sonyps4.ru

Решение систем линейных уравнений методом жордана-гаусса. Симплексный метод решения злп

Как известно, метод Жордана-Гаусса, он же метод последовательного исключения неизвестных, является модификацией метода Гаусса решения систем линейных алгебраических уравнений (СЛАУ).

Метод базируется на элементарных преобразованиях (переводящих систему в эквивалентную), к которым относятся:

  • прибавление к обеим частям уравнения системы другого уравнения той же системы, умноженного на число, отличное от нуля;
  • перестановка местами уравнений в системе;
  • удаление из системы уравнений вида 0 = 0.

В отличие от метода Гаусса, на каждом шаге одна переменная исключается из всех уравнений, кроме одного.

Шаг метода состоит в следующем:

  • выбрать в очередном уравнении неизвестное с коэффициентом, отличным от нуля (разрешающим элементом);
  • разделить выбранное уравнение на разрешающий элемент;
  • с помощью выбранного уравнения исключить неизвестное при разрешающем элементе из всех остальных уравнений;
  • на следующем шаге аналогично исключается другое неизвестное из всех уравнений, кроме одного;
  • процесс продолжается, пока не будут использованы все уравнения.

Алгоритмизировать это можно так:

Для СЛАУ в матричном виде A*x=b (матрица A размерности m*n , совсем необязательно квадратная) составляется следующая таблица:

В таблице выбран разрешающий элемент a r,s ≠0 , тогда r - разрешающая строка, s - разрешающий столбец.

Переход к следующей таблице выполняется по правилам:

1. вычисляются элементы разрешающей строки: a" r,j =a r,j /a r,s - то есть, r-строка таблицы делится на разрешающий элемент;

2. все элементы разрешающего столбца, кроме a r,s , равного единице, становятся равны нулю;

3. элементы вне разрешающих строки и столбца вычисляются по формуле, изображённой ниже:


Легко не запутаться, если увидеть, что числитель этой формулы похож на вычисление определителя матрицы 2 на 2.

4. При ручном расчёте значение в последнем контрольном столбце сравнивается с суммой предыдущих элементов строки. Если значения не совпадают, ошибки надо искать в данной строке. При автоматизированном расчёте контрольный столбец можно опустить.

Возможны следующие случаи:

1. В процессе исключений левая часть уравнения системы обращается в 0, а правая b≠0 , тогда система не имеет решения.

2. Получается тождество 0 = 0 - уравнение является линейной комбинацией остальных и строка нулей может быть вычеркнута из системы.

3. После использования всех уравнений для исключения неизвестных, таблица либо содержит искомое решение, либо показывает несовместность системы ограничений.

Запрограммируем метод в Excel одной формулой, изменять которую должно быть не слишком трудоёмко. Например, для решения СЛАУ


заполним коэффициентами системы ячейки листа от A1 до D4 включительно, выберем разрешающий элемент a 1,1 =1 , а первый шаг метода сделаем в ячейке A6 , куда загоним "универсальную" формулу для преобразования Жордана-Гаусса:

ЕСЛИ(СТРОКА($A$1)=СТРОКА(A1);A1/$A$1;
ЕСЛИ(СТОЛБЕЦ($A$1)=СТОЛБЕЦ(A1);0;(A1*$A$1-
ДВССЫЛ(АДРЕС(СТРОКА(A1);СТОЛБЕЦ($A$1)))*
ДВССЫЛ(АДРЕС(СТРОКА($A$1);СТОЛБЕЦ(A1))))/$A$1))


На следующем шаге разрешающим элементом может быть, например, a 2,2 =1 (ячейка B7). Нам останется скопировать формулу из A6 в A11 (по пустой строке оставляем, чтоб визуально разделить шаги метода), войти в режим редактирования формулы (двойной щелчок по ячейке или выбрать её и нажать клавишу F2) и поправить (аккуратно перетащить мышкой за границу) все закреплённые ссылки с ячейки A1 на B7 .

