sonyps4.ru

Ускорение озу. Тест: разгон недорогой оперативной памяти DDR3

Бесплатно добиться от системы дополнительного быстродействия всегда приятно — именно поэтому люди занимаются разгоном. Однако в первую очередь оверклокеры разгоняют процессор и видеокарту, поскольку опыты над этими компонентами дают наибольший прирост скорости. Память обычно оставляют на десерт или не трогают вовсе. Одних останавливает тот факт, что разгонять оперативку сложно, других - что процесс этот дарует совсем незначительный бонус к производительности. Случается даже, что разгон памяти виден в бенчмарках и некоторых приложениях и абсолютно не виден в играх. Но для тех, кто в любом случае хочет выжать из своей системы все соки, «Игромания» публикует ликбез по разгону памяти.

Многогранная

Как и в случае с другими компонентами системы, процесс разгона оперативной памяти заключается в изменении рабочих параметров устройства. Добиться максимальной производительности от ОЗУ помогают шаманские пляски с тремя основными характеристиками - частотой, напряжением и задержками (таймингами).

Что можно сказать о частоте? Чем она больше - тем лучше! Фактически ее значение показывает, сколько полезных тактов могут совершить модули памяти за секунду реального времени. Однако и здесь есть свои нюансы. Дело в том, что для памяти типа DDR, которая используется в современных компьютерах, существует две разных частоты - реальная и эффективная, причем вторая ровно в два раза выше первой. Производители модулей всегда указывают эффективную частоту своих творений, в то время как в различных диагностических утилитах, а также в BIOS материнских плат нередко отображается именно реальная частота.

В чем подвох? Название DDR - это сокращение фразы DDR SDRAM, которая расшифровывается как Double Data Rate Synchronous Dynamic Random Access Memory, то есть синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных. Ключевые слова здесь - удвоенная скорость. В отличие от простой SDRAM (предшественницы DDR), рассматриваемая память взаимодействует с шиной данных не только по фронту, но и по спаду тактового сигнала, то есть одному такту шины соответствуют два такта микросхемы памяти. Соответственно, одни разработчики программного обеспечения предпочитают считать именно такты шины (реальную частоту), в то время как другие указывают частоту работы самих чипов (эффективную частоту). Так что если во время разгона вы вдруг обнаружите, что частота памяти ровно в два раза ниже, чем должна быть, то не удивляйтесь, это нормально.

Рабочее напряжение модулей оказывает существенное влияние на их стабильность. В соответствии со стандартами, для плашек DDR2 штатным является напряжение 1,8 В, а для DDR3 - 1,5 В. Медленные модули, как правило, придерживаются этих значений, а вот оверклокерские наборы почти всегда работают с повышенными вольтажами: разогнанным чипам не хватает питания, и его приходится увеличивать. Естественно, это ведет к более интенсивному тепловыделению, но если на микросхемах памяти есть радиаторы, то небольшое увеличение напряжения не создает особых проблем. Тем не менее определенные границы лучше не пересекать, иначе модули могут выйти из строя. Для DDR2 разумным максимумом можно считать напряжение в 2,2 В, а для DDR3 - 1,65 В.

Третий ключевой параметр оперативной памяти - задержки (тайминги), и это, определенно, тема для отдельной главы.

Без спешки

Итак, задержки - или тайминги. Прежде чем объяснить, что это такое, не помешает ознакомиться с архитектурой памяти DDR.

Для хранения простейшей единицы информации (бита) в чипах DDR используется ячейка, представляющая собой сочетание транзистора и конденсатора. Подобных ячеек в каждой микросхеме памяти огромное множество. Они выстраиваются в строки и столбцы, которые в конечном счете образуют массивы, называемые банками. Поскольку чипы DDR относятся к динамическому типу памяти, их содержимое необходимо периодически обновлять (подзаряжать), иначе записанная в них информация будет утеряна.

Взаимодействием с ОЗУ занимается так называемый контроллер памяти. Получив от процессора команду на чтение или запись бита данных с логическим адресом, он определяет, в каком банке/строке/столбце располагается нужная ячейка и что с ней следует делать. Проблема заключается в том, что ячейка не может быть обработана мгновенно - должно пройти определенное время (читай: число тактов памяти), прежде чем нужная операция будет выполнена. Задержки, возникающие на определенных этапах чтения/записи битов, и именуются таймингами.

Существует большое количество таймингов, однако ключевое влияние на производительность памяти оказывают лишь некоторые из них. Конкретно - CAS Latency, RAS-to-CAS Delay, Row Precharge Time и Row Active Time. Именно таков их порядок по степени значимости, и именно в такой последовательности они располагаются в BIOS материнских плат и в описаниях к модулям памяти. Например, в технических характеристиках плашек Kingmax DDR3 2400 MHz Nano Gaming RAM есть строка «10-11-10-30» - так вот, это и есть тайминги. Первая цифра показывает значение CAS Latency, вторая - RAS-to-CAS Delay и так далее.

Чтобы понять, за что отвечают те или иные задержки, следует разобраться, как происходит считывание данных из ячеек. Для начала чип памяти должен подготовить к обработке нужную строку и столбец в банке. Для этого им отсылается соответствующая команда, после чего происходит процесс активации строки, занимающий определенное время. Количество тактов, необходимое для «пробуждения» строки, как раз и зовется RAS-to-CAS Delay.

Далее контроллер отправляет нужной последовательности ячеек (ее длина зависит от типа памяти и дополнительных настроек) команду на считывание, однако на шину данных первая порция информации поступает не сразу, а спустя несколько тактов - эта задержка именуется CAS Latency и считается ключевой для модулей памяти. После того как все необходимые данные считаны, контроллером отдается команда на закрытие и подзарядку строки.

А где же два других тайминга? Первый, Row Precharge Time, вступает в силу сразу после закрытия строки. Дело в том, что последующий доступ к этой строке становится возможным не сразу, а лишь после подзарядки, которая отнимает определенное число тактов - за этот интервал и отвечает Row Precharge Time. Ну а тайминг Row Active Time показывает период активности строки, то есть количество тактов, прошедших от момента ее активации до момента поступления команды подзарядки. Фактически эта задержка зависит от параметров RAS-to-CAS Delay, CAS Latency и длины считываемой строки, однако обычно ее значение подбирают простым сложением трех других таймингов. Это не совсем корректно, зато позволяет гарантированно избежать проблем со стабильностью работы при минимальных потерях производительности.

Запись данных в ячейки памяти осуществляется схожим образом, так что рассматривать этот процесс подробно мы не станем. Также не будем акцентировать внимание на дополнительных настройках памяти вроде длины строки и вторичных таймингов - слишком уж незначительно их влияние на общее быстродействие системы. Эти параметры будут интересны оверклокерам, идущим на рекорд, а вовсе не простым пользователям.

Многие начинающие сборщики нередко допускают следующую ошибку: стремясь вооружить системник по максимуму, они устанавливают в материнскую плату модули DDR3 с запредельной рабочей частотой (скажем, 2400 МГц) и остаются в счастливой уверенности, что память в их компьютере уже работает на заявленной скорости. Однако без дополнительных манипуляций со стороны пользователя подобные плашки будут работать в том же режиме, что и их дешевые собратья. Объясняется это тем, что базовые настройки памяти материнская плата черпает из специального чипа SPD (Serial Presence Detect), коим в обязательном порядке оснащается каждый DDR-модуль. Прописанные в SPD частоты и тайминги, как правило, далеки от максимально возможных - это сделано для того, чтобы модули могли стартовать даже в очень слабой системе. Соответственно, такую память приходится дополнительно разгонять.

К счастью, иногда этот процесс можно существенно облегчить. Так, компания Intel уже не первый год продвигает особое расширение для чипа SPD, известное как XMP (Extreme Memory Profiles). Оно записывает в модули памяти информацию о дополнительных настройках системы, которая может быть считана материнскими платами с поддержкой этой технологии. Если материнке удастся подхватить нужный профиль XMP (он выбирается через BIOS), то она автоматически выставит заявленную в нем частоту памяти, подкорректировав ради этого другие параметры системы, - произойдет автоматический разгон. Правда, при этом крайне желательно, чтобы память была сертифицирована для той платформы, на которую она установлена, иначе профиль либо не сработает, либо сработает, но не так, как надо. Кроме того, никогда не лишне перепроверить выставленные автоматикой значения, поскольку некоторые производители памяти умудряются прописывать в профиле XMP такие настройки, от которых система может скоропостижно скончаться. В целом же технология эта очень полезна, но дружит она только с процессорами Intel.

