость). По определению t -статистика равна разности между выборочным наклоном и гипотетическим значением наклона генеральной совокупности, деленной на среднеквадратичную ошибку оценки наклона:

(11) t = (b 1 β 1 ) / S b 1

где b 1 – наклон прямой регрессии по выборочным данным, β1 – гипотетический наклон прямой генеральной совокупности, , а тестовая статистика t имеет t -распределение с n – 2 степенями свободы.

Проверим, существует ли статистически значимая зависимость между размером магазина и годовым объемом продаж при α = 0,05. t -критерий выводится наряду с другими параметрами при использовании Пакета анализа (опция Регрессия ). Полностью результаты работы Пакета анализа приведены на рис. 4, фрагмент, относящийся к t-статистике – на рис. 18.

Рис. 18. Результаты применения t

Поскольку число магазинов n = 14 (см. рис.3), критическое значение t -статистики при уровне значимости α = 0,05 можно найти по формуле: t L =СТЬЮДЕНТ.ОБР(0,025;12) = –2,1788, где 0,025 – половина уровня значимости, а 12 = n – 2; t U =СТЬЮДЕНТ.ОБР(0,975;12) = +2,1788.

Поскольку t -статистика = 10,64 > t U = 2,1788 (рис. 19), нулевая гипотеза Н 0 отклоняется. С другой стороны, р -значение для Х = 10,6411, вычисляемое по формуле =1-СТЬЮДЕНТ.РАСП(D3;12;ИСТИНА), приближенно равно нулю, поэтому гипотеза Н 0 снова отклоняется. Тот факт, что р -значение почти равно нулю, означает, что если бы между размерами магазинов и годовым объемом продаж не существовало реальной линейной зависимости, обнаружить ее с помощью линейной регрессии было бы практически невозможно. Следовательно, между средним годовым объемом продаж в магазинах и их размером существует статистически значимая линейная зависимость.

Рис. 19. Проверка гипотезы о наклоне генеральной совокупности при уровне значимости, равном 0,05, и 12 степенях свободы

Применение F -критерия для наклона. Альтернативным подходом к проверке гипотез о наклоне простой линейной регрессии является использование F -критерия. Напомним, что F -критерий применяется для проверки отношения между двумя дисперсиями (подробнее см. ). При проверке гипотезы о наклоне мерой случайных ошибок является дисперсия ошибки (сумма квадратов ошибок, деленная на количество степеней свободы), поэтому F -критерий использует отношение дисперсии, объясняемой регрессией (т.е. величины SSR , деленной на количество независимых переменных k ), к дисперсии ошибок (MSE = S Y X 2 ).

По определению F -статистика равна среднему квадрату отклонений, обусловленных регрессией (MSR), деленному на дисперсию ошибки (MSE): F = MSR / MSE , где MSR = SSR / k , MSE = SSE /(n – k – 1), k – количество независимых переменных в регрессионной модели. Тестовая статистика F имеет F -распределение с k и n – k – 1 степенями свободы.

При заданном уровне значимости α решающее правило формулируется так: если F > F U , нулевая гипотеза отклоняется; в противном случае она не отклоняется. Результаты, оформленные в виде сводной таблицы дисперсионного анализа, приведены на рис. 20.

Рис. 20. Таблица дисперсионного анализа для проверки гипотезы о статистической значимости коэффициента регрессии

Аналогично t -критерию F -критерий выводится в таблицу при использовании Пакета анализа (опция Регрессия ). Полностью результаты работы Пакета анализа приведены на рис. 4, фрагмент, относящийся к F -статистике – на рис. 21.

Рис. 21. Результаты применения F -критерия, полученные с помощью Пакета анализа Excel

F-статистика равна 113,23, а р -значение близко к нулю (ячейка Значимость F ). Если уровень значимости α равен 0,05, определить критическое значение F -распределения с одной и 12 степенями свободы можно по формуле F U =F.ОБР(1-0,05;1;12) = 4,7472 (рис. 22). Поскольку F = 113,23 > F U = 4,7472, причем р -значение близко к 0 < 0,05, нулевая гипотеза Н 0 отклоняется, т.е. размер магазина тесно связан с его годовым объемом продаж.

Рис. 22. Проверка гипотезы о наклоне генеральной совокупности при уровне значимости, равном 0,05, с одной и 12 степенями свободы

Доверительный интервал, содержащий наклон β 1 . Для проверки гипотезы о существовании линейной зависимости между переменными можно построить доверительный интервал, содержащий наклон β 1 и убедиться, что гипотетическое значение β 1 = 0 принадлежит этому интервалу. Центром доверительного интервала, содержащего наклон β 1 , является выборочный наклон b 1 , а его границами - величины b 1 ± t n –2 S b 1

Как показано на рис. 18, b 1 = +1,670, n = 14, S b 1 = 0,157. t 12 =СТЬЮДЕНТ.ОБР(0,975;12) = 2,1788. Следовательно, b 1 ± t n –2 S b 1 = +1,670 ± 2,1788 * 0,157 = +1,670 ± 0,342, или + 1,328 ≤ β 1 ≤ +2,012. Таким образом, наклон генеральной совокупности с вероятностью 0,95 лежит в интервале от +1,328 до +2,012 (т.е. от 1 328 000 до 2 012 000 долл.). Поскольку эти величины больше нуля, между годовым объемом продаж и площадью магазина существует статистически значимая линейная зависимость. Если бы доверительный интервал содержал нуль, между переменными не было бы зависимости. Кроме того, доверительный интервал означает, что каждое увеличение площади магазина на 1 000 кв. футов приводит к увеличению среднего объема продаж на величину от 1 328 000 до 2 012 000 долларов.

Использование t -критерия для коэффициента корреляции. был введен коэффициент корреляции r , представляющий собой меру зависимости между двумя числовыми переменными. С его помощью можно установить, существует ли между двумя переменными статистически значимая связь. Обозначим коэффициент корреляции между генеральными совокупностями обеих переменных символом ρ. Нулевая и альтернативная гипотезы формулируются следующим образом: Н 0 : ρ = 0 (нет корреляции), Н 1 : ρ ≠ 0 (есть корреляция). Проверка существования корреляции:

где r = + , если b 1 > 0, r = – , если b 1 < 0. Тестовая статистика t имеет t -распределение с n – 2 степенями свободы.

В задаче о сети магазинов Sunflowers r 2 = 0,904, а b 1 - +1,670 (см. рис. 4). Поскольку b 1 > 0, коэффициент корреляции между объемом годовых продаж и размером магазина равен r = +√0,904 = +0,951. Проверим нулевую гипотезу, утверждающую, что между этими переменными нет корреляции, используя t -статистику:

При уровне значимости α = 0,05 нулевую гипотезу следует отклонить, поскольку t = 10,64 > 2,1788. Таким образом, можно утверждать, что между объемом годовых продаж и размером магазина существует статистически значимая связь.

