sonyps4.ru

RFID –это просто. Реализация собственного RFID транспондера и ридера

19 сентября 2013 в 18:32

Бюджетный UHF RFID считыватель и его развитие

  • Беспроводные технологии

Здравствуйте, досточтимые леди и джентльмены.
Самый дешевый UHF RFID считыватель или считыватель стандарта EPC Gen2 стоит в розницу никак не меньше 200 USD.

Как можно сделать работоспособный UHF RFID считыватель из деталей за 10 USD, и как можно было бы из этого извлечь пользу, рассказано ниже.

Большинство современных RFID считывателей стандарта EPC Gen2 использует специализированные микросхемы. Их выпускают компании Impinj, AMS и Phychips. Самые дешевые микросхемы стоят около 20 USD в партиях по 1000 штук. RFID считыватели получаются замечательные: мощные, шустрые и дальнобойные - но дорогие.
Весной этого года в Интернете появилась статья "Simple Low Cost UHF RFID Reader " о том, как из распространенных радиодеталей стоимостью около 5 USD в рознице собрать действующий RFID считыватель. Идея вроде как проста, но до реализации дошло только недавно. Предпосылка к разработке базируется на том, что очень часто вблизи от антенны нужно не спеша считать пару тройку меток, и платить много денег за считыватель скорострельностью 200-500 меток в секунду ни к чему. Блок схема считывателя представлена на картинке.


Её прелесть в простоте. Основой является обычный микроконтроллер, который формирует на ножке GPIO сигналы стандарта EPC Gen2, нужные для опроса метки. Сигналы передаются на микросхему трансмиттера Melexis TH72035, затем на антенну через каплер (coupler) Johanson 0910CF15B0100. Приемник собран на одном компараторе MAX931 по следующей схеме.


Логические сигналы с приемника поступают на другой вывод GPIO микропроцессора. Получаем простой софтовый UHF RFID считыватель. Конечно, написать софтовый EPC Gen2 RFID считыватель - это не фунт изюму. Но если четко определить цели и использовать только нужное подмножество протокола EPC Gen2, то задача упрощается значительно.
Авторы описываемого проекта одной из целей его дальнейшего развития считают размещение всех компонентов RFID считывателя на одной плате. Но не будет ли интереснее пойти в противоположном направлении? То есть разделить считыватель на физически обособленные функциональные модули и потом из разных модулей строить RFID считыватель с необходимыми характеристиками. Всё, что внизу, только идея, без детальной проработки.

Понятно, что главный модуль - микропроцессорный. Наверное, сделать его нужно на Cortex-M0, вывести на разъемы UART и USB с целью управления считывателем. Для подключения модуля приемопередатчика использовать разъем на 6 контактов: Rx, Tx, 2 на питание приемопередатчика, 2 GPIO. Таких разъемов можно сделать 2-4, насколько выводов микропроцессора хватит.
Модуль приемопередатчика подключаться к микропроцессорному модулю будет напрямую или через короткий кабель. Пожалуй, надо делать несколько вариантов модулей приемопередатчика с разной мощность и ценой, но одинаковым разъемом. 5-ый контакт разъема можно использовать для включения приемопередатчика, а 6-ой можно использовать под какой-то датчик при необходимости. Имеет смысл сделать печатную плату приемопередатчика с металлизированными торцевыми полуотверстиями. Тогда её можно будет припаивать к печатным платам с разными антеннами или печатной плате с коаксиальным разъемом SMA.
Итак, соединив микропроцессорный модуль и модуль приемопередатчика, мы получаем RFID считыватель. Но только ради этого городить огород не стоит. Пойдем дальше. Воткнем в 6-контактный разъем микропроцессорного модуля вместо приемопередатчика плату с драйвером RS422 и розеткой RJ45 (пара 1 - прием, пара 2 - передача, 3 - питание, 4 - GPIO). Такую же воткнем в приемопередатчик. Понятно, что теперь можно соединять микропроцессорный модуль и приемопередатчик с помощью любого патч-корда или использовать для соединения офисную СКС. В общем, антенна от микропроцессорного модуля может располагаться весьма далече. И никакого коаксиала.
Ну и это еще не всё :) RS422 - это шина. В приемопередатчике можно разместить микросхему D-триггера. Модули приемопередатчика соединить последовательно патч-кордами. Правда необходим второй разъем RJ45 или Т-разветвитель, если вместо D-триггера поставить синхронный счетчик. С помощью двух GPIO в четвертой паре UTP можно выбирать нужный приемопередатчик. Получается распределенный RFID считыватель, как на картинке.


Зачем нужен USB: а для того, чтобы уметь присоединить считыватель к планшетнику с Android.