Стоит отметить, что еще до появления XMP компании NVIDIA и Corsair продвигали аналогичную разработку, известную как EPP (Enhanced Performance Profiles), но она не прижилась.

Соковыжималка

С тем, как работает оперативная память, мы разобрались. Теперь осталось понять, как добиться от нее большей производительности, - и вот с этим дело не просто. Существует два разных способа разгона памяти. Первый подразумевает повышение частоты модулей, второй - понижение таймингов. Другими словами: можно либо увеличивать количество тактов в секунду, либо делать сами такты более продуктивными. В идеале, конечно, следует использовать оба метода одновременно, но улучшение одного параметра всегда ведет к ухудшению другого, и подобрать оптимальный баланс нелегко. Нельзя сказать заранее, что окажется полезнее вашей системе - высокочастотная память с ослабленными таймингами или модули, функционирующие на более низкой частоте, но обладающие минимальными задержками.

Если вы готовы драться за каждый лишний балл в каком-нибудь PCMark, то мы рекомендуем перепробовать несколько различных соотношений частоты и таймингов и выбрать тот, что дает наилучший результат конкретно для вашей системы. В противном случае будет разумнее сначала увеличить тайминги, потом найти частотный потолок для используемых модулей памяти, а затем попытаться вновь снизить задержки - как показывает практика, такой подход чаще оказывается выигрышным. При этом на протяжении всего пути не стоит сильно отклоняться от базового соотношения таймингов: первые три задержки должны быть примерно одинаковыми, а для четвертой желательно выставлять значение равное сумме этих таймингов или чуть ниже.

При разгоне памяти нельзя обойтись без помощи тестов, измеряющих производительность системы, - именно они позволят оценить, насколько велик прирост быстродействия вследствие ваших манипуляций и есть ли он вообще. Может показаться парадоксальным, но порою понижение таймингов или увеличение частоты оперативки может негативно сказаться на скорости работы компьютера - случаются такие сюрпризы нечасто, но отмахиваться от них не стоит. В общем, без бенчмарков никуда. Какое ПО лучше всего использовать? Мы советуем джентльменский набор из PCMark , Everest и WinRAR (встроенный тест), но вообще список диагностических утилит для памяти обширен - выбирайте то, что больше по душе. Кстати говоря, бенчмарки полезны еще и потому, что позволяют проверить память на стабильность работы. А после того, как разгон будет считаться завершенным, не помешает дополнительно помучить компьютер стресс-тестами вроде OCCT и S&M , дабы окончательно убедиться в стабильности системы.

Проводя эксперименты, не стоит забывать о повышении напряжения, причем речь идет не только о самих модулях, но и о контроллере памяти - нередко именно он мешает раскрыть весь потенциал разгоняемых плашек. Ранее на платформах Intel этот важный элемент системы располагался в северном мосту чипсета, однако с недавних пор он окончательно переселился в центральные процессоры, поэтому на современных платформах увеличение напряжения на контроллере негативно сказывается на температуре ЦП. Таким образом, иногда для эффективного разгона памяти приходится дополнительно усиливать охлаждение процессора, а не самих модулей. Предостережем: не повышайте напряжение на контроллере более чем на четверть, это может привести к печальным последствиям.

Наконец, стоит заранее определиться, каким образом будет осуществляться разгон. Можно либо воспользоваться специальной утилитой, либо изменять необходимые параметры непосредственно в BIOS. Мы настоятельно рекомендуем взять на вооружение второй вариант, поскольку ни одна программа не в состоянии раскрыть все возможности, предоставляемые системной платой. Соответственно, перед проведением опытов не помешает внимательно изучить инструкцию к материнке - это позволит понять, что именно скрывается под тем или иным пунктом в BIOS. Так уж сложилось, что каждый производитель стремится ввести в обиход свои собственные обозначения, и даже такие, казалось бы, общепринятые термины, как названия таймингов, могут варьироваться от платы к плате.

И еще: не стоит сразу впадать в панику, если на определенном этапе разгона система вдруг напрочь откажется стартовать. Как правило, это означает лишь, что материнская плата не может автоматически сбросить неприемлемые для нее настройки BIOS. Встречается данная болезнь не так часто и лечится она банальным выниманием батарейки из платы. А вот если это не поможет - тогда уже можно и паниковать.

Индивидуальный подход

Когда дело доходит непосредственно до ковыряния в многочисленных меню, становится понятно, что изменять тайминги куда проще, чем частоту памяти. Это в видеокартах все элементарно: потянул в специальной утилите ползунок вправо - получил нужную прибавку к частоте. С полноценными DDR-модулями все намного сложнее.

Основные проблемы связаны с тем, что скорость работы оперативки зависит сразу от двух параметров - опорной частоты (FSB, BCLK) и множителя. Перемножая эти значения, мы получаем итоговую частоту ОЗУ. Однако простое увеличение первого параметра почти наверняка приведет к непредвиденным результатам, ведь это неизменно скажется на производительности других компонентов системы. Можно, конечно, не трогать опорную частоту, но добиться впечатляющего разгона с помощью одних лишь модификаций множителя в большинстве случаев невозможно.

На разных платформах изменение опорной частоты приводит к разным последствиям. Кроме того, нередко ради повышения скорости работы памяти требуется изменить рабочие параметры других исполнительных блоков системы. Словом, к каждой платформе нужен свой подход, так что мы постараемся разобрать основные нюансы для каждого случая. Рассматривать все возможные конфигурации мы, разумеется, не станем - сосредоточимся на десктопных платформах, появившихся в последние несколько лет. У всех них контроллер памяти располагается в процессоре, так что можно сказать, что особенности разгона зависят от того, какой именно кусок кремния является сердцем системы. Итак, хит-парад самых актуальных на сегодняшний день процессоров...

Intel Sandy Bridge

Новейшие процессоры Intel , представленные двухтысячной линейкой Core i3/i5/i7 , придутся по душе оверклокерам-новичкам. Матерые адепты разгона считают, что с приходом Sandy Bridge разгонять систему стало слишком скучно. Все дело в том, что в этих процессорах опорная частота (у Intel она зовется BCLK), от которой пляшут все основные исполнительные блоки, практически не поддается изменению - стоит отклонить ее на какие-то 6-7 МГц, и система начинает вести себя неадекватно. Соответственно, старые добрые приемы в случае с Sandy Bridge не работают, поэтому единственный способ разогнать оперативку (как, впрочем, и процессор) - увеличивать соответствующий множитель. Благо контроллер памяти, встроенный в новые процессоры, вышел довольно шустрым, и частота в 2133 МГц ему покоряется без проблем. Поскольку трогать BCLK настоятельно не рекомендуется, итоговая опорная частота памяти в любом случае должна быть кратна 266 МГц, то есть не любой набор DDR3 удастся завести именно на той частоте, что заявлена его производителем. Скажем, модули DDR3-2000, встретившись с новыми процессорами Intel, будут работать как DDR3-1866.

Заметим, что одного лишь процессора Sandy Bridge для эффективного разгона ОЗУ недостаточно - нужна еще и подходящая материнская плата. Все дело в том, что Intel искусственно ограничила оверклокерские возможности не только процессоров (множитель можно увеличить лишь у моделей с индексом «К»), но и чипсетов. Так, младшие наборы логики память разгонять не умеют, поэтому в системных платах на их основе даже самые скоростные модули будут работать как DDR3-1333. А вот чипсет Intel P67 Express , позиционирующийся как решение для энтузиастов, поддерживает режимы вплоть до DDR3-2133, поэтому к выбору материнской платы под Sandy Bridge стоит подходить со всей основательностью.

Как определить, подходят ваши конкретные модули для разгона или нет? Если плашки изначально не относятся к оверклокерскому классу (то есть их частота не превышает рекомендованных создателями процессоров значений), то отталкиваться стоит прежде всего от их производителя, рабочего напряжения и системы охлаждения.

Про производителя, думаем, объяснять не стоит: именитые компании используют проверенные чипы, возможности которых, как правило, не до конца исчерпаны, а вот от китайского нонейма ожидать выдающегося разгонного потенциала не стоит. Рабочее напряжение также позволяет определить, насколько микросхемы близки к пределу своих возможностей: чем меньше вольт подается на чипы по умолчанию, тем сильнее можно будет увеличить напряжение самостоятельно и тем выше будет частотный потенциал. Ну а качественные радиаторы позволяют эффективнее отводить тепло от чипов, что позволяет выжать из плашек чуть больше производительности.