При обсуждении выводов, касающихся наклона генеральной совокупности, доверительные интервалы и критерии для проверки гипотез являются взаимозаменяемыми инструментами. Однако вычисление доверительного интервала, содержащего коэффициент корреляции, оказывается более сложным делом, поскольку вид выборочного распределения статистики r зависит от истинного коэффициента корреляции.

Оценка математического ожидания и предсказание индивидуальных значений

В этом разделе рассматриваются методы оценки математического ожидания отклика Y и предсказания индивидуальных значений Y при заданных значениях переменной X .

Построение доверительного интервала. В примере 2 (см. выше раздел Метод наименьших квадратов ) регрессионное уравнение позволило предсказать значение переменной Y X . В задаче о выборе места для торговой точки средний годовой объем продаж в магазине площадью 4000 кв. футов был равен 7,644 млн. долл. Однако эта оценка математического ожидания генеральной совокупности является точечной. для оценки математического ожидания генеральной совокупности была предложена концепция доверительного интервала. Аналогично можно ввести понятие доверительного интервала для математического ожидания отклика при заданном значении переменной X :

где , = b 0 + b 1 X i – предсказанное значение переменное Y при X = X i , S YX – среднеквадратичная ошибка, n – объем выборки, X i - заданное значение переменной X , µ Y | X = X i – математическое ожидание переменной Y при Х = Х i , SSX =

Анализ формулы (13) показывает, что ширина доверительного интервала зависит от нескольких факторов. При заданном уровне значимости возрастание амплитуды колебаний вокруг линии регрессии, измеренное с помощью среднеквадратичной ошибки, приводит к увеличению ширины интервала. С другой стороны, как и следовало ожидать, увеличение объема выборки сопровождается сужением интервала. Кроме того, ширина интервала изменяется в зависимости от значений X i . Если значение переменной Y предсказывается для величин X , близких к среднему значению , доверительный интервал оказывается уже, чем при прогнозировании отклика для значений, далеких от среднего.

Допустим, что, выбирая место для магазина, мы хотим построить 95%-ный доверительный интервал для среднего годового объема продаж во всех магазинах, площадь которых равна 4000 кв. футов:

Следовательно, средний годовой объем продаж во всех магазинах, площадь которых равна 4 000 кв. футов, с 95% -ной вероятностью лежит в интервале от 6,971 до 8,317 млн. долл.

Вычисление доверительного интервала для предсказанного значения. Кроме доверительного интервала для математического ожидания отклика при заданном значении переменной X , часто необходимо знать доверительный интервал для предсказанного значения. Несмотря на то что формула для вычисления такого доверительного интервала очень похожа на формулу (13), этот интервал содержит предсказанное значение, а не оценку параметра. Интервал для предсказанного отклика Y X = Xi при конкретном значении переменной X i определяется по формуле:

Предположим, что, выбирая место для торговой точки, мы хотим построить 95%-ный доверительный интервал для предсказанного годового объема продаж в магазине, площадь которого равна 4000 кв. футов:

Следовательно, предсказанный годовой объем продаж в магазине, площадь которого равна 4000 кв. футов, с 95%-ной вероятностью лежит в интервале от 5,433 до 9,854 млн. долл. Как видим, доверительный интервал для предсказанного значения отклика намного шире, чем доверительный интервал для его математического ожидания. Это объясняется тем, что изменчивость при прогнозировании индивидуальных значений намного больше, чем при оценке математического ожидания.

Подводные камни и этические проблемы, связанные с применением регрессии

Трудности, связанные с регрессионным анализом:

  • Игнорирование условий применимости метода наименьших квадратов.
  • Ошибочная оценка условий применимости метода наименьших квадратов.
  • Неправильный выбор альтернативных методов при нарушении условий применимости метода наименьших квадратов.
  • Применение регрессионного анализа без глубоких знаний о предмете исследования.
  • Экстраполяция регрессии за пределы диапазона изменения объясняющей переменной.
  • Путаница между статистической и причинно-следственной зависимостями.

Широкое распространение электронных таблиц и программного обеспечения для статистических расчетов ликвидировало вычислительные проблемы, препятствовавшие применению регрессионного анализа. Однако это привело к тому, что регрессионный анализ стали применять пользователи, не обладающие достаточной квалификацией и знаниями. Откуда пользователям знать об альтернативных методах, если многие из них вообще не имеют ни малейшего понятия об условиях применимости метода наименьших квадратов и не умеют проверять их выполнение?

Исследователь не должен увлекаться перемалыванием чисел - вычислением сдвига, наклона и коэффициента смешанной корреляции. Ему нужны более глубокие знания. Проиллюстрируем это классическим примером, взятым из учебников. Анскомб показал, что все четыре набора данных, приведенных на рис. 23, имеют одни и те же параметры регрессии (рис. 24).

Рис. 23. Четыре набора искусственных данных

Рис. 24. Регрессионный анализ четырех искусственных наборов данных; выполнен с помощью Пакета анализа (кликните на рисунке, чтобы увеличить изображение)

Итак, с точки зрения регрессионного анализа все эти наборы данных совершенно идентичны. Если бы анализ был на этом закончен, мы потеряли бы много полезной информации. Об этом свидетельствуют диаграммы разброса (рис. 25) и графики остатков (рис. 26), построенные для этих наборов данных.

Рис. 25. Диаграммы разброса для четырех наборов данных

Диаграммы разброса и графики остатков свидетельствуют о том, что эти данные отличаются друг от друга. Единственный набор, распределенный вдоль прямой линии, - набор А. График остатков, вычисленных по набору А, не имеет никакой закономерности. Этого нельзя сказать о наборах Б, В и Г. График разброса, построенный по набору Б, демонстрирует ярко выраженную квадратичную модель. Этот вывод подтверждается графиком остатков, имеющим параболическую форму. Диаграмма разброса и график остатков показывают, что набор данных В содержит выброс. В этой ситуации необходимо исключить выброс из набора данных и повторить анализ. Метод, позволяющий обнаруживать и исключать выбросы из наблюдений, называется анализом влияния. После исключения выброса результат повторной оценки модели может оказаться совершенно иным. Диаграмма разброса, построенная по данным из набора Г, иллюстрирует необычную ситуацию, в которой эмпирическая модель значительно зависит от отдельного отклика (Х 8 = 19, Y 8 = 12,5). Такие регрессионные модели необходимо вычислять особенно тщательно. Итак, графики разброса и остатков являются крайне необходимым инструментом регрессионного анализа и должны быть его неотъемлемой частью. Без них регрессионный анализ не заслуживает доверия.