Решение применимо, где не нужна большая скорость считывания меток и дальнобойность.
1. Для гастрономов не годится. Это RFID магазины будущего. А RFID магазины настоящего - это универмаги (обувь и одежда). Там RFID считыватели уже используются в примерочных (вместе в интерактивным дисплеем), на кассах и умных полках с товаром.
2. Склады с европоддонами (цепочка модулей приемопередатчика там, где находятся левые углы палет).
3. Пропускная система на разные массовые мероприятия.
4. Наверняка где-то ещё.

Схема эмулятора RFID транспондера стандарта EM-Marine (EM4100).
Бесконтактные карты стандарта Em-Marine являются на сегодняшний день наиболее популярным средством идентификации в нашей стране и используются для идентификации пользователей в системах контроля и управления доступом (СКУД).
Второй, не менее популярной, областью применения карт Em-Marine является их использование в системах логического доступа при авторизации пользователей по ID номеру карты в операционной системе компьютера и рабочих приложениях и тп.

Карты и брелки Em-Marine.
Соответственно подобные системы идентификации очень распространены и могут представлять интерес для реализации собственных систем идентификации и автоматизации. Поскольку протокол обмена и аппаратная часть подобных низкочастотных систем является более простой для самостоятельной реализации собственных устройств большинство радиолюбительских конструкций тематики RFID посвящена низкочастотным системам.

Рабочая частота карт Em-Marine составляет 125 КГц. Для их чтения используются специализированные считыватели бесконтактных карт (считыватели RFID). Взаимодействие идентификатора с таким считывателем осуществляется дистанционно.
Вариантов внешнего исполнения данных идентификаторов существует огромное количество: пропуска Em-Marine изготавливаются в виде тонких и толстых карт, браслетов для аквапарков, различных брелоков, радио-меток для интеграции в RFID-изделия.
Для стандарта транспондеров EM4100 карта содержит 64 бита данных, при этом карты, как правило, не перезаписываемые. Для удобства регистрации карт код, записанный в карте, продублирован печатью на одной из сторон карты. Кодировка передаваемых транспондером данных - манчестер кодирование. При этом периоды сигнала передаваемого транспондером являются кратными частоте 125Кгц - частота сигнала считывателя транспондеров. Сами транспондеры реализованы без внешнего питания (пассивный тэг), питание осуществляется за счет контура LC (катушка и конденсатор) при попадании тэга в зону действия поля считывателя карт. Тактирование транспондера также осуществляется сигналом считывателя - 125Кгц. Поэтому параметры результирующего сигнала в манчестер кодировке являются кратными сигналу 125Кгц.

Схема взаимодействия транспондера и считывателя RFID.
Для более полного понимания рассмотрим структуру пакета RFID транспондера формата EMMarine EM4100. Приведено описание (на английском, взято из анноутов) формата пакета транспондера.
“…….EM4100 compatible RFID transponders carry 64 bits of Read Only memory. This means that information can be read from the Tag but no data can be changed, or new data written to the card once the card has been programmed with the initial data. The format of the data is as shown here.
1 1 1 1 1 1 1 1 1 9 bit header bits, all 1"s
8 bit version number D00 D01 D02 D03 P0
or customer ID.
D04 D05 D06 D07 P1
D08 D09 D10 D11 P2 Each group of 4 bits
D12 D13 D14 D15 P3 is followed by an Even 32 Data Bits
D16 D17 D18 D19 P4 parity bit
D20 D21 D22 D23 P5
D24 D25 D26 D27 P6
D28 D29 D30 D31 P7
D32 D33 D34 D35 P8
D36 D37 D38 D39 P9
4 column Parity bits PC0 PC1 PC2 PC3 S0 1 stop bit (0)
The first 9 bits are logic 1“.
Соответственно мы имеем 9 стартовых бит пакета (всегда логическая 1), 11 групп по 4 бит данных с 1 битом четности по строке, 4 бита четности по столбцам в конце пакета, завершающий бит (всегда 0).
Для примера возьмем транспондер с данными номера 06001259E3.
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1 1 0 0 1 0 00
0 6 0 0 1 2 5 9 E 3

Байт с данными 0x06 считается номером версии. На картах EM-Marine, которые попадались мне, выбиты десятичные значения соответствующие последним 3 байтам пакета. В любом случае нам нужно будет для реализации воспроизводить все 64 бита пакета согласно данному описанию.
Теперь обратимся внимательно к описанию модуляции данных транспондера. Данные взяты из анноута AN680. На рисунке сделал отметки красным относительно интересующих нас диаграмм.