Конечно, можно заменить везде в формуле закреплённую ссылку $A$1 на конструкцию вида ДВССЫЛ(ЯЧЕЙКА) , образующую динамический адрес ссылки. Скажем, ДВССЫЛ(F8) , а в ячейке F8 будет автоматически формироваться адрес ячейки разрешающего элемента по заданным пользователем номеру строки и столбца. Тогда для этих номеров строки и столбца придётся предусмотреть отдельные ячейки, например, так:


Увы, всё это ничего не даст - вместо $A$1 мы просто вынуждены будем закрепить в формуле ДВССЫЛ($F$8) и всё равно потом перетаскивать столько же ссылок при копировании формулы. Кроме того, "вручную" введённые номера строки и столбца придётся ещё и проверять на допустимость (хотя бы как на рисунке), так что, не будем умножать сущностей.

Посмотреть метод в работе можно на двух первых листах приложенного файла Excel (2 разных примера).

На преобразовании Жордана-Гаусса основан и такой универсальный метод решения линейных задач оптимизации, как симплекс-метод . Описания его обычно страшны, длинны и перегружены теоремами. Попробуем сделать простое описание и разработать пригодный для расчёта в Excel алгоритм. На самом деле, симплекс-метод уже встроен в стандартную надстройку Пакет анализа, и программировать его "вручную" не нужно, так что наш код имеет, скорее, учебную ценность.

Сначала минимум теории.

Если вектор-столбцы СЛАУ линейно независимы, соответствующие им переменные являются базисными , а остальные – свободными . Например, в СЛАУ


переменные x 2 и x 4 - базисные, а x 1 и x 3 - свободные. Базисные переменные между собой независимы, а свободные можно сделать, например, нулями и получить { x 2 =2, x 4 =1 } – базисное решение системы.

Выбирая различные разрешающие элементы, можно получить решения СЛАУ с различными базисами. Любое неотрицательное базисное решение СЛАУ называется опорным .

Симплекс-метод обеспечивает переход от одного опорного решения к другому, пока не будет достигнуто оптимальное решение, дающее минимум целевой функции.

Алгоритм симплекс-метода состоит в следующем:

1. Задача ЛП преобразуется к каноническому виду:


Это всегда можно сделать следующим образом: к задаче, записанной в стандартной постановке


добавляются дополнительные балансовые переменные , число которых соответствует числу ограничений-неравенств m (ограничения на неотрицательность значений неизвестных не учитываются). После этого неравенства со знаком " ≤ " превращаются в равенства, например, система ограничений вида

2*x 1 +3*x 2 ≤20
3*x 1 +x 2 ≤15
4*x 1 ≤16
3*x 2 ≤12
x 1 ,x 2 ≥0

примет вид

2*x 1 +3*x 2 +x 3 =20
3*x 1 +x 2 +x 4 =15
4*x 1 +x 5 =16
3*x 2 +x 6 =12
x 1 ,x 2 ,...,x 6 ≥0

То есть, "экономический" смысл балансовых переменных очень прост – это "остатки" неиспользованных ресурсов каждого вида.

Если в исходной задаче искался не минимум, а максимум, целевая функция Z заменятся на Z 1 = -Z . Решения задач совпадают, при этом min Z = - max Z 1 . Например, цель

Z(x 1 ,x 2)=2*x 1 +5*x 2 (max)

переписывается в виде

Z 1 (x 1 ,x 2)=-2*x 1 -5*x 2 (min)

Если в исходной задаче были уравнения-неравенства со знаками " ≥ " вместо " ≤ ", обе части каждого такого неравенства умножаются на -1 , а знак неравенства меняется на противоположный, например,

3*x 1 +x 2 +x 4 ≥15

превращается в

3*x 1 -x 2 -x 4 ≤15

Канонический вид модели получен, для него выписывается симплекс-таблица :


В левом столбце записываются базисные переменные (БП), если они ещё не выделены – пусто.