Рис. 26. Графики остатков для четырех наборов данных

Как избежать подводных камней при регрессионном анализе:

  • Анализ возможной взаимосвязи между переменными X и Y всегда начинайте с построения диаграммы разброса.
  • Прежде чем интерпретировать результаты регрессионного анализа, проверяйте условия его применимости.
  • Постройте график зависимости остатков от независимой переменной. Это позволит определить, насколько эмпирическая модель соответствует результатам наблюдения, и обнаружить нарушение постоянства дисперсии.
  • Для проверки предположения о нормальном распределении ошибок используйте гистограммы, диаграммы «ствол и листья», блочные диаграммы и графики нормального распределения.
  • Если условия применимости метода наименьших квадратов не выполняются, используйте альтернативные методы (например, модели квадратичной или множественной регрессии).
  • Если условия применимости метода наименьших квадратов выполняются, необходимо проверить гипотезу о статистической значимости коэффициентов регрессии и построить доверительные интервалы, содержащие математическое ожидание и предсказанное значение отклика.
  • Избегайте предсказывать значения зависимой переменной за пределами диапазона изменения независимой переменной.
  • Имейте в виду, что статистические зависимости не всегда являются причинно-следственными. Помните, что корреляция между переменными не означает наличия причинно-следственной зависимости между ними.

Резюме. Как показано на структурной схеме (рис. 27), в заметке описаны модель простой линейной регрессии, условия ее применимости и способы проверки этих условий. Рассмотрен t -критерий для проверки статистической значимости наклона регрессии. Для предсказания значений зависимой переменной использована регрессионная модель. Рассмотрен пример, связанный с выбором места для торговой точки, в котором исследуется зависимость годового объема продаж от площади магазина. Полученная информация позволяет точнее выбрать место для магазина и предсказать его годовой объем продаж. В следующих заметках будет продолжено обсуждение регрессионного анализа, а также рассмотрены модели множественной регрессии.

Рис. 27. Структурная схема заметки

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 792–872

Если зависимая переменная является категорийной, необходимо применять логистическую регрессию.

Оценка качества уравнения регрессии при помощи коэффициентов детерминации. Проверка нулевой гипотезы о значимости уравнения и показателей тесноты связи с помощью F-критерия Фишера.

Стандартные ошибки коэффициентов.

Уравнение регрессии имеет вид:

Y =3378,41 -494,59X 1 -35,00X 2 +75,74X 3 -15,81X 4 +80,10X 5 +59,84X 6 +
(1304,48) (226,77) (10,31) (277,57) (287,54) (35,31) (150,93)
+127,98X 7 -78,10X 8 -437,57X 9 +451,26X 10 -299,91X 11 -14,93X 12 -369,65X 13 (9)
(22,35) (31,19) (97,68) (331,79) (127,84) 86,06 (105,08)

Для заполнения таблицы «Регрессионная статистика» (Таблица 9) находим:

1. Множественный R – r-коэффициент корреляции между у и ŷ.

Для этого следует воспользоваться функцией КОРРЕЛ, введя массивы у и ŷ.

Полученное в результате число 0,99 близко к 1, что показывает очень сильную связь между опытными данными и расчетными.

2. Для расчета R-квадрат находим:

Объясняемая ошибка 17455259,48,

Необъясняемая ошибка .

Следовательно, R-квадрат равен .

Соответственно 97% опытных данных объяснимы полученным уравнением регрессии.

3. Нормированный R-квадрат находим по формуле

Этот показатель служит для сравнения разных моделей регрессии при изменении состава объясняющих переменных.

4. Стандартная ошибка – квадратный корень из выборочной остаточной дисперсии:

В результате получаем следующую таблицу.

Таблица 9.

Заполнение таблицы «Дисперсионный анализ»

Большая часть данных уже получена выше. (Объясняемая и необъясняемая ошибка).

Рассчитаем t wx:val="Cambria Math"/>13 = 1342712,27"> .



Оценку статистической значимости уравнения регрессии в целом проведем с помощью F -критерия Фишера. Уравнение множественной регрессии значимо (иначе – гипотеза H 0 о равенстве нулю параметров регрессионной модели, т.е. отвергается), если

, (10)

где - табличное значение F-критерия Фишера.

Фактическое значение F - критерия по формуле составит:

Для расчета табличного значения критерия Фишера используется функция FРАСПОБР (Рисунок 4).

Степень свободы 1: p=13

Степень свободы 2: n-p-1 = 20-13-1=6

Рисунок 4. Использование функции FРАСПОБР в Excel.

F табл = 3,976 < 16,88, следовательно, модель адекватна опытным данным.

Значимость F рассчитывается с помощью функции FРАСП. Эта функция возвращает F-распределение вероятности (распределение Фишера) и позволяет определить, имеют ли два множества данных различные степени разброса результатов.

Рисунок 5. Использование функции FРАСП в Excel.

Значимость F = 0,001.

Предполагается, что - независимые переменные (предикторы, объясняющие переменные) влияют на значения - зависимых переменных (откликов, объясняемых переменных). По имеющимся эмпирическим данным , требуется построить функцию , которая приближенно описывала бы изменение при изменении :

.

Предполагается, что множество допустимых функций, из которого подбирается , является параметрическим:

,

где - неизвестный параметр (вообще говоря, многомерный). При построении будем считать, что

, (1)

где первое слагаемое - закономерное изменение от , а второе - - случайная составляющая с нулевым средним; является условным математическим ожиданием при условии известного и называется регрессией по .

Пусть n раз измерены значения факторов и соответствующие значения переменной y ; предполагается, что

(2)

(второй индекс у x относится к номеру фактора, а первый – к номеру наблюдения); предполагается также, что

(3)

т.е. - некоррелированные случайные величины. Соотношения (2) удобно записывать в матричной форме:

, (4)

где - вектор-столбец значений зависимой переменной, t - символ транспонирования, - вектор-столбец (размерности k ) неизвестных коэффициентов регрессии, - вектор случайных отклонений,

-матрица ; в i -й строке находятся значения независимых переменных в i -м наблюдении первая переменная – константа, равная 1.

в начало

Оценка коэффициентов регрессии

Построим оценку для вектора так, чтобы вектор оценок зависимой переменной минимально (в смысле квадрата нормы разности) отличался от вектора заданных значений:

.

Решением является (если ранг матрицы равен k+1 ) оценка

(5)

Нетрудно проверить, что она несмещенная.