Теперь подробнее опишем нужные нам диаграммы. Сигнал CLK тактирования - это и есть сигнал считывателя RFID, о чем уже было сказано ранее. Данные в кодировке NRZ следует подготовить транспондеру в соответствии с записанными данными пакета (64 бит). Видно, что реализация кодирования NRZ по пакету транспондера элементарная и требует минимальных затрат ресурсов. Собственно разбираем пакет на битовый поток и меняем логическое значения сигнала по 0 и 1 в данных и все. Для получения результирующего сигнала делаем программно XOR текущего состояния сигнала в формате NRZ и CLK тактирующего сигнала считывателя. В итоге получаем манчестер кодирование результирующего сигнала. Подробнее про манчестер кодирование описывать не буду - данные можно найти в отдельных анноутах. Для более подробного описания методов модуляции можно ознакомиться с данными из “Modulation Methods H.R. Walker Data Systems 05/01/04(reviewed 4/18/10)”, мною изучались именно данные примеры. Главное, что с минимальными затратами ресурсов мы можем таким образом реализовать транспондер формата EM-Marine. Для примера можно взять контроллер AVR серии tiny45 (можно и на tiny13 сделать). На контроллере tiny45 тестировалось поскольку именно такой оказался в наличии для экспериментов.
Теперь представим функциональную схему транспондера на основе модели в Proteus для контроллера tiny45.

Функциональная схема транспондера в Proteus.

Вот так выглядит сигнал генерируемый транспондером. Красным отмечено начало пакета.
По схеме видно, что ножка контроллера T0 (PORTB.2) используется для подачи тактового сигнала для 8 битного таймера TIMER0. В программе реализовано прерывание по совпадению на таймере TIMER0 (TIM0_COMPA). Тактирование установлено от внешнего сигнала для данного таймера. Для нас тактовым сигналом является 125Кгц от считывателя карт. На схеме удалено все, что касается питания контроллера и цепей тактирования от считывателя. В реальной схеме сам контроллер тактируется от кварца 4 Мгц установленного между 2 и 3 ножкой контроллера. Также можно добавить блокировочные конденсаторы для кварца по 22 pF на данных ножках контроллера.
Настройки симуляции Proteus для контроллера указанны следующим образом:

При программировании контроллера tiny45 фьюзы (биты конфигурации) устанавливаем таким же образом, как указано на рисунке.2. Для тактирования контроллера используется кварц 4 Мгц.
Относительно реализации внешней схемы обвязки контроллера рассмотрим данный вопрос подробнее. Для примеров были взяты материалы RFID Handbook (E2E_chapter03-rfid-handbook) где описываются фундаментальные принципы построения RFID систем. Сам документ прилагается к статье. Рассмотрим пример схемы пассивного транспондера (часть схемы на странице 46). Для понимания я сделал пометки на схеме красным цветом.
Видно, что мы имеем приемный контур на L1C1, который служит для питания схемы транспондера и тактирования. Все что касается счетчика-делителя IC1(4024), логических элементов IC3 (7400) можем смело выкидывать - нам это не потребуется. Делитель для таймера реализован настройками таймера без внешних делителей - счетчиков, логическая часть также реализована программно. Однако данный пример позволяет более полно понять работу пассивной схемы транспондера. Максимальное расстояние считывания для транспондера данного формата составляет 200см. В реальности большинство схем работает на расстояниях 2-10см. Параметры контура емкости и индуктивности LC подбираются максимально точно на резонансную частоту 125Кгц. Для примера использовался контур с емкостью 1nF и катушкой 60 витков на оправке диаметром 50мм проволокой ПЭВ 0.2. Рассчитать нужный контур можно в специальной программе (можно рассчитать контур для прямоугольно катушки, печатной и тп.). Главное подобрать точные номиналы под частоту 125 Кгц иначе расстояние считывания и чувствительность схемы значительно ухудшатся. При плохо настроенных контурах будет работать только при поднесении катушки транспондера вплотную к считывателю. Устройство работает по принципу Full Duplex (FDX) - генерация данных транспондера непрерывно при наличии питания схемы. Тактирование схемы от считывателя и передача данных осуществляется непрерывно. Некоторые схемы транспондеров используют схему работы HDX (Half Duplex) - считыватель излучает в импульсном режиме, транспондер передает данные в промежутках данных импульсов зарядки от считывателя. Это относится, например к TIRIS транспондерам от Texas Instruments.

Схема пассивного транспондера на основе схемы из RFID Handbook.


С учетом той части схемы, которая нам не нужна на основе оригинальной схемы, получаем схему обвязки контроллера в таком виде.



Как вам эта статья?