2. С помощью шагов Жордана–Гаусса ищется первоначальный опорный план, т.е. СЛАУ приводится к базисному виду с неотрицательными свободными членами b i >0 . При этом целевая функция Z должна быть выражена только через свободные неизвестные (нулевые коэффициенты в Z-строке стоят только под переменными x i , которые есть в базисе). При выборе разрешающего элемента a r,s в строку r столбца БП выписываем переменную x s , если там уже была переменная – вычеркиваем её (выводим из базиса).

3. Выписываем под столбцами x i опорный план X * : под свободными переменными - нули, под базисными – соответствующие базисной переменной коэффициенты из столбца b .

Ниже выписываем вектор R по правилу: под базисными переменными – нули, под свободными R i =Z i .

Если все R i ≥0 , найдено оптимальное решение X * и значение цели Z min = -q , иначе нужен новый план, а у вас он есть, товарищ Жюков? (п. 4).

4. Для выбора разрешающего столбца s выбираем максимальную по модулю отрицательную компоненту вектора R , разрешающий столбец s выбран. Затем анализируем коэффициенты s-го столбца матрицы системы ограничений. Если все a i,s ≤0 , решения нет и Z min стремится к минус бесконечности, иначе переходим к п.5.

5. Для выбора разрешающей строки r составляем неотрицательные отношения b i /A i,s ≥0 , i=1,2,...,m , и выбираем среди них наименьшее. Если минимум достигается для нескольких строк, за разрешающую можно принять любую из них, при этом, в новом опорном плане значения некоторых базисных переменных станут равными 0, т.е., получаем вырожденный опорный план.

6. Выполняем преобразование Жордана-Гаусса с разрешающим элементом a r,s и переходим к п.3

Геометрически симплекс-методу соответствует кратчайший обход вершин n-мерного выпуклого многогранника, образующего область допустимых решений задачи:


Здесь мы перешли от опорного плана C , представляющего собой одну из вершин многомерного многоугольника, к оптимальному плану E=X * .

Запрограммировать это всё в Excel нелегко, но можно. В прилагаемом документе приведены 3 примера, реализующие решение задач симплекс-методом. Правда, при выполнени шага менять уже придётся 3 формулы, на листе первого примера на симплекс-метод они выделены жёлтым цветом: расчёт отношений для выбора разрешающей строки в ячейке I2 , заполнение столбца БП в ячейке A12 , шаг преобразования Жордана-Гаусса в ячейке B12 . Как и в примере на преобразование Жордана-Гаусса, изменение формул связано только с необходимостью сослаться на новую строку, содержащую адрес ячейки с разрешающим элементом (для первого шага - ячейка C9).

Рассмотрим подробно, как производится пересчет симплекс-таблиц (на примере одной итерации). Пусть имеется симплекс-таблица представленная на Рис.1 . Решается задача максимизации целевой функции. Разрешающий столбец соответствует переменной x 2 , а разрешающая строка переменной x 3 (красные числа), на их пересечении находится разрешающий элемент (клетка с серым фоном). Первое, что нам необходимо сделать - это заменить. Разрешающая строка показывает, какая переменная должна быть выведена из базиса (в нашем случае x 3 ), а разрешающий столбец показывает какая переменная должна войти в базис (в нашем случае x 2 ). На Рис.2 факт замены акцентирован синей линией.

Теперь пересчитаем элементы стоящие в разрешающей строке. Для этого просто разделим каждый из них на разрешающий элемент (в нашем примере 4 ). А все элементы разрешающего столбца обнулим, кроме элемента стоящего в разрешающей строке. (Смотри Рис.2 )

Рисунок 1

Остальные ячейки таблицы (кроме столбца "Отношение") пересчитываются по так называемому правилу прямоугольника , смысл которого проще всего понять на примере. Пусть нужно пересчитать элемент обведенный на Рис.1 красным контуром. Мысленно проводим от него вертикальную и горизонтальную линии до пересечения, с разрешающей строкой и разрешающим столбцом. Элементы стоящие в местах пересечения обведены синими контурами (Смотри Рис.1 ). Новое значение "красного" элемента будет равно нынешнему значению элемента минус произведение "синих" деленное на разрешающий ("серый") элемент (Смотри Рис.1 ). То есть: 18 - (64 * -1) / 4 = 34 , здесь знаком "* " показана операция умножения.
Записываем новое значение на прежнее место (Смотри Рис.2 красный контур).