в начало

Проверка адекватности построенной регрессионной модели

Между значением , значением из регрессионной модели и значением тривиальной оценкой выборочного среднего существует следующее соотношение:

,

где .

По сути, член в левой части определяет общую ошибку относительно среднего. Первый член в правой части () определяет ошибку, связанную с регрессионной моделью, а второй () ошибку, связанную со случайными отклонениями и необъясненной построенной моделью.

Поделив обе части на полную вариацию игреков , получим коэффициент детерминации:

(6)

Коэффициент показывает качество подгонки регрессионной модели к наблюдаемым значениям . Если , то регрессия на не улучшает качества предсказания по сравнению с тривиальным предсказанием .

Другой крайний случай означает точную подгонку: все , т.е. все точки наблюдений лежат на регрессионной плоскости.

Однако, значение возрастает с ростом числа переменных (регрессоров) в регрессии, что не означает улучшения качества предсказания, и потому вводится скорректированный коэффициент детерминации

(7)

Его использование более корректно для сравнения регрессий при изменении числа переменных (регрессоров).

Доверительные интервалы для коэффициентов регрессии. Стандартной ошибкой оценки является величина , оценка для которой

(8)

где - диагональный элемент матрицы Z . Если ошибки распределены нормально, то, в силу свойств 1) и 2), приведенных выше, статистика

(9)

распределена по закону Стьюдента с степенями свободы, и поэтому неравенство

, (10)

где - квантиль уровня этого распределения, задает доверительный интервал для с уровнем доверия .

Проверка гипотезы о нулевых значениях коэффициентов регрессии. Для проверки гипотезы об отсутствии какой бы то ни было линейной связи между и совокупностью факторов, , т.е. об одновременном равенстве нулю всех коэффициентов, кроме коэффициентов, при константе используется статистика

, (11)

распределенная, если верна, по закону Фишера с k и степенями свободы. отклоняется, если

(12)

где - квантиль уровня .

в начало

Описание данных и постановка задачи

Исходный файл с данными tube_dataset.sta содержит 10 переменных и 33 наблюдения. См. рис. 1.


Рис. 1. Исходная таблица данных из файла tube_dataset.sta

В названии наблюдений указан временной интервал: квартал и год (до и после точки соответственно). Каждое наблюдение содержит данные за соответствующий временной интервал. 10 переменная «Квартал» дублирует номер квартала в имени наблюдения. Список переменных приведен ниже.


Цель: Построить регрессионную модель для переменной №9 «Потребление труб».

Этапы решения:

1) Сначала проведем разведочный анализ имеющихся данных на предмет выбросов и незначимых данных (построение линейных графиков и диаграмм рассеяния).

2) Проверим наличие возможных зависимостей между наблюдениями и между переменными (построение корреляционных матриц).

3) Если наблюдения будут образовывать группы, то для каждой группы построим регрессионную модель для переменной «Потребление труб» (множественная регрессия).

Перенумеруем переменные по порядку в таблице. Зависимой переменной (отклик) будем называть переменную «Потребление труб». Независимыми (предикторами) назовем все остальные переменные.

в начало

Решение задачи по шагам

Шаг 1. Диаграммы рассеяния (см. рис. 2.) явных выбросов не выявили. В то же время, на многих графиках явно просматривается линейная зависимость. Также есть пропущенные данные по «Потреблению труб» в 4 кварталах 2000 года.


Рис. 2. Диаграмма рассеяния зависимой переменной (№9) и кол-ва скважин (№8)

Цифра после символа Е в отметках по оси Х обозначает степень числа 10, которое определяет порядок значений переменной №8 (Количество скважин действующих). В данном случае речь идет о значении порядка 100.000 скважин (10 в 5 степени).

На диаграмме рассеяния на рис. 3 (см. ниже) отчетливо видно 2 облака точек, причем каждое из них имеет явную линейную зависимость.

Понятно, что переменная №1, скорее всего, войдет в регрессионную модель, т.к. нашей задачей является выявление именно линейной зависимости между предикторами и откликом.


Рис. 3. Диаграмма рассеяния зависимой переменной (№9) и Инвестиций в нефтяную промышленность (№1)

Шаг 2. Построим линейные графики всех переменных в зависимости от времени. Из графиков видно, что данные по многим переменным сильно разнятся в зависимости от номера квартала, но рост из года в год сохраняется.

Полученный результат подтверждает предположения, полученные на основе рис. 3.


Рис. 4. Линейный график 1-й переменной в зависимости от времени

В частности, на рис. 4 построен линейный график для первой переменной.

Шаг 3. Согласно результатам рис. 3 и рис. 4, разобьем наблюдения на 2 группы, по переменной №10 «Квартал». В первую группу войдут данные по 1 и 4 кварталу, а во вторую – данные по 2 и 3.

Чтобы разбить наблюдения согласно кварталам на 2 таблицы, воспользуемся пунктом Данные/Подмножество/Случайный выбор . Здесь в качестве наблюдений нам надо указать условия на значения переменной КВАРТАЛ. Cм. рис. 5.

Согласно заданным условиям наблюдения будут скопированы в новую таблицу. В строчке снизу можно указать конкретные номера наблюдений, однако в нашем случае это займет много времени.

Рис. 5. Выбор подмножества наблюдений из таблицы

В качестве заданного условия зададим:

V10 = 1 OR V10 = 4

V10 – это 10 переменная в таблице (V0 – это столбец с наблюдениями). По сути, мы проверяем каждое наблюдение в таблице, относится оно к 1-ому или 4-ому кварталу или нет. Если мы хотим, выбрать другое подмножество наблюдений, то можно либо сменить условие на:

V10 = 2 OR V10 = 3

либо перенести первое условие в исключающие правила.

Нажав ОК , мы сначала получим таблицу с данными только по 1 и 4 кварталу, а затем и таблицу с данными по 2 и 3 кварталу. Сохраним их под именами 1_4.sta и 2_3.sta через вкладку Файл/Сохранить как.

Далее будем работать уже с двумя таблицами и полученные результаты регрессионного анализа для обеих таблиц можно будет сравнить.

Шаг 4. Построим матрицу корреляций для каждой из групп, чтобы проверить предположение относительно линейной зависимости и учесть возможные сильные корреляции между переменными при построении регрессионной модели. Так как есть пропущенные данные, корреляционная матрица была построена с опцией попарного удаления пропущенных данных. См. рис. 6.


Рис. 6. Матрица корреляций для первых 9-ти переменных по данным 1 и 4 кварталов

Из корреляционной матрицы в частности понятно, некоторые переменные очень сильно коррелируют друг с другом.