Intel Bloomfield

Любимцы энтузиастов - процессоры Core i7 девятисотой серии - обладают феноменальной вычислительной мощностью, однако с их помощью очень сложно заставить память работать на запредельных частотах. Отчасти это компенсируется тем, что контроллер памяти у Bloomfield может работать в трехканальном режиме, недоступном другим рассматриваемым платформам.

При работе с Core i7-9хх возможности оверклокерских модулей, как правило, упираются в недостаточную производительность процессорного блока Uncore. Последний состоит из контроллера памяти и L3-кэша, а скорость его работы напрямую зависит от BCLK. При этом существует правило, что частота этого блока должна быть как минимум в два раза выше частоты работы памяти, то есть, например, для нормального функционирования плашек в режиме DDR3-1800 придется завести Uncore на 3600 МГц. Проблема заключается в том, что этот самый блок получился большим и горячим. Работу в нештатном режиме он не любит, и подаваемое на него напряжение необходимо существенно увеличивать (но не выставлять выше 1,4 В!). В итоге, даже если не разгонять вычислительные блоки процессора, Uncore с частотой 4000 МГц разогреет кристалл так, что не всякий кулер справится. Поэтому пересечь черту в 2000 МГц для памяти, не применяя серьезное охлаждение, крайне сложно. А поскольку разгонять память, не повышая частоту процессора, не очень разумно, можно констатировать, что среднестатистическому компьютеру на базе Bloomfield скоростная память вообще не нужна - какой-нибудь DDR3-1600 хватит с лихвой.

Любопытно, что модели семейства Core i7-9хх предоставляют в распоряжение пользователя внушительный набор множителей для памяти - они покрывают диапазон от 6х до 16х с шагом 2х. Для Uncore множитель так и вовсе можно выкручивать до 42х. Ну а поскольку штатная частота BCLK у Bloomfield равна 133 МГц, к максимально возможным для памяти значениям частоты можно подобраться, даже не трогая тактовый генератор. Впрочем, играясь и с BCLK, и с множителем, опытный оверклокер в любом случае сможет выжать из плашек еще немного бонусных мегагерц.

Intel Lynnfield

Процессоры линеек Core i7-8хх и Core i5-7хх , построенные на архитектуре Lynnfield, - это, пожалуй, лучший выбор для тех, кто хочет поставить рекорд частоты модулей памяти. Чтобы убедиться в этом, достаточно взглянуть, какие процессоры используются нынешними рекордсменами.

Секрет успеха Lynnfield в том, что для стабильной работы оперативки частота Uncore у этих кристаллов необязательно должна быть в два раза больше частоты памяти. Intel решила вообще заблокировать множитель ненавистного оверклокерами блока: для восьмисотых моделей Core i7 он зафиксирован на отметке 18х, а для семисотых - на 16х. Максимальные множители памяти для этих процессоров равны 12х и 10х соответственно. Таким образом, Uncore больше не выступает в роли бутылочного горлышка при разгоне памяти, поэтому «набор высоты» проходит легко и непринужденно.

Процессор из линейки Core i7-8хх без труда сможет выжать максимум из любого набора памяти: до 1600 МГц (133х12) можно добраться, не трогая BCLK, ну а дальше в ход идут эксперименты с опорной частотой. У семисотых Core i7 возможности чуть скромнее, но и их рядовому пользователю должно хватить с лихвой. Конечно, при значительном увеличении BCLK блок Uncore хорошенько разогреется (его рабочее напряжение придется усилить), однако к тому времени модули уже будут работать на пределе возможностей. Вообще же в таких случаях крайне желательна мощная система охлаждения процессора.

Intel Clarkdale

Бюджетные процессоры Intel со встроенной графикой, представленные семействами Core i5-6хх , Core i3 и Pentium G , плохо дружат с памятью. Увы, в целях экономии в этих моделях контроллер памяти вместе с графическим ядром вынесен на отдельный кристалл, который соединен с вычислительными ядрами шиной QPI. Использование шины плохо сказывается на производительности контроллера, так что от скоростной памяти в системе с Clarkdale особого толка не будет.

Разгон памяти, работающей в тандеме с обозначенными процессорами, осуществляется самым обычным образом: увеличиваем множитель, подкручиваем частоту BCLK (по умолчанию она равна 133 МГц). Никаких подводных камней нет, разве что при сильном разгоне придется понизить множитель QPI и увеличить напряжение, подаваемое на L3-кэш (пресловутый Uncore). Старшие Clarkdale, как правило, могут завести оверклокерскую память на частотах около 2000 МГц, что не так уж и плохо. Другое дело, что прирост быстродействия системы от увеличения скорости работы плашек будет совсем уж мизерным. Что касается максимального множителя для памяти, то он зависит от конкретной модели процессора: для «пентиумов» он равен 8х, а у Core i5-6хх и Core i3 - 10х. Кроме того, существует еще Core i5-655K , созданный специально для разгона, - он поддерживает множитель 16х, но лишь немногие материнские платы знают о его возможностях.

AMD Phenom II/Athlon II

В последние годы каждая новая процессорная архитектура от Intel привносит какие-то новые особенности, связанные с разгоном. С AMD все иначе - алгоритм раскочегаривания этих кристаллов уже давно практически не претерпевает изменений. Вероятно, что вместе с выходом процессоров Llano , оснащенных встроенным графическим ядром, этой стабильности придет конец, ну а пока что мы рассмотрим, каким образом разгоняется память, работающая в тандеме с нынешними решениями AMD - Phenom II и Athlon II .

В качестве опорной частоты для памяти в данном случае выступает частота системной шины (HT Clock по терминологии AMD), которая по умолчанию равна 200 МГц. Изменение этого параметра сказывается на режиме работы процессора, контроллера памяти (этот блок обычно обозначается как CPU NB) и шины HyperTransport Link. По этой причине в поисках частотного потолка вашего ОЗУ следует понизить множители для процессора и HT Link, а вот контроллер памяти, напротив, глушить не стоит. Его частота должна быть по крайней мере в три раза выше, чем реальная частота памяти (и, соответственно, в полтора раза выше, чем частота эффективная), иначе стабильность системы не гарантируется. Вместе с тем чем быстрее работает контроллер, то тем больше шансов выдавить из модулей памяти лишние мегагерцы или понизить их тайминги. Можно даже слегка задрать напряжение CPU NB, чтобы достичь лучшего результата, но сильно увлекаться не стоит.

Следует отметить, что на платформах AMD память разгоняется хуже, чем на платформах Intel и, как правило, отметку в 2000 МГц оверклокерам покорить не удается. Таким образом, покупать для такой системы сверхбыстрые планки DDR3 нет особого смысла. Учтите, что режимы работы до DDR3-1600 МГц включительно можно активировать изменением множителя, однако при дальнейшем разгоне в любом случае придется мучить тактовый генератор.

* * *

Как видно, изменять опорную частоту при более-менее серьезном разгоне памяти приходится практически всегда (а если бы на свете не существовало Sandy Bridge, это высказывание было бы еще более категоричным). Да, порою серьезных частот можно достичь посредством одних лишь множителей, однако шаг между доступными для активации значениями частоты в этом случае оказывается слишком велик, поэтому для более точного нахождения частотного потолка все равно приходится шаманить с тактовым генератором. Ну а это, как известно, приводит к изменению частоты процессора.

Мораль такова: если уж заниматься разгоном памяти серьезно, то параллельно стоит разгонять и процессор. В самом деле, зачем выжимать все соки из плашек и одновременно пытаться сдерживать рабочую частоту процессора, если даже незначительный разгон ЦП даст куда больший эффект, чем все опыты над памятью? Таким образом, прежде чем браться за разгон памяти, будет неплохо узнать, какие частоты способен покорить ваш процессор. Ну а после придется искать баланс между скоростью работы кристалла и частотой/таймингами оперативки, ведь обычно выставить максимально привлекательные значения обоих компонентов разом не получается.

Сложно? Что ж, никто не мешает вам просто слегка подкрутить тайминги или увеличить множитель памяти, а после наслаждаться свалившимся из ниоткуда быстродействием, не углубляясь в дальнейший разгон компьютера. Не хотите раскрывать весь потенциал системы - не надо. Ну а господам энтузиастам мы желаем удачи в этом нелегком, но интересном деле.