Из всем полюбившейся (по крайней мере, я на это очень надеюсь) серии «Взгляд изнутри» - больше полугода. Не то, чтобы не было, о чём написать или рассказать, просто одолели дела, которые станут предметом одной из следующих моих статей на Хабре (надеюсь, что её не отправят в утиль, так как посвящена она будет не совсем ИТ-тематике). А пока есть свободная минуточка, давайте разберёмся, что же такое RFID (Radio-frequency identification) – к ним примкнут более простые метки – или как один небольшой шаг в технологиях круто изменил жизнь миллионов и даже миллиардов людей по всему миру.

Предисловие

Сразу хотелось бы оговориться.

Перед началом работы над этой статьёй, я очень надеялся, что по микрофотографиям, а особенно по оптике, информации, найденной на просторах Интернета, и некоторому багажу знаний от прошлых публикаций удастся определить, где и какие элементы микросхемы находятся. Хотя бы на «бытовом» уровне: мол, вот это - память, вот это - схема питания, а вот тут происходит обработка информации. Действительно, казалось бы, RFID – простейшее устройство, самый простейший «компьютер», который только можно придумать…

Однако жизнь внесла свои коррективы и всё, что удалось мне найти: общая схема устройства нового поколения меток , фотографии того, как, например, должна выглядеть память – даже не знаю, почему я не уделил этому внимание (может быть ещё представится возможность исправиться?!), ну и скандалы-интриги-разоблачения процессоров A5 от chipworks .

Часть теоретическая

По традиции начнём с некоторой вводной части.
RFID
История технологии радиочастотного распознавания – пожалуй, именно так можно назвать все мыслимые и немыслимые варианты RFID (radio-frequency identification) – уходит своими корнями в 40-ые года XX века, когда в СССР, Европе и США активно велись разработки вообще любых видов электронной техники.

В то время, любое изделие, работающее на электричестве, было всё ещё в диковинку, так что перед учёными лежало не паханое поле: куда не ткни, как в Черноземье, черенок от лопаты – вырастет дерево. Судите сами: свои законы Максвелл предложил всего-навсего полвека назад (в 1884 году). А теории на основе этих уравнений стали появляться спустя 2-3 десятилетия (между 1900 и 1914), в том числе и теории радиоволн (от их открытия, до моделей модуляции сигнала и т.д.). Плюс подготовка и ведение второй мировой войны наложили свой отпечаток на данную область.

В результате к концу 40-х годов были разработаны системы распознавания «свой-чужой», которые были несколько побольше, чем описанные , но работали фактически по тому же принципу, что и современные RFID-метки.

Первая демонстрация близких к современных RFID была проведена в 1973 году в Исследовательской Лаборатории Лос Аламоса, а один из первых патентов на подобного рода систему идентификации получен спустя десятилетие – в 1983 году. Более подробно с историей RFID можно ознакомиться на Wiki и некоторых других сайтах ( и ).

Активные метки за счёт встроенной батарейки имеют существенно больший радиус работы, габариты, более сложную «начинку» (можно дополнить метку термометром, гигрометром, да хоть целый чип GPS-позиционирования) и соответствующую цену.

Классифицировать метки можно по-разному: по рабочей частоте (LF – низкочастотные ~130КГц, HF – высокочастотные ~14MГц и UHF – ультравысокочастотные ~900МГц), по типу памяти внутри метки (только чтение, однократно записываемая и многократно записываемая). Кстати, так любимый всеми производителями и продвигаемый NFC относится к HF диапазону, который имеет ряд хорошо известных проблем.

Прочие метки
К сожалению, стоимость RFID-меток по сравнению с другими видами идентификации довольно высока, поэтому, например, продукты питания и прочие «ходовые» товары мы по-прежнему покупаем с помощью баркодов (или штрих-кодов), иногда QR-кодов, а защиту от краж обеспечивают так называемые противокражные метки (или EAS – electronic article surveillance)

Самых распространённых три вида (все фото взяты с Wiki):

Впереди нас ждёт много чудных открытий, подчас совершенно неожиданных и конечно же hard geek porn в формате HD !

Если кому-то показалось мало теории, добро пожаловать на данный англоязычный сайт .

Часть практическая

Итак, какие метки удалось найти в окружающем нас мире:


Левый столбец сверху вниз: карта московского метро, проездной аэроэкспресс, пластиковая карта для прохода в здание, RFID-метка, представленная компанией Перекрёсток на выставке РосНаноФорум-2011. Правый столбец сверху вниз: радиочастотная EAS-метка, акустомагнитная EAS-метка, бонусный билет на общественный транспорт Москвы с магнитной полосой, RFID-карта посетителя РосНаноФорума содержит даже две метки.

Первой заявлена карточка московского метрополитена – приступим.

В круге первом. Билет московского метрополитена
Сначала вымачиваем карту в обычной воде, чтобы удалить бумажные слои, скрывающие самое сердце данной «метки».