Стоит отметить, что достоверность больших значений корреляции возможна только при отсутствии выбросов в исходной таблице. Поэтому диаграммы рассеяния для зависимой переменной и всех остальных переменных обязательно должны учитываться при корреляционном анализе.

Например, переменная №1 и №2 (Инвестиции в нефтяную и газовую промышленность соответственно). См. рис.7 (или, например, рис. 8).


Рис. 7. Диаграмма рассеяния для переменной №1 и №2

Рис. 8. Диаграмма рассеяния для переменной №1 и №7

Данная зависимость легко объяснима. Также ясен и высокий коэффициент корреляции между объемами добычи нефти и газа.

Высокий коэффициент корреляции между переменными (мультиколлиниарность) нужно учитывать при построении регрессионной модели. Здесь могут возникнуть большие ошибки при вычислении коэффициентов регрессии (плохообусловленная матрица при вычислении оценки через МНК).

Приведем наиболее распространенные способы устранения мультиколлиниарности :

1) Гребневая регрессия.

Данная опция задается при построении множественной регрессии. Число - малое положительное число. Оценка МНК в таком случае равна:

,

где Y – вектор со значениями зависимой переменной, X – матрица, содержащая по столбцам значения предикторов, а – единичная матрица порядка n+1. (n – количество предикторов в модели).

Плохообусловленность матрицы при гребневой регрессии значительно уменьшается.

2) Исключение одной из объясняющих переменных.

В этом случае из анализа исключается одна объясняющая переменная имеющая высокий парный коэффициент корреляции (r>0.8) с другим предиктором.

3) Использование пошаговых процедур с включением/исключением предикторов .

Обычно, в таких случаях, используют либо гребневую регрессию (она задается в качестве опции при построении множественной), либо, на основе значений корреляции, исключают объясняющие переменные, имеющие высокий парный коэффициент корреляции (r > 0.8), либо пошаговую регрессию с включением/исключением переменных.

Шаг 5. Теперь построим регрессионную модель при помощи выпадающей вкладки меню (Анализ/Множественная регрессия ). В качестве зависимой переменной укажем «Потребление труб», в качестве независимых – все остальные. См. рис. 9.


Рис. 9. Построение множественной регрессии для таблицы 1_4.sta

Множественную регрессию можно проводить пошагово. В этом случае в модель будут пошагово включаться (или исключаться) переменные, которые вносят наибольший (наименьший) вклад в регрессию на данном шаге.

Также данная опция позволяет остановиться на шаге, когда коэффициент детерминации еще не наибольший, однако уже все переменные модели являются значимыми. См. рис. 10.


Рис. 10. Построение множественной регрессии для таблицы 1_4.sta

Особо стоит отметить, что пошаговая регрессия с включением, в случае, когда количество переменных больше количества наблюдений, является единственным способом построения регрессионной модели.

Установка нулевого значения свободного члена регрессионной модели используется в случае, если сама идея модели подразумевает нулевое значение отклика, когда все предикторы окажутся равными 0. Чаще всего подобные ситуации встречаются в экономических задачах.

В нашем случае свободный член мы включим в модель.


Рис. 11. Построение множественной регрессии для таблицы 1_4.sta

В качестве параметров модели выберем Пошаговую с исключением (Fвкл = 11, Fвыкл = 10), с гребневой регрессией (лямбда = 0.1). И для каждой группы построим регрессионную модель. См. рис.11.

Результаты в виде Итоговой таблицы регрессии (см. также рис. 14) представлены на рис.12 и рис.13. Они получены на последнем шаге регрессии.

Шаг 6. Проверка адекватности модели

Обратим внимание, что, несмотря на значимость всех переменных в регрессионной модели (p-уровень < 0.05 – подсвечены красным цветом), коэффициент детерминации R2 существенно меньше у первой группы наблюдений.

Коэффициент детерминации показывает, по сути, какая доля дисперсии отклика объясняется влиянием предикторов в построенной модели. Чем ближе R2 к 1, тем лучше модель.

F-статистика Фишера используется для проверки гипотезы о нулевых значениях коэффициентов регрессии (т.е. об отсутствии какой бы то ни было линейной связи между и совокупностью факторов, , кроме коэффициента ). Гипотеза отклоняется при малом уровне значимости.

В нашем случае (см. рис. 12) значение F-статистики = 13,249 при уровне значимости p < 0,00092, т.е. гипотеза об отсутствии линейной связи отклоняется.


Рис. 12. Результаты регрессионного анализа данных по 1 и 4 кварталу


Рис. 13. Результаты регрессионного анализа данных по 2 и 3 кварталу

Шаг 7. Теперь проведем анализ остатков полученной модели. Результаты, полученные при анализе остатков, являются важным дополнением к значению коэффициента детерминации при проверке адекватности построенной модели.

Для простоты будем рассматривать лишь группу, разбитую на кварталы с номерами 2 и 3, т.к. вторая группа исследуется аналогично.

В окне, представленном на рис. 14, на вкладке Остатки/предсказанные/наблюдаемые значения нажмем на кнопку Анализ остатков , и далее нажмем на кнопку Остатки и предсказанные . (См. рис. 15)

Кнопка Анализ остатков будет активна, только если регрессия получена на последнем шаге. Чаще оказывается важным получить регрессионную модель, в которой значимы все предикторы, чем продолжить построение модели (увеличивая коэффициент детерминации) и получить незначимые предикторы.

В этом случае, когда регрессия не останавливается на последнем шаге, можно искусственно задать количество шагов в регрессии.


Рис. 14. Окно с результатами множественной регрессии для данных по 2 и 3-му кварталам


Рис. 15. Остатки и предсказанные значения регрессионной модели по данным 2 и 3 квартала

Прокомментируем результаты, представленные на рис. 15. Важным является столбец с Остатками (разница первых 2-х столбцов). Большие остатки по многим наблюдениям и наличие наблюдения с маленьким остатком может указывать на последнее как на выброс.

Другими словами анализ остатков нужен для того, чтобы отклонения от предположений, угрожающие обоснованности результатов анализа, могли быть легко обнаружены.


Рис. 16. Остатки и предсказанные значения регрессионной модели по данным 2 и 3 кварталов + 2 границы 0.95 доверительного интервала

В конце приведем график, иллюстрирующий данные, полученные из таблицы на рис. 16. Здесь добавлены 2 переменные: UCB и LCB – 0.95 верх. и нижн. дов. интервал.

UBC = V2+1.96*V6

LBC = V2-1.96*V6

И удалены четыре последних наблюдения.

Построим линейный график с переменными (Графики/2М Графики/Линейные графики для переменных )

1) Наблюдаемое значение (V1)

2) Предсказанное значение (V2)

3) UCB (V9)

4) LCB (V10)

Результат представлен на рис. 17. Теперь видно, что построенная регрессионная модель довольно неплохо отражает реальное потребление труб, особенно на результатах недавнего прошлого.