Теперь же поговорим о мифах, связанных с ОЗУ.

1. Двухканальный режим работы не нужен, главное - объем.

Неудивительно, что одна плашка на 8 ГБ стоит дешевле, чем две по 4 ГБ, так что желание сэкономить выглядит очевидным. Но не стоит этого делать, если вы используете ПК не только для серфинга в интернете и просмотра фильмов - двухканальный режим ускоряет работу с ОЗУ на 70-90%, что и снизит нагрузку на процессор (он будет меньше времени простаивать - а значит больше времени сможет работать), и ускорит производительность в любых вычислительных и игровых задачах, причем зачастую разница будет не в единицы процентов, а в десятки, то есть переплата за две плашки порядка 5-7% стоит того.

2. Для получения двухканального режима нужны две идентичные плашки ОЗУ.

Если мы не берем времена DDR и DDR2, когда установка больше одной плашки памяти могла вызвать многочисленные танцы с бубном, даже если модули были одинаковыми, то сейчас с этим все проще: у плашек DDR3 и DDR4 может быть любой объем, частота и тайминги - в большинстве случаев (увы - из-за кривых BIOS исключения бывают) двухканальный режим будет работать, объем модулей, разумеется, суммироваться, а частоты будут браться по самой медленной плашке и (или) спецификациям JEDEC: это комитет, который занимается разработкой ОЗУ. По их предписаниям, в любой плашке памяти должна быть зашита определенная частота и тайминги для каждого стандарта памяти - это как раз создано для того, чтобы любые плашки одного стандарта (например, DDR4) всегда могли найти «общий язык».

3. Разгон ОЗУ - баловство, нужное только для получения высоких циферек в бенчмарках

Еще лет 7-10 назад это действительно было так - более того, тогда и двухканальный режим особо производительность не увеличивал. Но, увы, сейчас времена меняются: так, например, у процессоров Ryzen частота ОЗУ связана с частотой внутренней шины, которой соединяются два блока ядер, так что разгон ОЗУ в их случае напрямую влияет на производительность CPU. Но даже в случае процессоров от Intel более высокая частота памяти дает свои результаты:


Так, при обработке фотографий увеличение скорости ОЗУ с 2400 до 2933 МГц - такой разгон способны взять практически любые модули DDR4 - время обработки уменьшается на 15-20%, что очень и очень существенно.

4. Встроенные профили авторазгона XMP/D.O.C.P сразу же предлагают лучшие частоты и тайминги

Разгон становится все проще и доступнее рядовому пользователю: так, сейчас на рынке выпускается огромное количество модулей ОЗУ со вшитыми профилями авторазгона - стоит выбрать их в BIOS, как ваша память сразу же стабильно заработает на частотах, зачастую в полтора раза выше стандартных для DDR4 2133 МГц. Однако следует понимать, что прежде чем выставить такую частоту и тайминги в своем профиле, производитель тщательно протестировал большое количество плашек, так что такие профили - это как Turbo Boost в процессоре: вроде и разгон, но в щадящем режиме.

Поэтому есть смысл еще «покрутить» настройки самому - зачастую получится «выжать» еще пару сотен мегагерц, что даст вам лишние 5-10% производительности. С учетом того, что производитель зачастую выпускает целую линейку памяти, например 3066/3200/3333 МГц, то зачастую можно взять самую дешевую, на 3066 МГц, и поставить параметры от 3333 МГц, получив такую же производительность и несколько сэкономив.

5. Быстрая ОЗУ увеличит производительность в любом случае

Не стоит забывать, что далеко не всегда можно разогнать память: так, у Intel это можно сделать только на чипсетах Z-серии. Поэтому абсолютно нет смысла брать какой-нибудь i5-8400, плату на B360 чипсете и ОЗУ DDR4-3200 МГц - контроллер памяти в процессоре не даст вам поднять частоту выше 2666 МГц, так что смысла в переплате за быструю ОЗУ тут нет.

Это же касается и ноутбуков - редкие дорогие модели с процессорами HK имеют возможность разогнать память, и если у вас не такой CPU - нет смысла брать ОЗУ с частотами выше 2400-2666 МГц.

6. Радиаторы на ОЗУ - нужная вещь, спасают плашки от перегрева

Миф, активно продвигаемый различными маркетологами, чтобы продать вам те же самые плашки, но уже с радиаторами и несколько дороже. Во-первых, если у вас случаи как в пункте 5, то есть память работает на частотах и напряжениях, близких к спецификациям JEDEC (2133-2400 МГц и 1.2 В для DDR4), то радиаторы не нужны абсолютно: нагрев едва ли превысит 35-40 градусов даже под серьезной нагрузкой - именно поэтому ноутбучная память идет без радиаторов.

Более того, даже если вы берете высокочастотную память, которая способна взять 4000+ МГц при 1.35-1.4 или даже 1.5 В (последнее значение уже считается экстремальным), то нагрев может стать ощутимым - вплоть до 50-60 градусов. Однако если посмотреть, при каких температурах могут работать чипы памяти, то всплывает интересная картина - зачастую цифры от различных производителей колеблются от 80 до 90 градусов, что банально недостижимо ни при каком мыслимом разгоне. Поэтому радиаторы в данном случае - просто украшение.

7. От разгона оперативная память сгорает

Да, и именно поэтому ОЗУ некоторые производители продают уже разогнанной, причем не только частоту памяти повышают, но еще и напряжение. Разумеется, при желании сломать можно любую вещь, так что лучше не выходить за определенные рамки: так, безопасными напряжениями для DDR4 считаются 1.2-1.35 В, частоты - любые, достижимые в этом диапазоне напряжений (так как частота - параметр, который никак к «железу» не относится, а значит и сжечь его не может).

8. Если на плате есть слоты и DDR3, и DDR4, то можно ставить любые сочетания плашек - они заработают вместе


Достаточно опасный миф: во-первых, разумеется DDR3 и DDR4 вместе работать не смогут, как минимум из-за того, что у них нет общих по JEDEC частот и таймингов. Во-вторых, установка вместе DDR3 и DDR4 может повредить плату или память - например, на DDR4 плата может подать напряжение в 1.5 В, которое для DDR3 является вполне рабочим, а вот для DDR4 - экстремальным. Так что следите за тем, чтобы на плату были установлены плашки только одного типа.

9. Последние поколения процессоров от Intel (Coffee Lake) не умеют работать с DDR3

Действительно, если зайти на официальный сайт Intel, то в спецификациях будет поддержка только DDR4:

Однако на деле в Intel особо не меняли контроллер ОЗУ со времен Skylake, и учитывая то, что многие производители материнских плат гонятся за прибылью, а не за выполнением условий, поставленных Intel, в продажу попадают вот такие платы:

Маркировка платы - Biostar H310MHD3, то есть это H310 чипсет, который поддерживает даже Core i9-9900K, а на плате есть только два слота DDR3. Так что если вы решили обновить процессор - абсолютно не обязательно менять при этом еще и ОЗУ.

10. При разгоне ОЗУ главное добиться максимальной частоты

В общем и целом - нет, важен баланс между частотой и таймингами (то есть задержками при работе с памятью). В противном случае может оказаться так, что память при меньшей частоте и с меньшими задержками окажется лучше, чем при высокой частоте и с большими задержками:


Поэтому при разгоне пробуйте разные сочетания частот и таймингов (или возьмите лучшие из обзоров, только не забудьте их проверить memtest-ом).

11. Нельзя ставить вместе DDR3L и DDR3

Уже не самый актуальный миф, но все же DDR3 с арены до сих пор не ушла, так что имеет смысл про него рассказать. Так как выход DDR4 оказался достаточно затянутым, была придумана промежуточная память - DDR3L, основное нововведение в которой - возможность работы при более низких напряжениях, 1.35 В против 1.5 у обычной DDR3. И именно отсюда и идет миф - дескать если поставить их вместе, то DDR3L сгорит от 1.5 В.

Как я уже писал выше, у ОЗУ каждого стандарта есть свой диапазон безопасных напряжений, и 1.5 В - это нормальное значение для низковольтной памяти. Более того - раз JEDEC не стала менять сам слот, это еще раз говорит о том, что эти два подтипа памяти совместимы.