Рисунок 2

Пользуясь данным правилом, заполняем все пустые элементы таблицы (кроме столбца "Отношение") Смотри Рис.3 . После этого определим новый разрешающий столбец. Для этого проанализируем строку "Q" и так как наша задача на максимум, то найдем в ней максимальный положительный элемент , он и определит разрешающий столбец. В нашем случае это 3/2 . Все элементы разрешающего столбца показаны красным шрифтом (Смотри Рис.3 ). Если после очередной итерации в строке "Q" не окажется положительных элементов - это значит что оптимальное решение достигнуто, итерации прекращаются. Если бы наша задача была на минимум, то разрешающий столбец определялся бы по минимальному отрицательному элементу, и если после очередной итерации в строке "Q" не окажется отрицательных элементов, значит достигнуто оптимальное решение.

Рисунок 3

Теперь заполним столбец "Отношение". Для этого нужно соответствующий (стоящий в той же строке) элемент столбца "Решение" разделить на соответствующий элемент разрешающего столбца (Смотри Рис.3 ). Обратите внимание , что данная операция проводится только для положительных элементов разрешающего столбца и строка "Q" в данной операции не участвует. Если после некоторой итерации в разрешающем столбце не окажется положительных элементов, то данная задача неразрешима ввиду неограниченности целевой функции, итерации прекращаются.

После заполнения столбца "Отношение" определим новую разрешающую строку. Она определяется минимальным элементом из столбца "Отношение". В нашем случае это 32 , все элементы разрешающей строки показаны красным шрифтом (Смотри Рис.3 ). На этом очередная итерация заканчивается, на следующей итерации переменная x 2 будет выведена из базиса (об этом нам говорит новая разрешающая строка), ее место займет переменная x 1 (об этом нам говорит новый разрешающий столбец) и все вычисления повторятся снова.


. Алгоритм симплекс-метода

Пример 5.1. Решить следующую задачу линейного программирования симплекс-методом:

Решение:

I итерация:

х3 , х4 , х5 , х6 х1 ,х2 . Выразим базисные переменные через свободные:

Приведем целевую функциюк следующему виду:

На основе полученной задачи сформируем исходную симплекс-таблицу:

Таблица 5.3

Исходная симплекс-таблица

Оценочные отношения

Согласно определению базисного решения свободные переменные равны нулю, а значения базисных переменных – соответствующим значениям свободных чисел, т.е.:

3 этап: проверка совместности системы ограничений ЗЛП.

На данной итерации (в таблице 5.3) признак несовместности системы ограничений (признак 1) не выявлен (т.е. нет строки с отрицательным свободным числом (кроме строки целевой функции), в которой не было бы хотя бы одного отрицательного элемента (т.е. отрицательного коэффициента при свободной переменной)).

На данной итерации (в таблице 5.3) признак неограниченности целевой функции (признак 2) не выявлен (т.е. нет колонки с отрицательным элементом в строке целевой функции (кроме колонки свободных чисел), в которой не было бы хотя бы одного положительного элемента).

Так как найденное базисное решение не содержит отрицательных компонент, то оно является допустимым.

6 этап: проверка оптимальности.

Найденное базисное решение не является оптимальным, так как согласно признаку оптимальности (признак 4) в строке целевой функции не должно быть отрицательных элементов (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, согласно алгоритму симплекс-метода переходим к 8 этапу.

Так как найденное базисное решение допустимое, то поиск разрешающей колонки будем производить по следующей схеме: определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.3, таких колонок две: колонка «х1 » и колонка «х2 ». Из таких колонок выбирается та, которая содержит наименьший элемент в строке целевой функции. Она и будет разрешающей. Колонка «х2 » содержит наименьший элемент (–3) в сравнении с колонкой «х1

Для определения разрешающей строки находим положительные оценочные отношения свободных чисел к элементам разрешающей колонки, строка, которой соответствует наименьшее положительное оценочное отношение, принимается в качестве разрешенной.