Это означает, что в ближайшем будущем реальные значения могут быть приближены модельными.

Отметим один важный момент. В прогнозировании при помощи регрессионных моделей всегда важен базовый временной интервал. В рассматриваемой задаче были выбраны кварталы.

Соответственно, при построении прогноза предсказываемые значения будут также получаться по кварталам. Если нужно получить прогноз на год, то придется прогнозировать на 4 квартала и в конце накопится большая ошибка.

Подобную проблему можно решить аналогично, вначале лишь агрегируя данные от кварталов к годам (например, усреднением). Для данной задачи подход не очень корректен, так как останется всего лишь 8 наблюдений, по которым будет строиться регрессионная модель. См. рис.18.


Рис. 17. Наблюдаемые и предсказанные значения вместе с 0.95 верх. и ниж. довер. интервалами (данные по 2 и 3 кварталам)


Рис. 18. Наблюдаемые и предсказанные значения вместе с 0.95 верх. и ниж. довер. интервалами (данные по годам)

Чаще всего такой подход применяется при агрегировании данных по месяцам, при исходных данных по дням.

Следует помнить, что все методы регрессионного анализа позволяют обнаружить только числовые зависимости, а не лежащие в их основе причинные связи. Поэтому ответ на вопрос о значимости переменных в полученной модели остается за экспертом в данной области, который, в частности, способен учесть влияние факторов, возможно, не вошедших в данную таблицу.

  • Tutorial

Статистика в последнее время получила мощную PR поддержку со стороны более новых и шумных дисциплин - Машинного Обучения и Больших Данных . Тем, кто стремится оседлать эту волну необходимо подружится с уравнениями регрессии . Желательно при этом не только усвоить 2-3 приемчика и сдать экзамен, а уметь решать проблемы из повседневной жизни: найти зависимость между переменными, а в идеале - уметь отличить сигнал от шума.



Для этой цели мы будем использовать язык программирования и среду разработки R , который как нельзя лучше приспособлен к таким задачам. Заодно, проверим от чего зависят рейтинг Хабрапоста на статистике собственных статей.

Введение в регрессионный анализ

Если имеется корреляционная зависимость между переменными y и x , возникает необходимость определить функциональную связь между двумя величинами. Зависимость среднего значения называется регрессией y по x .


Основу регрессионного анализа составляет метод наименьших квадратов (МНК) , в соответствии с которым в качестве уравнения регресии берется функция такая, что сумма квадратов разностей минимальна.



Карл Гаусс открыл, или точнее воссоздал, МНК в возрасте 18 лет, однако впервые результаты были опубликованы Лежандром в 1805 г. По непроверенным данным метод был известен еще в древнем Китае, откуда он перекочевал в Японию и только затем попал в Европу. Европейцы не стали делать из этого секрета и успешно запустили в производство, обнаружив с его помощью траекторию карликовой планеты Церес в 1801 г.


Вид функции , как правило, определен заранее, а с помощью МНК подбираются оптимальные значения неизвестных параметров. Метрикой рассеяния значений вокруг регрессии является дисперсия.


  • k - число коэффициентов в системе уравнений регрессии.

Чаще всего используется модель линейной регрессии, а все нелинейные зависимости приводят к линейному виду с помощью алгебраических ухищрений, различных преобразования переменных y и x .

Линейная регрессия

Уравнения линейной регрессии можно записать в виде



В матричном виде это выгладит


  • y - зависимая переменная;
  • x - независимая переменная;
  • β - коэффициенты, которые необходимо найти с помощью МНК;
  • ε - погрешность, необъяснимая ошибка и отклонение от линейной зависимости;


Случайная величина может быть интерпретирована как сумма из двух слагаемых:



Еще одно ключевое понятие - коэффициент корреляции R 2 .


Ограничения линейной регрессии

Для того, чтобы использовать модель линейной регрессии необходимы некоторые допущения относительно распределения и свойств переменных.



Как обнаружить, что перечисленные выше условия не соблюдены? Ну, во первых довольно часто это видно невооруженным глазом на графике.


Неоднородность дисперсии


При возрастании дисперсии с ростом независимой переменной имеем график в форме воронки.



Нелинейную регрессии в некоторых случая также модно увидеть на графике довольно наглядно.


Тем не менее есть и вполне строгие формальные способы определить соблюдены ли условия линейной регрессии, или нарушены.




В этой формуле - коэффициент взаимной детерминации между и остальными факторами. Если хотя бы один из VIF-ов > 10, вполне резонно предположить наличие мультиколлинеарности.


Почему нам так важно соблюдение всех выше перечисленных условий? Все дело в Теореме Гаусса-Маркова , согласно которой оценка МНК является точной и эффективной лишь при соблюдении этих ограничений.

Как преодолеть эти ограничения

Нарушения одной или нескольких ограничений еще не приговор.

  1. Нелинейность регрессии может быть преодолена преобразованием переменных, например через функцию натурального логарифма ln .
  2. Таким же способом возможно решить проблему неоднородной дисперсии, с помощью ln , или sqrt преобразований зависимой переменной, либо же используя взвешенный МНК.
  3. Для устранения проблемы мультиколлинеарности применяется метод исключения переменных. Суть его в том, что высоко коррелированные объясняющие переменные устраняются из регрессии , и она заново оценивается. Критерием отбора переменных, подлежащих исключению, является коэффициент корреляции. Есть еще один способ решения данной проблемы, который заключается в замене переменных, которым присуща мультиколлинеарность, их линейной комбинацией . Этим весь список не исчерпывается, есть еще пошаговая регрессия и другие методы.

К сожалению, не все нарушения условий и дефекты линейной регрессии можно устранить с помощью натурального логарифма. Если имеет место автокорреляция возмущений к примеру, то лучше отступить на шаг назад и построить новую и лучшую модель.

Линейная регрессия плюсов на Хабре

Итак, довольно теоретического багажа и можно строить саму модель.
Мне давно было любопытно от чего зависит та самая зелененькая цифра, что указывает на рейтинг поста на Хабре. Собрав всю доступную статистику собственных постов, я решил прогнать ее через модель линейно регрессии.


Загружает данные из tsv файла.