12. 64-битные версии Windows поддерживают любой объем ОЗУ

Разумеется, это не так: про то, что у Windows x86 есть ограничение в ~3.5 ГБ ОЗУ (если не говорить о PAE), знают многие, и если вычислить объем памяти, который можно адресовать в 64-битной системе, то цифра действительно кажется бесконечной - 16 миллионов терабайт. Но на практике все банальнее: так, Windows XP x64 поддерживает «лишь» 128 ГБ ОЗУ, Windows 7 - до 192, а Windows 8 и 10 - до 512 ГБ. Да, для пользовательского ПК это цифры крайне большие, но вот для серверов - уже давно нет, ну и уж тем более тут и близко нет миллионов терабайт.

Если вы знаете еще какие-либо мифы про ОЗУ - пишите про них в комментариях.

Привет, GT! Все мы любим новое железо - приятно работать за быстрым компьютером, а не смотреть на всякие прогрессбары и прочие песочные часики. Если с процессорами и видеокартами всё более-менее понятно: вот новое поколение, получите ваши 10-20-30-50% производительности, то с оперативкой всё не так просто.

Где прогресс в модулях памяти, почему цена на гигабайт почти не падает и чем порадовать свой компьютер - в нашем железном ликбезе.

DDR4

Стандарт памяти DDR4 имеет ряд преимуществ перед DDR3: большие максимальные частоты (то есть пропускная способность), меньшее напряжение (и тепловыделение), и, само собой, удвоенная ёмкость на один модуль.

Комитет инженерной стандартизации полупроводниковой продукции при Electronic Industries Alliance (более известный как JEDEC) трудится над тем, чтобы ваша оперативная память Kingston подходила к материнской плате ASUS или Gigabyte, и по этим правилам играют все. По части электрики, физики и разъёмов всё жёстко (оно и понятно, нужно обеспечить физическую совместимость), а вот в отношении рабочих частот, объёмов модулей и задержек в работе правила допускают некоторую волатильность: хотите сделать лучше - делайте, главное, чтобы на стандартных настройках у пользователей не было проблем.

Именно так получились в своё время модули DDR3 с частотой выше, чем 1600 МГц, и DDR4 с частотами выше 3200 МГц: они превышают базовые спецификации, и могут работать как на «стандартных» параметрах, совместимых со всеми материнскими платами, так и с экстремальными профилями (X.M.P.), протестированными на заводе и зашитыми в BIOS памяти.

Прогресс

Основные улучшения в этой сфере ведутся сразу в нескольких направлениях. Во-первых, производители непосредственно микросхем памяти (Hynix, Samsung, Micron и Toshiba) постоянно улучшают внутреннюю архитектуру чипов в пределах одного техпроцесса. От ревизии к ревизии внутреннюю топологию доводят до совершенства, обеспечивая равномерность нагрева и надёжность работы.

Во-вторых, память потихоньку переходит на новый техпроцесс. К сожалению, здесь нельзя проводить улучшения также быстро, как делают (делали последние лет 10) производители видеокарт или центральных процессоров: грубое уменьшение размеров рабочих частей, то есть транзисторов, потребует соответствующего снижения рабочих напряжений, которые ограничены стандартом JEDEC и встроенными в CPU контроллерами памяти.

Поэтому единственное, что остаётся - не только «поджимать» производственные нормы, но ещё и параллельно увеличивать скорость работы каждой микросхемы, что потребует соответствующего повышения напряжения. В итоге и частоты растут, и объёмы одного модуля.

Примеров такого развития много. В 2009-2010 году нормальным был выбор между 2/4 гигабайтами DDR3 1066 МГц и DDR3 1333 МГц на один модуль (обе были выполнены по 90-нм техпроцессу). Сегодня же умирающий стандарт готов предложить вам 1600, 1866, 2000 и даже 2133 МГц рабочих частот на модулях в 4, 8 и 16 ГБ, правда внутри уже 32, 30 и даже 28 нм.

К сожалению, подобный апгрейд стоит немалых денег (в первую очередь на исследования, закупку оборудования и отладку производственного процесса), так что ждать радикального уменьшения цены 1 ГБ оперативки до выхода DDR5 не придётся: ну а там нас ждёт очередное удвоение полезных характеристик при той же цене производства.

Цена улучшений, разгон и поиски баланса

Растущий объём и скорость работы напрямую влияет на ещё один параметр оперативной памяти - задержки (они же тайминги). Работа микросхем на высоких частотах до сих пор не желает нарушать законы физики, и на различные операции (поиск информации на микросхеме, чтение, запись, обновление ячейки) требуются определённые временные интервалы. Уменьшение техпроцесса даёт свои плоды, и тайминги растут медленнее, чем рабочие частоты, но здесь необходимо соблюдать баланс между скоростью линейного чтения и скоростью отклика.

Например, память может работать на профилях 2133 МГц и 2400 МГц с одинаковым набором таймингов (15-15-15-29) - в таком случае разгон оправдан: при большей частоте задержки в несколько тактов только уменьшатся, и вы получите не только увеличение линейной скорости чтения, но и скорости отклика. А вот если следующий порог (2666 МГц) требует увеличения задержек на 1-2, а то и 3 единицы, стоит задуматься. Проведём простые вычисления.

Делим рабочую частоту на первый тайминг (CAS). Чем выше соотношение - тем лучше:

2133 / 15 = 142,2
2400 / 15 = 160
2666 / 16 = 166,625
2666 / 17 = 156,823

Полученное значение - знаменатель в дроби 1 секунда / Х * 1 000 000. То есть чем выше число, тем ниже будет задержка между получением информации от контроллера памяти и отправкой данных назад.

Как видно из расчётов, наибольший прирост - апгрейд с 2133 до 2400 МГц при тех же таймингах. Увеличение задержки на 1 такт, необходимое для стабильной работы на частоте 2666 МГц всё ещё даёт преимущества (но уже не такие серьёзные), а если ваша память работает на повышенной частоте только с увеличением тайминга на 2 единицы - производительность даже немного снизится относительно 2400 МГц.

Верно и обратное: если модули совершенно не хотят увеличивать частоты (то есть вы нащупали предел для конкретно вашего комплекта памяти) - можно попытаться отыграть немного «бесплатной» производительности, снизив задержки.

На самом деле факторов несколько больше, но даже эти простые расчёты помогу не напортачить с разгоном памяти: нет смысла выжимать максимальную скорость из модулей, если результаты станут хуже, чем на средних показателях.

Практическое применение разгона памяти

В плане софта от подобных манипуляций в первую очередь выигрывают задачи, постоянно эксплуатирующие память не в режиме потокового чтения, а дёргающие случайные данные. То есть игры, фотошоп и всякие программистские задачи.

Аппаратно же системы со встроенной в процессор графикой (и лишённые собственной видеопамяти) получают значительный прирост производительности как при снижении задержек, так и при увеличении рабочих частот: простенький контроллер и невысокая пропускная способность очень часто становится бутылочным горлышком интегрированных GPU. Так что если ваши любимые «Цистерны» еле-еле ползают на встроенной графике старенького компа - вы знаете, что можно попробовать предпринять для улучшения ситуации.

Мэйнстрим

Как не странно, больше всего от подобных улучшений выигрывают среднестатистические пользователи. Нет, безусловно, оверклокеры, профессионалы и игроки с полным кошельком получают свои 0.5% производительности, применяя экстремальные модули с запредельными частотами, но их доля на рынке мала.

Что под капотом?

Белые алюминиевые радиаторы снять достаточно просто. Шаг нулевой: заземляемся об батарею или ещё какой металлический контакт с землёй и даём стечь статике - мы же не хотим дать нелепой случайности убить модуль памяти?

Шаг первый: прогреваем модуль памяти феном или активными нагрузками на чтение-запись (во втором случае вам надо быстренько выключить ПК, обесточить его и снять оперативку, пока она ещё горячая).

Шаг второй: находим сторону без наклейки и аккуратно подцепляем радиатор чем-нибудь в центре и по краям. Использовать печатную плату как основание для рычага можно, но с осторожностью. Внимательно выбираем точку опоры, стараемся избегать давления на на хрупкие элементы. Действовать лучше по принципу «медленно, но верно».

Шаг третий: открываем радиатор и разъединяем замки. Вот они, драгоценные чипы. Распаяны с одной стороны. Производитель - Micron, модель чипов 6XA77 D9SRJ.

8 штук по 1 Гб каждый, заводской профиль - 2400 МГц @ CL16.


Правда, дома снимать теплораспределители не стоит - сорвёте пломбу и плакала ваша пожизненная 1 гарантия. Да и родные радиаторы отлично справляются с возложенными на них функциями.