Таблица 5.4

Исходная симплекс-таблица

В таблице 5.4 наименьшее положительное оценочное отношение соответствует строке «х5 », следовательно, она будет разрешающей.

Элемент, расположенный на пересечение разрешающей колонки и разрешающей строки, принимается в качестве разрешающего. В нашем примере – это элемент , который расположен на пересечении строки «х5 » и колонки «х2 ».

Разрешающий элемент показывает одну базисную и одну свободную переменные, которые необходимо поменять местами в симплекс-таблице, для перехода к новому «улучшенному» базисному решению. В данном случае это переменные х5 и х2 , в новой симплекс-таблице (таблице 5.5) их меняем местами.

9.1. Преобразование разрешающего элемента.

Разрешающий элемент таблицы 5.4 преобразовывается следующим образом:

Полученный результат вписываем в аналогичную клетку таблицы 5.5.

9.2. Преобразование разрешающей строки.

Элементы разрешающей строки таблицы 5.4 делим на разрешающий элемент данной симплекс-таблицы, результаты вписываются в аналогичные ячейки новой симплекс-таблицы (таблицы 5.5). Преобразования элементов разрешающей строки приведены в таблице 5.5.

9.3. Преобразование разрешающей колонки.

Элементы разрешающей колонки таблицы 5.4 делим на разрешающий элемент данной симплекс-таблицы, а результат берется с обратным знаком. Полученные результаты вписываются в аналогичные ячейки новой симплекс-таблицы (таблицы 5.5). Преобразования элементов разрешающей колонки приведены в таблице 5.5.

9.4. Преобразование остальных элементов симплекс-таблицы.

Преобразование остальных элементов симплекс-таблицы (т.е. элементов не расположенных в разрешающей строке и разрешающей колонке) осуществляется по правилу «прямоугольника».

К примеру, рассмотрим преобразование элемента, расположенного на пересечении строки «х3 » и колонки «», условно обозначим его «х3 ». В таблице 5.4 мысленно вычерчиваем прямоугольник, одна вершина которого располагается в клетке, значение которой преобразуем (т.е. в клетке «х3 »), а другая (диагональная вершина) – в клетке с разрешающим элементом. Две другие вершины (второй диагонали) определяются однозначно. Тогда преобразованное значение клетки «х3 » будет равно прежнему значению данной клетки минус дробь, в знаменателе которой разрешающий элемент (из таблицы 5.4), а в числителе произведение двух других неиспользованных вершин, т.е.:

«х3 »: .

Аналогично преобразуются значения других клеток:

«х3 х1 »: ;

«х4 »: ;

«х4 х1 »: ;

«х6 »: ;

«х6 х1 »: ;

«»: ;

«х1 »: .

В результате данных преобразований получили новую симплекс- таблицу (таблица 5.5).

II итерация:

1 этап: составление симплекс-таблицы.

Таблица 5.5

Симплекс-таблица II итерации

Оценочные

отношения

2 этап: определение базисного решения.

В результате проведенных симплекс-преобразований получили новое базисное решение (таблица 5.5):

Как видно, при данном базисном решении значение целевой функции =15, что больше чем при предыдущем базисном решении.

Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.5 не выявлена.

4 этап: проверка ограниченности целевой функции.

Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.5 не выявлена.

5 этап: проверка допустимости найденного базисного решения.

Найденное базисное решение в соответствии с признаком 4 не оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.5) содержится отрицательный элемент: –2 (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, переходим к 8 этапу.

8 этап: определение разрешающего элемента.

8.1. Определение разрешающей колонки.

Найденное базисное решение допустимое, определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.5, такой колонкой является только одна колонка: «х1 ». Следовательно, ее принимаем в качестве разрешенной.

8.2. Определение разрешающей строки.

Согласно полученным значениям положительных оценочных отношений в таблице 5.6, минимальным является отношение, соответствующее строке «х3 ». Следовательно, ее принимаем в качестве разрешенной.

