sonyps4.ru

Токи при размыкании и замыкании цепи. Токи при замыкании и размыкании цепи (экстратоки)

Токи при размыкании и замыкании цепи

При всяком изменении силы тока в проводящем контуре возникает э. д. с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, все гда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. x, резистор сопротивлением Rи катушку индуктивностью L. Под действием внешней э. д. с. в цепи течет постоянный ток

(внутренним сопротивлением источника тока пренебрегаем).

В момент времени t = 0 отключим источник тока. Ток в катушке индуктивностью L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I = x S /R, или

(127.1)

Разделив в выражении (127.1) переменные, получим . Интегрируя это уравнение по I (от I 0 до I) и t(от 0 до f), находим In (I/I 0) = -Rt/L, или

(127.2)

где t = L/R- постоянная, называемая временем релаксации. Из (127.2) следует, что т есть время, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника тока сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1на рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше t и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э. д. с. x возникает э. д. с. самоиндукции препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома, IR = x + x S или

Введя новую переменную u = IR - x , преобразуем это уравнение к виду

где t - время релаксации.

В момент замыкания (t = 0)сила тока I = 0 и u = -ℰ . Следовательно, интегрируя по u(от - ℰ до IR - ℰ) и t(от 0 до t), находим In [(IR - ℰ)]/ -ℰ = -t/t, или

(127.3)

где I 0 = ℰ/R - установившийся ток (при t ® ¥).

Таким образом, в процессе включения источника тока нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I = 0 и асимптотически стремится к установившемуся значению I 0 = ℰ / R. Скорость нарастания тока определяется тем же временем релаксации t = L/R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндукции ℰ S , возникающей при мгновенном увеличении сопротивления цепи постоянного тока от R 0 до R. Предположим, что мы размыкаем контур, когда в нем течет установившийся ток I 0 = ℰ/R 0 . При размыкании цепи ток изменяется по формуле (1272). Подставив в нее выражение для I 0 и т, получим

Опр. Индукционные токи, возникающие в массивных проводинах при их движении в магнитном поле или под влиянием переменного магнитного поля, называются вихревыми токами или токами Фуко.

Сила вихревого тока удовлетворяет соотношению , где потокосцепление замкнутого контура вихревого тока. электрическое сопротивление цепи этого тока. Сопротивление тем меньше, чем больше удельная проводимость материала проводника и чем больше его размеры. В массивных проводниках мало и вихревые токи могут достигать большой силы даже в не очень быстро меняющихся магнитных полях.

В соответствии с правилом Ленца токи Фуко выбирают внутри проводника такие пути и направления, чтобы своим действием возможно сильнее противиться причине, которая их вызывает.

Вихревые токи вызывают сильное нагревание проводников. Поэтому в индукционных печах, служащих для плавки металлов при помощи вихревых токов, магнитное поле создается переменным током высокой частоты. Печь - катушка, питаемая высокочастотным током большой силы. Если поместить внутрь катушки проводящее тело, то в нем возникнут интенсивные вихревые токи, кот могут разогреть тело до плавления. Таким способом осуществляют плавление металла в вакууме, что позволяет получать материалы исключительно высокой частоты.

В электрических машинах и трансформаторах вихревые токи приводят к значительным потерям энергии. Ввиду этого магнитные цепи электрических машин и сердечники трансформаторов делают не сплошными, а собирают из отдельных тонких листов железа, изолированных друг от друга специальным лаком или окалиной. Вихревые токи образуются в плоскостях, перпендикулярных линиям магнитной индукции (тока «охватывают» линии индукции). Поэтому плоскости пластин, из которых собирают магнитные цепи, следует располагать параллельно линиям магнитной индукции.

Токи Фуко используются в индукционных печах, при вакуумной плавке, для получения тепла в различных нагревательных устройствах.

На заводе Электросталь есть вакуумные индукционные печи (от 30 кг до тонны), в институте 150 кг

Токи Фуко, возникающие в проводах, по которым текут переменные токи, направлены так, что ослабляют ток внутри провода и усиливают вблизи поверхности. При прохождении по проводнику быстропеременных токов они вытесняются на поверхность проводника, а внутри проводника ток практически отсутствует. Это явление называют скин-эффектом (от английскогоskin-кожа) или поверхностным эффектом . В таких случаях проводники можно делать полыми. Этот эффект можно использовать для термической закалки проводников и отжига поверхностных дефектов.