Попробуем измерить эффект от разгона оперативки на примере комплекта HyperX Fury HX426C16FW2K4/32. Расшифровка названия даёт нам следующую информацию: HX4 - DDR4, 26 - заводская частота 2666 МГц, C16 - задержки CL16. Далее идёт код цвета радиаторов (в нашем случае - белый), и описание комплекта K4/32 - набор из 4 модулей суммарным объёмом 32 ГБ. То есть уже сейчас видно, что оперативка незначительно разогнана ещё при производстве: вместо штатных 2400 прошит профиль 2666 МГц с теми же таймингами.

Помимо эстетического удовольствия от созерцания четырёх «Белоснежек» в корпусе вашего ПК этот набор готов предложить весомых 32 гига памяти и нацелен на пользователей обычных процессоров, не особо балующихся разгоном CPU. Современные Intel’ы без буквы K на конце окончательно лишились всех возможных способов получения бесплатной производительности, и практически не получают никаких бонусов от памяти с частотой выше 2400 МГц.

В качестве тестовых стендов мы взяли два компьютера. Один на базе Intel Core i7-6800K и материнской плате ASUS X99 (он представляет платформу для энтузиастов с четырёхканальным контроллером памяти), второй с Core i5-7600 внутри (этот будет отдуваться за мэйнстримовое железо со встроенной графикой и отсутствующим разгоном). На первом проверим разгонный потенциал памяти, а на втором будем измерять реальную производительность в играх и рабочем софте.

Разгонный потенциал

Со стандартными профилями JEDEC и заводским X.M.P. память имеет следующие режимы работы:
DDR4-2666 CL15-17-17 @1.2V
DDR4-2400 CL14-16-16 @1.2V
DDR4-2133 CL12-14-14 @1.2V

Легко заметить, что настройки таймингов под 2400 МГц делают память не такой отзывчивой, как профили 2133 и 2666 МГц.
2133 / 12 = 177.75
2400 / 14 = 171.428
2666 / 15 = 177.7(3)

Попытки завести память на частоте 2900 МГц с повышением задержек до 16-17-18, 17-18-18, 17-19-19 и даже с подъёмом напряжения до 1.3 Вольта ничего не дали. Без серьёзных нагрузок компьютер работает, но фотошоп, архиватор или бенчмарк плюются ошибками или сваливают систему в BSOD. Похоже, что частотный потенциал модулей выбран до конца, и единственное, что нам остаётся - уменьшать задержки.

Лучший результат, который удалось достичь с тестовым комплектом из 4 модулей - 2666 МГц при таймингах CL13-14-13. Это существенно увеличит скорость доступа к случайным данным (2666 / 13 = 205.07) и должно показать неплохое улучшение результатов в игровом бенчмарке. В двухканальном режиме память разгоняется лучше: специалисты из oclab ухитрились довести комплект из двух 16 Гб модулей до частоты 3000 МГц @ CL14-15-15-28 с подъёмом напряжения до 1.4 Вольта - отличный результат.

Натурные испытания

Для нашего i5 со встроенной графикой в качестве бенчмарка мы выбрали GTA V. Игра не молодая, использует API DirectX 11, который давно известен и отлично вылизан в драйверах Intel, любит потреблять оперативную память и нагружает систему сразу по всем фронтам: GPU, CPU, Ram, чтение с диска. Классика. Вместе с этим GTA V использует т.н. «отложенный рендеринг», благодаря которому время расчёта кадра меньше зависит от сложности сцены, то есть методика испытания будет чище, а результаты - нагляднее.

За средний FPS возьмём значения, укладывающиеся в нормальное течение игры: пролёт самолёта, езда в городе, уничтожение супостатов имеют равномерный профиль нагрузки. По таким сценам (отбросив 1% лучших и худших результатов из массива данных) и получим средне-игровой FPS.

Просадки определим по сценам со взрывами и сложными эффектами (водопад под мостом, закатные пейзажи) аналогичным образом.

Подлагивания и неприятные фризы при резкой смене окружения (переключение от одного тестируемого случая к другому) случаются даже на монструозной GTX 1080Ti, постараемся их отметить, но в результаты не возьмём: в игре оно не встречается, и это, скорее, косяк самого бенчмарка.

Конфигурация демо-стенда

CPU: Intel Core i5-7500 (4c4t @ 3.8 ГГц)
GPU: Intel HD530
RAM: 32 GB HyperX Fury White (2133 МГц CL12, 2666 МГц CL15 и 2666 МГц CL13)
MB: ASUS B250M
SSD: Kingston A400 240 GB

Для начала выставим стандартные частоты X.M.P.-профиля: 2666 МГц с таймингами 15-17-17. Встроенный бенчмарк GTA V выдаёт идентичный FPS и одинаковые просадки на минимальных и средних настройках в разрешении 720p: в большинстве сцен счётчик колеблется в районе 30–32, а в тяжёлых сценах и при смене одной локации на другую FPS проседает.

Причина очевидна - мощностей GPU достаточно, а вот блоки растеризации просто не успевают собрать и отрисовать большее число кадров в секунду. На «высоких» настройках графики результаты стремительно ухудшаются: игра начинает упираться непосредственно в скромные вычислительные возможности интегрированной графики.

2133 МГц CL12

Собственной памяти у GPU нет, и он вынужден постоянно дёргать системную. Пропускная способность DDR4 в двухканальном режиме на частоте 2133 МГц составит 64 бит (8 байт) × 2 133 000 000 МГц × 2 канала - порядка 34 Гб/с, с небольшими (до 10%) накладными потерями.

Для сравнения, пропускная способность подсистемы памяти у самой скромной дискретной карточки NVIDIA GTX 1030 - 48 Гб/с, а GTX 1050 Ti (которая легко выдаёт в GTA V 60 FPS на максимальных настройках в FullHD) - уже 112 Гб/с.


На заднем плане виден тот самый водопад под мостом, просаживающий FPS во внутриигровом бенчмарке.

Результаты бенчмарка просели до 28 FPS в среднем, а лаги при смене локаций и взрывах их ненапряжных просадок превратились в неприятные микрофризы.

2666 МГц CL13

Снижение таймингов значительно сократило время ожидания ответа от памяти, а стандартные результаты с данной частотой у нас уже есть: можно будет сравнить три бенчмарка и получить наглядную картину. Пропускная способность для 2666 МГц уже 21.3 Гб/с ×2 канала ~ 40 Гб/с, сравнимо с младшей NVIDIA.

Максимальный FPS практически не вырос (0.1 не показатель и находится на грани погрешности измерений) - здесь мы всё ещё упираемся в скромные возможности ROP’ов, а вот все просадки стали менее заметны. В сценах с водопадом из-за высокой вычислительной нагрузки результат не изменился, во всех остальных - то есть на прогрузках, взрывах и прочих радостях, замедлявших работу видеоядра вырос в среднем на 10-15%. Вместо 25–27 кадров в нагруженных событиями эпизодах - уверенные 28–29. В целом игра стала ощущаться значительно комфортнее.

TL;DR и результаты

Нельзя оценивать скорость работы оперативной памяти по одной только частоте. У DDR4 достаточно большие тактовые задержки, и при прочих равных стоит выбирать память не только удовлетворяющую потребности вашего железа по рабочей частоте и объёму, но и уделять внимание этому параметру.

Проведённые тесты показали, что компьютеры на базе Intel Core i-серии со встроенной графикой получают заметный прирост производительности при использовании высокоскоростной памяти с низкими задержками. Видеоядро не имеет собственных ресурсов для хранения и обработки данных и пользуется системными отлично отвечает (до определённого предела) на рост частоты и снижение таймингов, так как от скорости доступа к памяти напрямую зависит время отрисовки кадра со множеством объектов.

Самое важное! Линейка Fury выпускается в нескольких цветах: белом, красном и чёрном - можно подобрать не только быструю память, но и подходящую по стилю к остальным комплектующим, как делают специалисты из

Оперативная память - компонент компьютера, который достаточно сильно влияет на его общую производительность. Разгон и тонкая настройка оперативной памяти могут увеличить общую производительность компьютера от 4% до 12%. В данной статье мы расскажем, как правильно разогнать оперативную память, не рискуя при этом “что-то спалить ”.