Раздетая карта московского метрополитена

Теперь аккуратненько посмотрим на неё при небольшом увеличении в оптический микроскоп:


Микрофотографии чипа карты для прохода в московский метрополитен

Чип закреплён довольно основательно и хочу обратить внимание, что все 4 «ноги» присоединены к антенне – это нам пригодится далее для сравнения с другой RFID-меткой. Сложив пластиковую основу пополам в месте, где находится чип, и слегка покачав из стороны в сторону, он легко высвобождается. В итоге имеем чип размером с игольчатое ушко:


Оптические микрофотографии чипа сразу после отделения от антенны

Что ж, поиграемся с фокусом:


Изменение положения фокуса с нижнего слоя на верхний

Теперь немного интриг.

Ходят слухи, что Микрон разрабатывает и производит чипы для московского метро собственного силам по сходной технологии Mifare (как минимум, различается крепление к антенне – ножки другой формы). 22 августа без объявления войны и вероломно направил обращение в Микрон за разъяснениями, можно ли где-то в принципе увидеть данный чип, к 3.11 ответа не поступило. Один из журналистов (а именно, Александр Эрлих) на форуме IXBT тоже собирался уточнить данную информацию у представителей Микрона, но на данный момент воз и ныне там, то есть официальные представители Микрон уклоняются от ответа на прямо поставленный вопрос.

Рассмотренный выше билет, по всей видимости, изготовлен (или только смонтирован на антенну?) на предприятии Микрон (г. Зеленоград) - см. ссылки ниже - по технологии известной в RFID-кругах фирмы NXP, о чём собственно недвусмысленно намекают 3 огромные буквы и год выпуска технологии (а может и год производства) на верхнем слое металлизации чипа. Если полагать, что 2009 относится к году запуска технологии, а аббревиатуру CUL1V2 расшифровать как Circuit ULtralite 1 Version 2 (данное предположение также подтверждается этой новостью), то на сайте NXP можно найти подробное описание данных чипов (последние две строки в списке)

Кстати, в прошлом году для участников Интернет-олимпиады по Нанотехнологиям была организована экскурсия на завод Микрон (фото- и видео отчёты), поэтому говорить, что там оборудование простаивает смысла нет, но и заявление «дядечки в белом халате», что производят они метки по стандартам 70 нм, я бы поставил под сомнение…

Согласно статистике, собранной после анализа чипов 109 билетов метро (довольно репрезентативная выборка), согласно нормальному распределению шансы найти «необычный» билет ~109^1/2 или около 10%, но они тают с каждым вскрытым билетиком…

Внимательный взгляд уже приметил главное отличие двух чипов Mifare – надпись Philips2001. В самом деле, в далёком 1998 году компания Philips купила американского производителя микроэлектроники – Mikron (не путать с нашим, зеленоградским Микроном). А в 2006 году от Philips отпочковалась компания NXP.

Также несложно заметить пометку CLU1V1C, что, исходя из вышеописанного, означает Circuit ULtralite 1 Version 1C. То есть эта метка является предшественницей Mifare, используемой московским метрополитеном, а, следовательно, совместима с ней по основным параметрам. Однако, как и в предыдущем случае 2001 – это указание на год разработки и внедрения технологии или год производства. Странно, что Аэроэкспресс использует устаревшие метки…

В круге третьем. Пластиковая карта
Как-то раз, решил я одной своей знакомой показать статьи и фотографии на Хабрахабре. После чего спросил, а есть ли у неё какая-нибудь ненужная карта для следующей статьи про RFID. Она к тому времени как раз перебралась учиться в EPFL и подарила мне карточку, по которой осуществляется проход в одно из зданий МГУ. Карта, соответственно, без какой-либо маркировки, и я даже не уверен, что на ней записано хоть что-то, кроме обычно ключа для прохода в здание.
Карточка полностью пластиковая, поэтому сразу кладём её в ацетон буквально на пару десятков минут:


Принимаем ацетоновые ванны

Внутри всё довольно стандартно – антенна да чип, правда, он оказался на маленьком кусочке текстолита. К сожалению, без каких-либо опознавательных знаков – типичный китайский noname. Единственное, что можно узнать об этом чипе и карте, что они изготовлены/относятся к некоторому стандарту TK41. Таких карт полно на распродажах типа ali-baba и dealextreme.