2. Явление самоиндукции . При изменении магнитного поля тока, идущего по проводнику, э.д.с. индукции возникает не только в соседних проводниках, но и в нем самом, поскольку этот проводник находится в том же магнитном поле. Возникновение э.д.с. в каком – либо проводнике при изменении силы тока в нем же самом наз. самоиндукцией , а ток, индуцируемый в этом проводнике – током самоиндукции . Вследствие самоиндукции при замыкании цепи сила тока не сразу достигает своего установившегося значения, а через некоторый промежуток времени; при размыкании цепи э.д.с. исчезает не сразу, вследствие чего в месте размыкания появляется искра, а если есть другой замкнутый контур, то в нем продолжает идти слабый ток.



Магнитный поток, создаваемый током в контуре с индуктивностью : . Индуктивность зависит от геометрических свойств (формы и размеров) контура и магнитных свойств (магнитной проницаемости) окружающей среды. Единицы индуктивности: генри .

1Гн – индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1А равен 1Вб. 1Гн=1Вб/А=1В*с/А.

Потокосцепление пропорционально силе тока, протекающего по контуру: .Линейная зависимость от наблюдается только в том случае, если среды, которой окружен контур, не зависит от напряженности поля , т.е. в отсутствие ферромагнетиков. Иначе зависит от и зависимостьот будет сложной. В этом случае , но индуктивность считается функцией от .

Электродвижущая сила самоиндукции . в замкнутом контуре (контур не деформируется и не меняется) при изменении силы тока в нем, пропорциональна скорости изменения силы тока со временем: , где индуктивность (коэффициент самоиндукции) контура. Знак минус показывает, что наличие индуктивности в контуре приводи к замедлению тока в нем.

Индуктивность соленоида (тороида) , где число витков контура, длина, объем.

Индуктивность бесконечно длинного соленоида : при протекании по соленоиду тока внутри соленоида возбуждается однородное поле, индукция которого . Поток через каждый из витков равен , а полный магнитный поток, сцепленный с соленоидом , где длина соленоида, которая предполагается очень большой, площадь поперечного сечения, число витков на единицу длины, - полное число витков. Т.к. или , где объем соленоида. В общем случае индуктивность контура зависит только от геометрической формы контура, его размеров и . Магнитная проницаемость соленоида (тороида) зависит от . Во всех случаях вычисления индуктивности соленоида (тороида) с сердечником для определения магнитной проницаемости следует пользоваться графиком зависимости от , а затем формулой . Индуктивность – аналог электрической емкости уединенного проводника.

При всяком изменении силы тока в проводящем контуре возникает э.д.с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи (направлены противоположно току, создаваемому источником). При выключении источника тока экстратоки имеют то же направление, сто и ослабевающий ток – наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока цепи.

Мгновенное значение силы тока в цепи, обладающей сопротивлением и индуктивностью

· после замыкания цепи: , где э.д.с. источника тока, время, прошедшее после замыкания цепи. Величина постоянная, называемая временем релаксации.

· после размыкания цепи:, где значение силы тока в цепи при , время, прошедшее с момента размыкания цепи.

3. Взаимная индукция. Изменение магнитного потока может достигаться также изменением тока в соседнем контуре (явление взаимной индукции ). Возьмем два контура 1 и 2, расположенные близко друг к другу. Если в контуре 1 течет ток силой , он создает через контур 2 пропорциональный полный магнитный поток . При изменении тока в контуре 2 индуцируется э.д.с. , где индуктивность (коэффициент самоиндукции) контура. Аналогично, при протекании в контуре 2 тока силы возникает сцепленный с контуром 1 поток и . Контуры 1 и 2 наз. связанными . В отсутствии ферромагнетиков . Их величина зависит от формы, размеров и взаимного расположения контуров, а также от магнитной проницаемости окружающей среды.

По правилу Ленца, дополнительные токи, возникающие вследствие самоиндукции, всегда направлены так, чтобы противодействовать изменению тока в цепи.

Это приводит к тому, что установление тока при замыкании цепи и убывание тока при размыкании цепи происходит не мгновенно, а постепенно.