> hist <- read.table("~/habr_hist.txt", header=TRUE) > hist
points reads comm faves fb bytes 31 11937 29 19 13 10265 93 34122 71 98 74 14995 32 12153 12 147 17 22476 30 16867 35 30 22 9571 27 13851 21 52 46 18824 12 16571 44 149 35 9972 18 9651 16 86 49 11370 59 29610 82 29 333 10131 26 8605 25 65 11 13050 20 11266 14 48 8 9884 ...
  • points - Рейтинг статьи
  • reads - Число просмотров.
  • comm - Число комментариев.
  • faves - Добавлено в закладки.
  • fb - Поделились в социальных сетях (fb + vk).
  • bytes - Длина в байтах.

Проверка мультиколлинеарности.


> cor(hist) points reads comm faves fb bytes points 1.0000000 0.5641858 0.61489369 0.24104452 0.61696653 0.19502379 reads 0.5641858 1.0000000 0.54785197 0.57451189 0.57092464 0.24359202 comm 0.6148937 0.5478520 1.00000000 -0.01511207 0.51551030 0.08829029 faves 0.2410445 0.5745119 -0.01511207 1.00000000 0.23659894 0.14583018 fb 0.6169665 0.5709246 0.51551030 0.23659894 1.00000000 0.06782256 bytes 0.1950238 0.2435920 0.08829029 0.14583018 0.06782256 1.00000000

Вопреки моим ожиданиям наибольшая отдача не от количества просмотров статьи, а от комментариев и публикаций в социальных сетях . Я также полагал, что число просмотров и комментариев будет иметь более сильную корреляцию, однако зависимость вполне умеренная - нет надобности исключать ни одну из независимых переменных.


Теперь собственно сама модель, используем функцию lm .


regmodel <- lm(points ~., data = hist) summary(regmodel) Call: lm(formula = points ~ ., data = hist) Residuals: Min 1Q Median 3Q Max -26.920 -9.517 -0.559 7.276 52.851 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.029e+01 7.198e+00 1.430 0.1608 reads 8.832e-05 3.158e-04 0.280 0.7812 comm 1.356e-01 5.218e-02 2.598 0.0131 * faves 2.740e-02 3.492e-02 0.785 0.4374 fb 1.162e-01 4.691e-02 2.476 0.0177 * bytes 3.960e-04 4.219e-04 0.939 0.3537 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 16.65 on 39 degrees of freedom Multiple R-squared: 0.5384, Adjusted R-squared: 0.4792 F-statistic: 9.099 on 5 and 39 DF, p-value: 8.476e-06

В первой строке мы задаем параметры линейной регрессии. Строка points ~. определяет зависимую переменную points и все остальные переменные в качестве регрессоров. Можно определить одну единственную независимую переменную через points ~ reads , набор переменных - points ~ reads + comm .


Перейдем теперь к расшифровке полученных результатов.




Можно попытаться несколько улучшить модель, сглаживая нелинейные факторы: комментарии и посты в социальных сетях. Заменим значения переменных fb и comm их степенями.


> hist$fb = hist$fb^(4/7) > hist$comm = hist$comm^(2/3)

Проверим значения параметров линейной регрессии.


> regmodel <- lm(points ~., data = hist) > summary(regmodel) Call: lm(formula = points ~ ., data = hist) Residuals: Min 1Q Median 3Q Max -22.972 -11.362 -0.603 7.977 49.549 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2.823e+00 7.305e+00 0.387 0.70123 reads -6.278e-05 3.227e-04 -0.195 0.84674 comm 1.010e+00 3.436e-01 2.938 0.00552 ** faves 2.753e-02 3.421e-02 0.805 0.42585 fb 1.601e+00 5.575e-01 2.872 0.00657 ** bytes 2.688e-04 4.108e-04 0.654 0.51677 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 16.21 on 39 degrees of freedom Multiple R-squared: 0.5624, Adjusted R-squared: 0.5062 F-statistic: 10.02 on 5 and 39 DF, p-value: 3.186e-06

Как видим в целом отзывчивость модели возросла, параметры подтянулись и стали более шелковистыми, F-статистика выросла, так же как и скорректированный коэффициент детерминации.


Проверим, соблюдены ли условия применимости модели линейной регрессии? Тест Дарбина-Уотсона проверяет наличие автокорреляции возмущений.


> dwtest(hist$points ~., data = hist) Durbin-Watson test data: hist$points ~ . DW = 1.585, p-value = 0.07078 alternative hypothesis: true autocorrelation is greater than 0

И напоследок проверка неоднородности дисперсии с помощью теста Бройша-Пагана.


> bptest(hist$points ~., data = hist) studentized Breusch-Pagan test data: hist$points ~ . BP = 6.5315, df = 5, p-value = 0.2579

В заключение

Конечно наша модель линейной регрессии рейтинга Хабра-топиков получилось не самой удачной. Нам удалось объяснить не более, чем половину вариативности данных. Факторы надо чинить, чтобы избавляться от неоднородной дисперсии, с автокорреляцией тоже непонятно. Вообще данных маловато для сколь-нибудь серьезной оценки.


Но с другой стороны, это и хорошо. Иначе любой наспех написанный тролль-пост на Хабре автоматически набирал бы высокий рейтинг, а это к счастью не так.

Использованные материалы

  1. Кобзарь А. И. Прикладная математическая статистика. - М.: Физматлит, 2006.
  2. William H. Green Econometric Analysis

Теги: Добавить метки

ОТЧЕТ

Задание: рассмотреть процедуру регрессионного анализа на основе данных (цена продажи и жилая площадь) о 23 объектах недвижимости.

Режим работы "Регрессия" служит для расчета параметров уравнения линейной регрессии и проверки его адекватности исследуемому процессу.

Для решения задачи регрессионного анализа в MS Excel выбираем в меню Сервис команду Анализ данных и инструмент анализа "Регрессия ".

В появившемся диалоговом окне задаем следующие параметры:

1. Входной интервал Y - это диапазон данных по результативному признаку. Он должен состоять из одного столбца.

2. Входной интервал X - это диапазон ячеек, содержащих значения факторов (независимых переменных). Число входных диапазонов (столбцов) должно быть не больше 16.

3. Флажок Метки , устанавливается втом случае, если в первой строке диапазона стоит заголовок.

4. Флажок Уровень надежности активизируется, если в поле, находящееся рядом с ним необходимо ввести уровень надежности, отличный от установленного по умолчанию. Используется для проверки значимости коэффициента детерминации R 2 и коэффициентов регрессии.

5. Константа ноль. Данный флажок необходимо установить, если линия регрессии должна пройти через начало координат (а 0 =0).

6. Выходной интервал/ Новый рабочий лист/ Новая рабочая книга - указать адрес верхней левой ячейки выходного диапазона.

7. Флажки в группе Остатки устанавливаются, если необходимо включить в выходной диапазон соответствующие столбцы или графики.