В круге четвёртом. Перекрёсток
Далее я хочу рассмотреть две метки, представленные на выставке РосНаноФорум 2011. Первую из них представили с большим пафосом, сказав, что это чуть ли не панацея от воров и краж в магазинах. Да и вообще, данная метка позволит полностью перевести магазины на самообслуживание. К сожалению, эффективный менеджер оказался чуть более, чем полностью некомпетентен в вопросах школьной физики. И после предложение проверить эффективность его и метки с помощью сильного магнита, приложенного к метке, быстро замял тему…

После пары покупок в SmartShop, у меня в распоряжении осталось несколько меток. Очистив одну из них от клея и белого защитного слоя видим следующее:


Новая метка сети магазинов «Перекрёсток»

Поступаем так же как и Mifare аккуратно отсоединяем от полимерной основы и антенны и кладём на столик оптического микроскопа:


Оптические микрофотографии метки, предполагаемой к использованию в SmartShop

По счастливой случайности (то ли клей подкачал, то ли так задумано), метку удалось оторвать от основы быстро, а поверхность её осталась без каких-либо следов клея. Хотелось бы обратить внимание, что если у Mifare все 4 контакта прикреплены к антенне (по 2 контакта на каждый её конец), то здесь мы видим, что два контакта присоединены к двум небольших площадкам, которые не контактирую с антенной.

Немножко поиграем с фокусом в разных частях метки:


Меняем фокусировку…


Максимальное увеличение оптического микроскопа

На последнем фото слева вверху, по всей видимости, запечатлён модуль EEPROM памяти, так как он занимает около трети поверхности чипа и имеет «регулярную» структуру.

Много разговоров в последнее время ведется вокруг использования радиочастотных меток, причем в обсуждениях высказываются даже предположения, что при желании люди с определенными навыками владения компьютером могут взломать вашу домашнюю систему и получить полную информацию о ваших вещах.

Я решил сам разобраться в этой технологии. Для этого я заказал нужные компоненты и собрал RFID считыватель своими руками.

В данной статье я расскажу, как собрать работающий считыватель RFID-меток.

Шаг 1


В одной из прочитанных мною статей автор говорил, что его мобильный RFID считыватель работал только на частоте 13,56 МГц (короткая волна), но на частоте 1,25 кГц (длина волны ниже границы АМ-диапазона) не работал. Я же сделал считыватель, работающий на стандартной для всей этой отрасли частоте 125 кГц. Это значит, что для моего считывателя нужна другая комбинация антенны и конденсатора. Это иллюстрируют базовая схема и базовая формула. Чтобы получить нужное значение, выберите соответствующую формулу, подставьте ваши значения и с помощью калькулятора получите результат.

Список компонентов:

  • Около 12 м тонкой проволоки, от 22 до 30 калибра (я использовал 30 калибр).
  • Любой диод (я использовал красный).
  • Один 0,005 мкФ конденсатор или два дисковых конденсатора 0,01 мкФ, соединенных последовательно.
  • 2-5 дисковых конденсатора 100 пФ.
  • Основание для катушки (любое основание, диаметр катушки должен быть 10 см).
  • Печатная плата для прототипирования, для пробных сборок.
  • Печатная плата для аккуратной и точной сборки.
  • Возможность доступа к считывателю, чтобы снимать показания приемника.
  • Элементы питания не потребуются, так как приемник питается беспроводным способом от считывателя.

Шаг 2



Сначала я намотал проволоку на основу примерно 10 см в диаметре (я больше чем уверен, что пара сантиметров плюс-минус роли не сыграют).

Когда проволока была намотана на основание, я сравнил катушку с другими катушками, которые у меня уже были. Так я примерно оценил индуктивность новой катушки – у меня вышло около 330 мкгн.

Я подставил значение 330 мкгн в формулу и полученный результат значил, что для этой катушки нужен 0,005 мкФ конденсатор, чтобы пара катушка-конденсатор «резонировала» на частоте 125 кГц, а тока было достаточно для питания диода.

Прежде чем приступить к пайке, я сделал предварительную сборку на макетной плате.

Шаг 3


На макетной плате сначала соединяем катушку, диод и два дисковых 0,01 мкФ конденсатора (соединены последовательно друг с другом, а затем параллельно с диодом, что дает общую емкость 0,005 мкФ (5000 пФ)), затем включаем считыватель радиометок. При положении считывателя на расстоянии около 10 см от катушки горит диод. Диод горит очень ярко на расстоянии примерно 1,5 см.

Затем я добавил 100 пФ (0,0001 мкФ) конденсатор параллельно электросхеме, это увеличило радиус действия считывателя. Затем я выяснил, что добавив второй такой же конденсатор параллельно всей схеме я еще больше увеличу радиус действия считывателя. А добавление третьего конденсатора, напротив, уменьшило этот радиус. Таким образом, я установил, что емкость 5200 пФ является оптимальной для моей катушки (иллюстрация третьей попытки).

Мой приемник срабатывал бы на 10 см при использовании 0,005 мкФ конденсатора в параллельном соединении с катушкой и диодом, но макетная плата позволила использовать дополнительные конденсаторы и, тем самым, увеличила расстояние до 12,5 см.