Найдем сначала характер изменения тока при размыкании цепи. Пусть в цепь, индуктивностью L и сопротивлением R включить источник тока и переключить и переключатель находится в положении 2. Тогда в цепи будет течь ток .

В момент времени t=0 отключают источник тока(переключают в положение 1). Как только сила тока начнет убывать, возникающая ε i , противодействующая этому убыванию .По второму правилу Кирхгофа: . – мы получили однородное ДУ-1. Разделяя переменные получим: , , c – const можно найти из начальных условий. При t=0 → . , → .

Частное решение: , ,

Рассмотрим случай замыкания цепи из 1 в 2. После подключения источника тока до тех пор, пока сила тока не достигнет установленного значения: в цепи кроме ε возникает также , , . Мы получили неоднородное ДУ-1. Решением неоднородного уравнения является сумма общего решения соответствующего однородного уравнения и частного решения соответствующего неоднородного уравнения: . Легко видеть, что частным решением является , константу находим из начальных условий при t=0, I=0. , , .


31.Энергия магнитного поля. Плотность энергии.

Проводник по которому протекает электрический ток всегда определяет магнитное поле

Причём магнитное поле появляется и исчезает вместе с появлением и исчезновением электрического тока. Следовательно часть энергии тока идёт на создание магнитного поля, который подобно электричеству является носителем энергии. Энергия магнитного поля равна работе,который затрачивается током не создающим магнитного поля

Рассмотрим контур с током индуктивность которого L,с данным контуром сцепляется магнитный поток

Причём при изменении тока на dI приводит к изменению магнитного потока

Для изменения магнитного потока на величину dФ необходимо совершить работу

Тогда работа будет равна

Выразим энергию магнитного поля через характеристику магнитного поля

; ; ; ;

Энергия сосредоточенная в единице объёма (объёмная плотность энергии магнитного поля)

;

Гармонические колебания и их характеристики. Дифференц. уравнение гармонических колебаний

При разнообразных видах движения наблюдающихся в природе наблюдаются такие, которые повторяются через определенный промежуток времени они называются периодическими, а промежуток времени через который повторяются называются периодом.

Колебательное движение относится к периодическим. Физическая природа колебаний может быть различна, по этому различают колебания механические, электромагнитные и т.д. Однако, различные колебательные процессы описывают одинаковые характеристики и одинаковые уравнения. Отсюда след. целесообразие единого подхода к изучению колебаний различных физических природы.

Колебания бывают: свободные (колебания, которые происходят в отсутствии переменных внешних воздействий и возникающих вследствие начала уравнений этой системы в равновесии), вынужденные (колебания возникшие в какой-либо системе под влиянием переменных внешних воздействий), алкоколебание (Колебания возникают в источнике за счет источника введенного в эту систему)

Простейшим типом явл. гармонические колебания-колебания при которых колеблющаяся величина изменяется со временем по закону cos,sin :

S -колебательная величина, А-амплитуда колеб., -фаза колеб.в момент времени t ,

α o =0 -начальная фаза колебаний,w o -циклическая(угловая)частота.

;

За время равному периоду фаза получает приращение , поэтому можно записать:

l

Иногда гармонические колебания изобр. графическим методом вращением вектора амплитуды или методом вектора диаграмм.

Т.е. гармонические колебания – проекция на некоторой произвольно выбранную ось амплитуды А отлож. от произвольной точки под углом α o и вращающ. с угловой скоростью w 0 вокруг этой точки.

При всяком изменении силы тока в проводящем контуре возникает э. д. с. самоиндук­ции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции . Экстратоки самоиндукции, согласно правилу Ленца, все­гда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. , резистор сопротивлением R и катушку индуктивностью L. Под действием внешней э. д. с. в цепи течет постоянный ток

(внутренним сопротивлением источника тока пренебрегаем).

В момент времени t =0 отключим источник тока. Ток в катушке индуктивностью L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент време­ни ток в цепи определяется закономОмаI = s /R, или

(127.1)

Разделив в выражении (127.1) переменные, получим Интегрируя это уравнение по I (от I 0 до I ) и t (от 0 до t ), находим ln (I /I 0) = –Rt/L, или

где t=L/R - постоянная, называемаявременем релаксации. Из (127.2) следует, что t есть время, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника тока сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше t и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э. д. с. возникает э. д. с. самоиндукции препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома, или

Введя новую переменную преобразуем это уравнение к виду

где t - время релаксации.