Таблица 5.6

Симплекс-таблица II итерации

Оценочные

отношения

3/1=3 – min

9 этап: преобразование симплекс-таблицы.

Преобразования симплекс-таблицы (таблицы 5.6) выполняются аналогично, как и в предыдущей итерации. Результаты преобразований элементов симплекс-таблицы приведены в таблице 5.7.

III итерация

По результатам симплекс-преобразований предыдущей итерации составляем новую симплекс-таблицу:

Таблица 5.7

Симплекс-таблица III итерации

Оценочные

отношения

2 этап: определение базисного решения.

В результате проведенных симплекс-преобразований получили новое базисное решение (таблица 5.7):

3 этап: проверка совместности системы ограничений.

Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.7 не выявлена.

4 этап: проверка ограниченности целевой функции.

Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.7 не выявлена.

5 этап: проверка допустимости найденного базисного решения.

Найденное базисное решение в соответствии с признаком 3 допустимое, так как не содержит отрицательных компонент.

6 этап: проверка оптимальности найденного базисного решения.

Найденное базисное решение в соответствии с признаком 4 не оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.7) содержится отрицательный элемент: –3 (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, переходим к 8 этапу.

8 этап: определение разрешающего элемента.

8.1. Определение разрешающей колонки.

Найденное базисное решение допустимое, определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.7, такой колонкой является только одна колонка: «х5 ». Следовательно, ее принимаем в качестве разрешенной.

8.2. Определение разрешающей строки.

Согласно полученным значениям положительных оценочных отношений в таблице 5.8, минимальным является отношение, соответствующее строке «х4 ». Следовательно, ее принимаем в качестве разрешенной.

Таблица 5.8

Симплекс-таблица III итерации

Оценочные

отношения

5/5=1 – min

9 этап: преобразование симплекс-таблицы.

Преобразования симплекс-таблицы (таблицы 5.8) выполняются аналогично, как и в предыдущей итерации. Результаты преобразований элементов симплекс-таблицы приведены в таблице 5.9.

IV итерация

1 этап: построение новой симплекс-таблицы.

По результатам симплекс-преобразований предыдущей итерации составляем новую симплекс-таблицу:

Таблица 5.9

Симплекс-таблица IV итерации

Оценочные

отношения

–(–3/5)=3/5

–(1/5)=–1/5

–(9/5)=–9/5

–(–3/5)=3/5

2 этап: определение базисного решения.

В результате проведенных симплекс-преобразований получили новое базисное решение, согласно таблице 5.9 решение следующее:

3 этап: проверка совместности системы ограничений.

Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.9 не выявлена.

4 этап: проверка ограниченности целевой функции.

Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.9 не выявлена.

5 этап: проверка допустимости найденного базисного решения.

Найденное базисное решение в соответствии с признаком 3 допустимое, так как не содержит отрицательных компонент.

6 этап: проверка оптимальности найденного базисного решения.

Найденное базисное решение в соответствии с признаком 4 оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.9) нет отрицательных элементов (свободное число данной строки при рассмотрении данного признака не учитывается).

7 этап: проверка альтернативности решения.

Найденное решение является единственным, так как в строке целевой функции (таблица 5.9) нет нулевых элементов (свободное число данной строки при рассмотрении данного признака не учитывается).

Ответ: оптимальное значение целевой функции рассматриваемой задачи =24, которое достигается при.

Пример 5.2. Решить вышеприведенную задачу линейного программирования при условии, что целевая функция минимизируется:

Решение:

I итерация:

1 этап: формирование исходной симплекс-таблицы.

Исходная задача линейного программирования задана в стандартной форме. Приведем ее к каноническому виду путем введения в каждое из ограничений-неравенств дополнительной неотрицательной переменной, т.е.

В полученной системе уравнений примем в качестве разрешенных (базисных) переменные х3 , х4 , х5 , х6 , тогда свободными переменными будут х1 ,х2 . Выразим базисные переменные через свободные.