8. Флажок График нормальной вероятности необходимо сделать активным, если требуется вывести на лист точечный график зависимости наблюдаемых значений Y от автоматически формируемых интервалов персентилей.

После нажатия кнопки ОК в выходном диапазоне получаем отчет.

С помощью набора средств анализа данных выполним регрессионный анализ исходных данных.

Инструмент анализа "Регрессия" применяется для подбора параметров уравнения регрессии с помощью метода наименьших квадратов. Регрессия используется для анализа воздействия на отдельную зависимую переменную значений одной или нескольких независимых переменных.

ТАБЛИЦА РЕГРЕССИОННАЯ СТАТИСТИКА

Величина множественный R - это корень из коэффициента детерминации (R-квадрат). Также его называют индексом корреляции или множественным коэффициентом корреляции. Выражает степень зависимости независимых переменных (X1, X2) и зависимой переменной (Y) и равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы. В нашем случае он равен 0,7, что говорит о существенной связи между переменными.

Величина R-квадрат (коэффициент детерминации) , называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала .

В нашем случае величина R-квадрат равна 0,48 , т.е. почти 50%, что говорит о слабой подгонке регрессионной прямой к исходным данным.Т.к. найденная величина R-квадрат = 48%<75%, то, следовательно, также можно сделать вывод о невозможности прогнозирования с помощью найденной регрессионной зависимости. Таким образом, модель объясняет всего 48% вариации цены, что говорит о недостаточности выбранных факторов, либо о недостаточном объеме выборки.

Нормированный R-квадрат - это тот же коэффициент детерминации, но скорректированный на величину выборки.

Норм.R-квадрат=1-(1-R-квадрат)*((n-1)/(n-k)),

регрессионный анализ линейный уравнение

где n - число наблюдений; k - число параметров. Нормированный R-квадрат предпочтительнее использовать в случае добавления новых регрессоров (факторов), т.к. при их увеличении будет также увеличиваться значение R-квадрат, однако это не будет свидетельствовать об улучшении модели. Так как в нашем случае полученная величина равна 0,43 (что отличается от R-квадрат всего на 0,05), то можно говорить о высоком доверии коэффициенту R-квадрат.

Стандартная ошибка показывает качество аппроксимации (приближения) результатов наблюдений. В нашем случае ошибка равна 5,1. Рассчитаем в процентах: 5,1/(57,4-40,1)=0,294 ? 29% (Модель считается лучше, когда стандартная ошибка составляет <30%)

Наблюдения - указывается число наблюдаемых значений (23).

ТАБЛИЦА ДИСПЕРСИОННЫЙ АНАЛИЗ

Для получения уравнения регрессии определяется -статистика - характеристика точности уравнения регрессии, представляющая собой отношение той части дисперсии зависимой переменной которая объяснена уравнением регрессии к необъясненной (остаточной) части дисперсии.

В столбце df - приводится число степеней свободы k.

Для регрессии это число регрессоров (факторов) - X1 (площадь) и X2 (оценка), т.е. k=2.

Для остатка это величина, равная n-(m+1), т.е. число исходных точек (23) минус число коэффициентов (2) и минус свободный член (1).

В столбце SS - суммы квадратов отклонений от среднего значения результирующего признака. В нем представлены:

Регрессионная сумма квадратов отклонений от среднего значения результирующего признака теоретических значений, рассчитанных по регрессионному уравнению.

Остаточная сумма отклонений исходных значений от теоретических значений.

Общая сумма квадратов отклонений исходных значений от результирующего признака.

Чем больше регрессионная сумма квадратов отклонений (или чем меньше остаточная сумма), тем лучше регрессионное уравнение аппроксимирует облако исходных точек. В нашем случае остаточная сумма составляет около 50%. Следовательно, уравнение регрессии очень слабо аппроксимирует облако исходных точек.

В столбце MS - несмещенные выборочные дисперсии, регрессионная и остаточная.

В столбце F вычислено значение критериальной статистики для проверки значимости уравнения регрессии.

Для осуществления статистической проверки значимости уравнения регрессии формулируется нулевая гипотеза об отсутствии связи между переменными (все коэффициенты при переменных равны нулю) и выбирается уровень значимости.

Уровень значимости - это допустимая вероятность совершить ошибку первого рода - отвергнуть в результате проверки верную нулевую гипотезу. В рассматриваемом случае совершить ошибку первого рода означает признать по выборке наличие связи между переменными в генеральной совокупности, когда на самом деле ее там нет. Обычно уровень значимости принимается равным 5%. Сравнивая полученное значение = 9,4 с табличным значением = 3,5 (число степеней свободы 2 и 20 соответственно) можно говорить о том, что уравнение регрессии значимо (F>Fкр).

В столбце значимость F вычисляется вероятность полученного значения критериальной статистике. Так как в нашем случае это значение = 0,00123, что меньше 0,05 то можно говорить о том, что уравнение регрессии (зависимость) значимо с вероятностью 95%.

Два выше описанных столба показывают надежность модели в целом.

Следующая таблица содержит коэффициенты для регрессоров и их оценки.

Строка Y-пересечение не связана ни с каким регрессором, это свободный коэффициент.

В столбце коэффициенты записаны значения коэффициентов уравнения регрессии. Таким образом, получилось уравнение:

Y=25,6+0,009X1+0,346X2

Регрессионное уравнение должно проходить через центр облака исходных точек: 13,02?M(b)?38,26

Далее сравниваем попарно значения столбцов Коэффициенты и Стандартная ошибка. Видно, что в нашем случае, все абсолютные значения коэффициентов превосходят значения стандартных ошибок. Это может свидетельствовать о значимости регрессоров, однако, это грубый анализ. Столбец t-статистика содержит более точную оценку значимости коэффициентов.

В столбце t-статистика содержатся значения t-критерия, рассчитанные по формуле:

t=(Коэффициент)/(Стандартная ошибка)

Этот критерий имеет распределение Стьюдента с числом степеней свободы

n-(k+1)=23-(2+1)=20

По таблице Стьюдента находим значение tтабл=2,086. Сравнивая

t с tтабл получаем, что коэффициент регрессора X2 незначим.

Столбец p-значение представляет вероятность того, что критическое значение статистики используемого критерия (статистики Стьюдента) превысит значение, вычисленное по выборке. В данном случае сравниваем p-значения с выбранным уровнем значимости (0.05). Видно, что незначимым можно считать только коэффициент регрессора X2=0.08>0,05

В столбцах нижние 95% и верхние 95% приводятся границы доверительных интервалов с надежностью 95%. Для каждого коэффициента свои границы: Коэффициентtтабл*Стандартная ошибка

Доверительные интервалы строятся только для статистически значимых величин.



Загрузка...