Прежде чем рассказывать о методах разгона памяти следует заметить, что для повышения производительности подсистемы памяти не обязательно вообще разгонять её, достаточно просто активировать режим Dual Channel (режим двухканальной передачи данных) или трёхканалного режима. А работать он начнёт автоматически, после установки двух(трёх, для трёхканального режима) и более планок памяти в соответствующие разъёмы материнской платы (одного цвета). Суть данной технологии заключается в том, что увеличивается ширина шины данных, и теоретически скорость передачи данных возрастает в 2 (3) раза (это в теории).

Рассмотрим основы разгона оперативной памяти

На скорость работы ОЗУ влияет только два фактора: частота работы памяти и её тайминги . Но, на возможность максимально улучшить эти параметры может повлиять напряжение памяти . То, какой фактор повлияет на скорость работы памяти нужно устанавливать опытным путём, у разных чипов, эффект может быть разным.

Первым шагом для разгона будет повышение рабочей частоты модулей ОЗУ . Рабочая частота памяти всегда зависит от FSB шины процессора. Для повышения частоты работы памяти нужно увеличить делитель в BIOS материнской платы, которые могут выражаться в дробном виде (например: 1:1.5), в процентах (50%, 75%, 130%) или в режиме работы (DDR-333, DDR2-667). Повышая делитель, вы повышаете частоту памяти, но не забывайте, что частота памяти прямо зависит от частоты FSB, так что, если вы разгоняете процессор путём повышения FSB шины, то повышать делитель не стоит, так как при увеличении частоты FSB шины, автоматически увеличивается частота памяти.

Ну, с частотой мы закончили, теперь приступим с подбору таймингов памяти . Увеличить производительность памяти можно только за счёт уменьшения значений таймингов, но не забывайте, что, чем меньше задержки (тайминги) - тем меньше стабильность памяти. Уменьшить значения таймингов можно, как в системном BIOS, так и при помощи специальных программ в Windows. Понижаем значения основных таймингов: CAS Latency (CL), RAS to CAS Delay (tRCD), RAS Precharge (tRP) и Active to Precharge (tRAS).

Повышаем напряжение. Как было сказано выше, напряжение памяти сильно влияет на результат разгона, но не стоит переусердствовать, так - как это может привести к выходу из строя оперативной памяти. Повышать напряжение стоит не более 10% - 20% от номинала. Напряжение можно так же выставить в BIOS материнской платы. Длительное завышение напряжения памяти может так же привести к её неисправности или снижению разгоночного потенциала.

Если, во время выполнения данных операций вы столкнулись с тем, что после перезагрузки, компьютер отказывается стартовать , и возможно издаёт противный писк, скорее всего вы превысили допустимые рабочие параметры. Для восстановления работоспособности компьютера, вам необходимо сбросить настройки BIOS (обнулить CMOS память).

Удачи в экспериментах!

Не забываем оставлять

Продолжаем тему железа и в этом ролике речь пойдёт о частоте оперативной памяти и о ее разгоне. Как известно каждая оперативная память имеет параметр – максимальная тактовая частота, на которой она будет стабильно работать. Но, немного подправив параметры работы памяти в БИОС, можно добиться увеличения ее рабочей частоты сверх установленного производителей. Главное что бы материнская плата и процессор поддерживали работу с такой частотой.

Дата: 2018-03-10 Обзоры гаджетов от ArtomU


Рейтинг: 4.0 из 5
Голоса: 1

Комментарии и отзывы: 40

1. Максим Белозеров
Здравствуйте, купил мать Asus Rampage IV Black Edition (2011), проц Xeon e5-1650 V2 (работает с частотой памяти 1866 МГц) и СЖО Fractal Kelvin S36 (на мосту и мосфетах водоблоки), рассчитываю держать проц на 5 ГГц. Хочу приобрести 4х8=32 ГБ ОЗУ Kingston HyperX, в планах держать в разгоне (корпус типа открытого стенда (Aerocool Strike X Air)), никак не могу определиться с частотой планок. В спецификациях проца написано, что поддерживает DDR3-1866 МГц, хочется с таким сетапом конечно иметь максимально возможную частоту памяти. Какие планки (с какой "заводской" частотой работы памяти) подобрать и как добиться их работы на максимальной частоте, на что можно рассчитывать ~ в данном случае? Заранее спасибо!
P.S. Присматриваюсь к Kingston HyperX Savage 4x8 2400 MHz, только как мне их использовать с процессором, который поддерживает только память 1866 МГц, и каким образом осуществлять их разгон (если он возможен?)

2. Jean-Claude Van Damme
Вопрос автору данного ролика, раз он разбирается в этой кухне - мать MSI Z77A-G41, процессор i5 - 3570k, оперативка 2х4 Гб Corsair Vengeance DDR3-1333. Собственно вопрос такой - один человек мне сказал, если очень вкратце, не стоит покупать оперативную память с частотой например 2133, когда можно купить ту же оперативку с частотой 1333 и через биос выставить такую которую тебе надо (если это позволяет сделать железо, ибо всё это маркетинговый ход ибо те, кто разбирается в железе так и делает). Собственно исходя из моего железа, через биос подняли частоту до 1866 (ибо больше 2133 не позволяет проц, только если его разогнать с 3.4 хотя бы до 4.2 можно якобы частоту оперативки поднять еще выше). Так ли это?

3. пумпусик пумпусик
зачем вам это все на процессоре стоит определены максимум хоть ты планку в 2 раза выше поставь по скорости проц перерабатывать не будет всеравно своего максимального предела что ему положенно.а так как на видео разгон озу это приведет к сугубим последствиям потом луче не чего не трогать и купить новые планки по процессору которые нужны или выше.а луче под процессор чистоту допустимую процессором ставить по максималке процессора.а если вы расчитываете обгрейд компа то купите планки по максимому чистоте но ток чтоб от минимальной по максимальной озу чистоте вписывался процессор которую может поддерживать а то может не работать потом.

4. Алексей Алексей
Здравствуйте. У меня есть вопрос по этой теме. приобрел 2 планки оперативной памяти -одна 2gb 1RХ8 PC3-12800S другая планка 4gb 2RХ8 PC3-12800S.Что мы видим?одинаковые частоты а именно 1600mgz ,разная память 2+4=6gb.а теперь вопрос почему система выставляет автоматически 800mgz?хотя должна 1600mgz так как частоты одинаковы.идем дальше пытался войти в БИОС но там ни чего не нашёл про увеличении частоты оперативки.Судя по вашему БИОСУ в кладка АДВАСЕНТ есть в моём случае эта вкладка отсутствует.правда у меня ноутбук леново g580 у вас же ПК,но я думаю суть одна.что мне делать как быть как же увеличить частоту оперативки

5. CampeR"s Gaming
Зачетный видос, но нужна помощь. Подскажи пожалуйста как разогнать оперативку DDR 3 с 1333 mhz до 1600. Поменять то в биосе я знаю как, но не разбираюсь в работе таймингов и т.д. По этому чтобы не навредить хочу у вас узнать об этом, т.к вижу вы разбираетесь.
Если поменяю просто частоту, но при этом ничего другое трогать не стану - будет ли стабильно работать система и не навредит ли это оперативке?(Просто у меня 2 плашки стоят в A двухканальном режиме по 1600, а в B - 1333).
Заранее спасибо:)

6. ANTON FAAQ
Привет Артем! Подскажи пожайлуста по оперативке. У меня материнка ASUS P5B SE стояли две планки по 1Гб причём разных частот, купил две планки по 2Гб и они ни в какую ни могут запустить комп доходит до окна винды и ни в какую по отдельности каждая планка работает в паре с одногиговой ставлю вторую не запускается перепробовал все варианты менять местами в четырёх слотах всё равно никак. Подскажи может дело в биосе или ещё в чём планки то по идее рабочие все.

7. Konstantin Volvachou
У меня другая проблема оперативка DDR3 1866 кингстон, и мать и проц по мануала держат эту частоту а по факту больше 1600 разогнать не могу при чем и тайминги и вольтаж выставлял согласно мануала, а при разгоне процессора по множителю вообще уходит в сток 1333 и любое поднятия частоты оперативки приводит к авт. сбросу биуса как и в случае превышения частоты свыше 1600 без разгона процессора. Может есть у кого какие идеи?

8. zloy diktator
Артём, так "команд реит" лучше 1 или 2? Я так понял это тоже время задержки? И чем меньше тем лучше? Или я ошибаюсь. У меня в стоке "1", при поднятии частоты "авто" ставит "2". Стоит пробовать понизить до "1" вручную? И как Это критично?
P.S. Разггон с 1333 до 1866, запускается с таймингами 10-10-10-25 без проблем, ниже не берёт.