Для начала работы требуется, чтобы заданная система ограничений выражалась равенствами, причём в этой системе ограничений должны быть выделены базисные неизвестные. Решение задачи симплекс-методом распадается на ряд шагов. На каждом шаге от данного базиса Б переходят к другому, новому базису Б 1 с таим расчётом, чтобы значение функции Z уменьшилось, т.е. . Для перехода к новому базису из старого базиса удаляется одна из переменных и вместо нее вводится другая из числа свободных. После конечного числа шагов находится некоторый базис Б (k) , для которого есть искомый минимум для линейной функцииZ, а соответствующее базисное решение является оптимальным либо выясняется, что задача не имеет решения.

4.1 Алгоритм симплекс-метода.

Рассмотрю систему ограничений и линейную форму вида:

(4.1)

Используя метод Жордана-Гауса, приведём записанную систему к виду, где выделены базисные переменные.

Введём условные обозначения:

–базисные переменные;

–свободные переменные.

(4.4)

По последней системе ограничений построим табл. 4.1.

Таблица 4.1

Симплекс-таблица

Свободные

Базисные

неизвестные

Свободный

Данная таблица называется симплекс-таблицей. Все дальнейшие преобразования связаны с изменением содержания этой таблицы.

Алгоритм симплекс-метода сводится к следующему.

1. В последней строке симплекс-таблицы находится наименьший положительный элемент, не считая свободного члена. Столбец, соответствующий этому элементу, считается разрешающим.

2. Вычисляют отношение свободных членов к положительным элементам разрешающего столбца (симплекс-отношение). Находят наименьшее из этих симплекс-отношений, оно соответствует разрешающей строке.

3. На пересечении разрешающих строки и столбца находится разрешающий элемент.

4. Если имеется несколько одинаковых по величине симплекс-отношений, то выбирают любое из них, то выбирают любое из них. То же самое относится к положительным элементам последней строки симплекс-таблицы.

5. После нахождения разрешающего элемента переходят к следующей таблице. Неизвестные переменные, соответствующие разрешающей стоке и столбцу, меняют местами. При этом базисная переменная становится свободной переменной, и наоборот. Симплекс таблица преобразована следующим образом

Таблица 4.2

Симплекс-таблица

Свободные

Базисные

неизвестные

Свободный

6. Элемент табл. 4.2 соответствующий разрешающему элементу табл. 4.1, равен обратной величине разрешающего элемента.

7. Элементы строки табл. 4.2, соответствующие элементам разрешающей стоки табл. 4.1, получаются путём деления соответствующих элементов табл. 4.1 на разрешающий элемент.

8. Элементы столбца табл. 4.2, соответствующие элементам разрешающего столбца табл. 4.1, получаются путём деления соответствующих элементов табл. 4.1 на разрешающий элемент и берутся с противоположным знаком.

9. Остальные элементы вычисляются по правилу прямоугольника: мысленно вычерчиваем прямоугольник в табл.4.2, одна вершина которого совпадает с разрешающим элементом, а другая – с элементом, образ которого мы ищем; остальные две вершины определяются однозначно. Тогда искомый элемент табл. 4.2 будет равен соответствующему элементу табл. 4.1 минус дробь в знаменателе который стоит разрешающий элемент, а в числителе произведение элементов из двух неиспользованных вершин прямоугольника.

10. Как только получится таблица, в которой в последней стоке все элементы отрицательны, считается, что минимум найден. Минимальное значение функции равно свободному члену в строке целевой функции, а оптимальное решение определяется свободными членами при базисных переменных. Все свободные переменные в этом случае равны нулю.

11. Если в разрешающем столбце все элементы отрицательны, то задача не имеет решений (минимум не достигается).

5. Методы нахождения опорного решения задачи линейного программирования.

5.1. Метод искусственного базиса.

Сформулированный выше алгоритм Симплекс-метода можно применять лишь в том случае, если выделено первое допустимое решение, т.е. исходная задача линейного программирования приведена к виду

При этом , тогда, положив свободные неизвестныеравными нулю, получаем опорное решение.