Шаг 4




Фотографии наглядно показывают, как увеличивается яркость свечения диода по мере приближения катушки к считывателю.
Это маленькое устройство работает на частоте 125 кГц. Его достаточно просто собрать, используя более-менее подходящие материалы.

Шаг 5

Все компоненты, использованные в пробной сборке на макетной плате, я собрал на печатной плате и спаял их. Потом я приклеил схему к катушке, чтобы все устройство можно было перемещать с места на место просто в руке, без лишних проводов или соединений. Устройство работает нормально. Я ожидал, что оно будет реагировать на все считыватели радиометок в пределах 7-12 см и работающие на частоте 125 кГц.

Шаг 6

Так как я знаю, что максимальное свечение диода на заданном расстоянии достигается при емкости 0, 0052 мкФ, я вставил это значение вместе с длиной волны 125 кГц в соответствующую формулу и получил значение индуктивности 312 мкгн, вместо 330 мкгн, на которые я рассчитывал.

Математические расчёты здесь не играют огромной роли, хотя именно благодаря им я вычислил емкость конденсаторов, подходящих к моей катушке. Это, конечно, можно было выяснить методом проб и ошибок, но на это ушло бы много времени.

После нескольких лет работы по RFID тематике и разработки разнообразных считывателей для моделей транспондеров популярных стандартов типа Mifare, EMMARINE, TIRIS… меня часто начал озадачивать такой вопрос – буквально в последний год широкую популярность приобрели разного рода эмуляторы под тэги популярных протоколов и разнообразные копировальщики ключей/брелков.

Учитывая большое количеcтво доступных в продаже спец микросхем популярных протоколов RFID и дешевых ридеров, широкого распространения оборудования типа цифровых осцилографов, сниферов и спектроанализаторов, данный вопрос стал для многих разработчиков более актуальным. Тогда я решился сделать для одного из проектов протокол для обмена отличающийся от описанных выше стандартов.

Безусловно данная идея не решает глобальных проблем защищенности новой системы и может быть проанализирована другими разработчиками при наличии оборудования, однако суть в том, что все это не совпадает с существующими стандартами и все железки копировальщиков не позволят по-быстрому скопировать и воссоздать подобный алгоритм. Разумеется подобная система не преподносится тут не как полное решение проблем безопасности, а как опыт адаптации RFID под закрытую систему. Хорошим плюсом в вопросе безопасности среди прочих подобных беспроводных систем является сама технология низкочастотных RFID – она не позволяет считать тэги на большом расстоянии.

Пассивные тэги достаточно маломощны и нуждаются для своего питания в достаточно мощном генераторе считывателя, особенности распространения радиоволн на данных частотах также ограничивают пределы работы данной системы. Реальная дальность считывания транспондеров редко превышает 20см для 125 Кгц стандартов типа EmMarine, скажем стандарта EM4001, для других протоколов типа Mifare (13,56Мгц) может быть побольше (1,5 метра для iso15693). Можно добиться большего расстояния считывания для низкочастотных ридеров если увеличить размеры катушки и напряжение питания, соответственно и мощность ридера. Однако такие системы имеют громоздки и как правило их тяжело сделать портативными. Как правило, такие системы реализуются только стационарно – скажем для автомобилей.

Итак, теперь собственно по архитектуре нашей RFID системы. Для экспериментов был выбран контроллер atmel atmega8. Для целей изготовления транспондера это кажется несомненным излишеством. Однако в данном случае решалась первостепенная задача разработки нового интерфейса на готовой отладочной платке c atmega с последующим портированием данного кода на более дешевые контроллеры типа tiny13. Для транспондера алгоритм работы был построен на основе режима ШИМ генерации при помощи таймера T1 в режиме CTC с прерыванием и сбросом по совпадению с OCR1. Данные для передачи транспондера считываются из EEPROM при включении питания контроллера. Всего транспондер передает 10 байт. Содержимое EEPROM транспондера можно видеть на рисунке 1. Первый байт 0xE7 является обязательным заголовком пакета, так как его наличие проверяется в первую очередь при разборе пакета считывателем.

Первые 8 байт являются содержимым пакета транспондера, последние 2 байта содержат контрольную сумму CRC16 первых восьми байт пакета. Для примера в нашем транспондере были записаны такие данные – пакет 0xE7, 0x05, 0xE8, 0x93, 0x43, 0x7F, 0x20, 0xFF и соответственно контрольную сумму 0xF5 0xA8. Для изготовления собственного уникального транспондера нужно кроме первого байта 0xE7 записать семь следующих байт в EEPROM, после чего рассчитать контрольную сумму для первых восьми байт. После этого записать в EEPROM два байта CRC16 в конце пакета. Первый байт оставляем без изменений - 0xE7. При включении транспондера данные этих байт разбиваются по битам и кодируются соответствующей длиной импульса в соответствии со значением регистра OCR. Для передачи используются 2 частоты 2Кгц и 5Кгц для передачи логических “0” и “1”. Кроме того данные разделяются импульсами синхронизации – стартовые метки пакетов.