В момент замыкания (t =0) сила тока I = 0 и u = – . Следовательно, интегрируя по и (от – до IR– ) и t (от 0 до t ), находим ln[(IR– )]/– = -t/t, или

где - установившийся ток (при t ®¥).

Таким образом, в процессе включения источника тока нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I= 0 и асимптотически стремится к установившемуся значению . Скорость нарастания тока определяется тем же временем релаксации t=L/R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индук­тивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндукции , возникающей при мгновенном увеличении сопротивления цепи постоянного тока от R 0 до R . Предположим, что мы размыкаем контур, когда в нем течет установившийся ток . При размыкании цепи ток изменяется по формуле (127.2). Подставив в нее выражение для I 0 и t , получим

Э.д.с. самоиндукции

т. е. при значительном увеличении сопротивления цепи (R/R 0 >>1), обладающей боль­шой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникнове­ние значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений.

Магнитные моменты атомов.

Рассматривая действие магнитного поля на проводники с током и на движущиеся заряды, мы не интересовались процессами, происходящими в веществе. Свойства среды учитывались формально с помощью магнитной проницаемости m. Для того чтобы разобраться в магнитных свойствах сред и их влиянии на магнитную индукцию, необходимо рассмотреть действие магнитного поля на атомы и молекулы вещества.

Опыт показывает, что все вещества, помещенные в магнитное поле, намагничива­ются. Рассмотрим причину этого явления с точки зрения строения атомов и молекул, положив в основу гипотезу Ампера, согласно которой в любом теле существуют микроскопические токи, обусловленные движением электронов в атомах и молекулах.

Для качественного объяснения магнитных явлений с достаточным приближением можно считать, что электрон движется в атоме по круговым орбитам. Электрон, движущийся по одной из таких орбит, эквивалентен круговому току, поэтому он обладаеторбитальным магнитным моментом (см. (109.2)) p m =IS n , модуль которого

(131.1)

где I=en - сила тока, n - частота вращения электрона по орбите, S - площадь орбиты. Если электрон движется по часовой стрелке (рис. 187), то ток направлен против часовой стрелки и вектор р m (в соответствии с правилом правого винта) направлен перпендикулярно плоскости орбиты электрона, как указано на рисунке.

С другой стороны, движущийся по орбите электрон обладает механическим момен­том импульса L e , модуль которого,

где v = 2pn, pr 2 = S. Вектор L e (его направление также определяется по правилу правого винта) называется орбитальным механическим моментом электрона .

Из рис. 187 следует, что направления р m и L e , противоположны, поэтому, учитывая выражения (131.1) и (131.2), получим

(131.3)

где величина

(131.4)

называется гиромагнитным отношением орбитальных моментов (общепринято писать со знаком «–», указывающим на то, что направления моментов противоположны). Это отношение, определяемое универсальными постоянными, одинаково для любой ор­биты, хотя для разных орбит значения v и r различны. Формула (131.4) выведена для круговой орбиты, но она справедлива и для эллиптических орбит.

Экспериментальное определение гиромагнитного отношения проведено в опытах Эйнштейна и де Гааза* (1915), которые наблюдали поворот свободно подвешенного на тончайшей кварцевой нити железного стержня при его намагничении во внешнем магнитном поле (по обмотке соленоида пропускался переменный ток с частотой, равной частоте крутильных колебаний стержня). При исследовании вынужденных крутильных колебаний стержня определялось гиромагнитное отношение, которое ока­залось равным (e/m ). Таким образом, знак носителей, обусловливающих молекуляр­ные токи, совпадал со знаком заряда электрона, а гиромагнитное отношение оказалось в два раза большим, чем введенная ранее величина g (см. (131.4)). Для объяснения этого результата, имевшего большое значение для дальнейшего развития физики, было предположено, а впоследствии доказано, что кроме орбитальных моментов электрон обладает собственным механическим моментом импульса L es , называ­емым спином . Считалось, что спин обусловлен вращением электрона вокруг своей оси, что привело к целому ряду противоречий. В настоящее время установлено, что спин является неотъемлемым свойством электрона, подобно его заряду и массе. Спину электрона L es , соответствует собственный (сотовый) магнитный момент р ms , пропорци­ональный L es и направленный в противоположную сторону.



Загрузка...