9. Сергей Й
посмотрел, есть вопрос. у меня плата p35 ds3l 2.0 rev. поддерживает до 1066 частоту по-моему, стоят 4 планки на 5 гб в сумме, частоты на каждой заявлены 800, а параметр memory frequency 667 667, почему частота ниже номинала? при смене множителя второе число изменяется, при изменении частоты шины тоже, но какой выставить вольтаж и тайминги?

10. gam ma
Моей материнке уже 10 лет скоро будет, было три платы оперативы - на 2гб и две по 1гб. И слота всего только два. Т.е. одна плата у меня долго отдыхала. Только недавно частоту оп глянул, а она 667. Поставил другую - частота 800. Почитал, я так понял у них еще программа разная может быть, не совпадающая. В общем, весело живу...

11. Вася Рогов
подскажите с разгоном ОЗУ 4 планки по 4гб 1333 и все от разных фирм)
DIMM1: Kingston 99U5471-020.A00LF
DIMM2: Kingmax FLFF65F-D8KQ9
DIMM3: SK hynix HMT351U6CFR8C-H9
DIMM4: AMD AE34G1339U1
1600 успешно удалось запустить но с напряжением 1.685 тайминги 9 9 9 24!А вот 1866 никак не получается!Проц без разгона 8150 турбо бост 3.6-4.2 а мамка ASRock 970 Pro3

12. david sherkhanov
Здравствуйте не как не могу разобраться прошу помощи я купил 2планки по 8гб каждая но hyperx но компьютер не хочет запускаться на них gigabyte g1sniper2 z68 но у меня сейчас стоят 2планки от zepelinger одна планка на 4гб а другая на 2гб и комп с ними работал отлично.подскажите в чем проблема.спасибо

13. Виталя Грицюк
Добрый день, терзает такой вопрос: если у меня проц Athlon 760к официально поддерживает 1866 МГц, могу ли я разогнать например до 2133? здесь нужно гнать по шине все (потому как просто множителем оператива не воспринимается) или это как повезет (с процессором либо с оперативой)?

14. Orhidejafairytale81
У меня проц. пень е5200 у него частота 800 , иоперативка у меня ддр2 тоже 800, я так понимаю я оперативку не разгоню? чтобы её разогнать надо менять процессор у которого системная шина 1066 или 1333? и только тогда моя оперативка сможет работать на чистоте 1066 без разгона процессора?

15. Prost_046
Здравствуйте, посоветуйте пожалуйста
какую лучше оперативку взять для этой материнки - MSI H67MA-E35.
Я думал взять две вот такие (по 8 гиг каждая)
Kingston DDR3-1600 8192MB PC3-12800 HyperX FURY Black (HX316C10FB/8).
Скажите стоит ли или есть варианты по лучше для моей материнки?

16. gunfire ch`e
Уважаемый, Артем! Вы бы сняли видео, где очень подробно остановились бы на таймингах! Что это? Как выставлять? Лучший софт для этого? И самое главное, что даст занижение числовых значений тамийнгов, на самой высокой скорости, что может дать планка, и мать?

17. Steve Wonder
Ребят, помогите плз. Добавил 1 гб ДДР2 к своем компу (раньше был только гиг), но он ее не видит. Может мне чето в БИОСе поколдовать? Биос - Gigabyte Technology Co. Ltd. M52S-S3P (Socket M2). Планки, кстати, от разных производителей - одна Самсунг, другая Хюндай, тайминги разные

18. владимир кручинин
Обзоры гаджетов от ArtomU Будьте добры подскажите есть ли вариант установить в двух канальном режиме разные по параметрам (частота, тайминги, питание) модули памяти? стоит кит 2600 mhz подарили другой 3000mhz или не стоит заморачиватся?

19. Сергей Сидорков
кстати биос показывает что у меня 2.4 мгерц почему не могу понять разгоняю через оверлок на 5 процентов получаеться а на 10и больше при загрузке винды выскакивает ошибка 0+00000005 синий экран и перезагрузказаранее спасибо!

20. Buster
1.65v уже опасно для встроенного КП в камень, о чем интел предупреждает! В спеке от интел край 1.5v Также и ты предупреди подписчиков, иначе начнут до 1.65 вольтаж задирать и выше, а камни гореть. Удивляешься горе знатокам.....

21. Кирилл Шилов
очень трудно найти золотую середину. легче купить топовую оперативу на 16 или на 32. а вот разгон процев или видюхи немного полегче, но опять же кучу комбинаций надо перебрать для нахождения золотой середины...

22. Сергей Сидорков
очень полезные видио лайк лайк лайк!помоги пожалуйста сразгоно вот этой системы Системная плата Asus P5B-VM SE (2 PCI, 1 PCI-E x1, 1 PCI-E x16, 4 DDR2 DIMM, Audio, Video, Gigabit LAN)
процесор- Intel(R) Core(TM)2 Duo CPU E8400 @ 3.00GHz
оперативки 4Гб

23. sacred333333
А будет разница в производительности процессора если разогнать процессор до одинаковых частот, но в первом случае сделать маленький множитель с большой шиной, а в другом большой множитель и маленькую шину?)

24. Саня слепышев
пля может тут есть понимающие люди монитор в полоску весь но на видеокарту и на монитор не могу установить как устанавливаю так я висну на виндовс и покрытый в полоску.Вопрос такой можно ли исправить

25. ComanderCH
Здравствуйте, я пытаюсь разогнать память на все 1600 МГц, но у меня всегда получается 799,6 * 2 = 1599,2 МГц, вот 10-10-10-28 1Т (1.650V) выставлено так, дальше боюсь крутить так как небольшой опыт во всем этом. LGA 1155

26. John Crichton
Про подбор таймингов разогнанной памяти так и не было ничего сказано, а это самое главное, одно из самых главных, это не обзор по разгону оперативки, это просто обзор возможностей биоса;(

27. Николай Должанский
У меня например 1 оперативный модуль hyper x savage на 8 гигов и 800Мгц, хотя в описании написано 1600, есть смысл разгонять и даст ли это вообще что-нибудь весомое в играх?

28. Артем Кулик
Подскажите пожалуйста у меня процесор AMD Athlon ll x4651 3.0 за счет множителя выставил 3.3 но частоту памяти показывает 1066(планка стоит 4 gb 1600) что не так? заранее спасибо

29. Goha TV
тепер я знаю что память разгоняется из биоса. А как разогнать оперативную память(название ролика) - смотрите в интернете(совет автора)
верните 14 мин моей жизни!

30. Дмитрий Козлов
подскажи у меня стоит 2 плашки одна на 4 г дд3 1333мгц и на 2 г 1333мгц процессоа АМД феном х4 945 мать GA-MA770T-UD3 Можно ли поднять чистату до 1600 мгц

31. Malstr Malstrov
Норм!!! Недавно методом тыка только раздуплился, сделал, но не запомнил.... А тут видео посмотрел и вроде все так и делал.... спасибо.

33. Jono Bacon
Молодец. С первого захода разогнал свой старый Е8400 до 3600 а память с 800 до 960 мгц. Завтра еще попробую. готовлюсь к приезду Xeon e5440.

34. StreLok _
Спасибо) с помощью тебя я играю в самые новые и требовательные игры потому что старый комп сгорел и мне родители купили новый)

35. Сергей ФОМИН
Удалось первый ддр с 400 МГц кастануть до ддр 3 начального уровня до 1066 МГц. На идеевском харде хрюшка забегала как надо.

36. Максим Маликов
А на хера ее вообще гнать? В играх получишь 1 фпс прирост!? Короче говоря бессмысленная и ничем неоправданная затея!

37. Никола Юта
ок спасибо,значит тайминги можно выровнить...у меня обе гудрам ддр2 дим по 2гб,но на одной тайминг 5 а на 2й 6ка конфликт

38. DarK RedBuLL
Лучше мне разогнать мой процессор чутка. А то i7 930 CPU и частота его 2.80 мгц...
До какой частоты лучше разгонять мой проц?

39. Вася Рогов
пробовал таймини ставить 10 10 10 30 и поднимал напряжение до 1.7!Я не мастре по разгону,подскажите что еще попробовать

40. Typical User
ААААААААА... возьми карандаш и острым концом показывай, не прикасаясь к дисплею. Ненавижу, когда лапают монитор.



Загрузка...