Рис.1 Содержимое пакета транспондера.


Рис.2 Дамп передачи транспондера на экране виртуального осцилографа.

Схему транспондера можно увидеть на рисунке 3. Частота задающего генератора 8Мгц. Питание контроллера +5В. Можно использовать контроллер mega8 с маркировкой “L” тогда питание можно осуществлять от литиевой батарейки 3в (параметры для такого чипа +2,7…. +3,5). Вместо данного транзистора можно использовать любой другой маломощный NPN транзистор. Катушка транспондера была намотана на оправке диаметром 50мм проводом 0,22мм и насчитывает 50 витков. На данный момент транспондер сделан активным - с внешним питанием. На следующем этапе планируется сделать пассивный вариант транспондера, что достаточно просто – сделать развязку для питания от данной катушки, добавить диоды моста выпрямителя и стабилизатор.


Рис.3 Схема транспондера.

Теперь поговорим о схеме считывателя для данного транспондера. Схема была адаптирована на основе раннее использованного считывателя для карт EMMARINE. Часть схемы с генератором на 74hc4060 можно на данном этапе смело удалять, так как пока мы используем активную метку. Однако эта часть схемы нам понадобится в дальнейшем, когда мы будем делать пассивную метку и нам потребуется получить питание от считывателя. В остальном схема не имеет существенных отличий от схемы считывателя для EMMARINE: пассивный пиковый детектор – фильтр – усилитель – компаратор. Схема имеет максимально возможную простоту и позволяет считывать данные транспондера на расстоянии 10-12см при хорошо настроенных контурах.

Можно еще дальше упрощать схему оставив только детектор и фильтр, поставить один транзистор на выходе который будет играть роль компаратора, но я не стал так делать. На выходе мы получаем двоичный сигнал прямоугольной формы в соответствии с кодированными длительностями импульсов передаваемых транспондером. Допустимые отклонения номиналов элементов при котором схема работоспособна 5-10%. Питание контроллера и операционника +5В. Частота кварца задающего генератора контроллера 12Мгц. Выход компаратора на LM358 подключен к ножке внешнего прерывания контроллера INT0. В программе контроллера настроен вызов прерывания по нарастающему фронту на ножке внешнего прерывания INT0. В обработчике прерывания происходит проверка синхронизирующих импульсов а затем проверка заголовка пакета и запись содержимого в буфер контроллера. Данные считанных пакетов передаются по интерфейсу RS232 на ПК. Для настройки терминалки указываем следующие параметры: скорость 57.6Kb/s, 8 бит данных, 1стоп бит, без контроля четности.

При приеме пакета контроллер рассчитывает контрольную сумму принятых байт и передает данные в терминалку (пакет и CRC). В случае совпадения контрольных сумм расчитанной контроллером и принятой в пакете выводится сигнал на ножку PORTB.0 (14) контроллера (LED1 на схеме). Можно подключить в данную точку пищалку со встроенным генератором или светодиод через сопротивление. При считывании корректного ключа контроллер запрещает внешние прерывания и делает задержку 1с перед следующим считыванием. Предусмотрен также режим работы данного считывателя в качестве основы RFID замка. Для этого необходимо в EEPROM контроллера считывателя записать полностью байты дампа транспондера - 10 байт. Данные пишутся в EEPROM считывателя точно также, как в EEPROM транспондера. В данном случае при считывании очередного транспондера и совпадении его с записанным в EEPROM считывателя выводится сигнал на ножку PORTB.1 (15) контроллера (LED2 на схеме). В данную точку можно подключить светодиод через сопротивление или выходной ключ (транзистор) на реле исполнительного устройства. Теперь мы получили RFID замок под конкретный ключ и обычный считыватель в одном флаконе.


Рис.4 Схема считывателя RFID меток. (увелчить схему)

Итак, подведем промежуточные итоги. Изготовлен собственный ридер и транспондер под данный считыватель. Мы защитили свое оборудование от посторонних устройств работающих с популярными протоколами RFID. Следующим шагом будет изготовление пассивной метки для нашего считывателя как делают известные производители промышленных транспондеров и портирование кода оборудования на более дешевые модели контроллеров. В архиве к статье прилагаю прошивки для транспондера и считывателя.

Скачать прошивку:
У вас нет доступа к скачиванию файлов с нашего сервера



Загрузка...