Рассмотрю метод нахождения опорного решения, основанный на введении искусственных переменных. Для этого запишем задачу линейного программирования в общем виде. Будем рассматривать задачу с числом неизвестных иограничениями:

(5.1)

Перепишем систему (5.1) в другом виде. Для этого введём искусственные переменные так, чтобы был выделен базис. Тогда система примет вид

(5.2)

Системы (5.1) и (5.2) будут эквивалентны в том случае, если все , длябудут равны 0. Кроме того, считаю, что вседля. В противном случае соответствующие ограничения из системы (5.1) умножим на – 1. Для того чтобыбыли равны 0, мы должны преобразовать задачу таким образом, чтобы все искусственные переменныеперешли в свободные неизвестные.

В этом случае система (5.2) после преобразования примет вид:

(5.3)

От системы (5.2) к системе (5.3) всегда можно перейти шагами симплекс-метода. При таком переходе в качестве линейной формы рассматривают функцию

равную сумме искусственных переменных. Переход заканчивают, когда и все искусственные переменныепереведены в свободные неизвестные.

Анализ вариантов решений

1. Если , а всепереведены в свободные переменные, то задача не имеет положительного решения.

2. Если , а частьосталась в базисе, то для перевода их в свободные необходимо применять специальные приёмы.

В симплекс-таблице, соответствующей системе (5.3), после того как , а все- свободные, вычёркивают строку дляи столбцы дляи решают задачу для исходной линейной формы.

5.2. Второй алгоритм отыскания опорного плана.

Пусть задача линейного программирования записана в каноническом виде:

(5.5)

Построим первую таблицу Жордана-Гаусса для задач (5.5) и (5.6). Для единообразия вычислительной процедуры к исходной таблице приписываем строку целевой функции:

После приведения системы ограничений к единичному базису целевая функция, как и базисные переменные, будет выражена через свободные переменные. Аналогичным приёмом я пользовался, когда решали задачи графическим методом с числом переменных более двух.

Алгоритм метода

1. Запишем задачу в форме (5.7), при этом все элементы столбца свободных членов должны быть неотрицательны,. Уравнения системы (5.5), в которых свободные члены отрицательны, предварительно нужно умножить на – 1.

2. Таблицу (5.7) преобразуем шагами Жордана-Гаусса исключений. При этом на каждом шаге разрешающим может быть выбран любой столбец, содержащий хотя бы один положительный элемент. Строка целевой функции на выбор разрешающих столбцов влияние не оказывает.

3. Разрешающая строка определяется по наименьшему из отношений свободных членов к элементам разрешающего столбца.

4. В процессе преобразований вычёркиваем строки, состоящие из одних нулей.

5. Если в процессе преобразований встречается строка, все элементы которой нули, а свободный член отличен от нуля, то задача не имеет решения. Если встретится строка, в которой, кроме свободного члена, других положительных элементов нет, то говорят, что задача не имеет положительных решений.

Пояснение. В п.1.1 алгоритма предполагается, что все элементы столбца свободных членов неотрицательны. Это требование необязательно. В случае когда в столбце свободных членов встречаются отрицательные числа, будем пользоваться теоремой.

Теорема. Если разрешающий элемент выбирать по наименьшему положительному симплекс-отношению, то после шага Жордана-Гаусса свободный член в разрешающей строке становится положительным, а остальные члены сохраняют свой знак.

Выбор разрешающего элемента производят иначе, а именно.

1. Просматривают строку, соответствующую какому-либо отрицательному свободному члену. Выбирают в ней какой-либо отрицательный элемент – соответствующий этому элементу столбец будет разрешающим.

2. Выбор разрешающего элемента производится по минимальному положительному симплекс-отношению. Если задача разрешима, то через конечное число шагов получают первое допустимое решение и можно применять симплекс-метод.

В некоторых случаях найденное таким образом первое допустимое решение является также и оптимальным решением.

Если в условии задачи есть ограничения со знаком ≥, то их можно привести к виду ∑a ji b j , умножив обе части неравенства на -1. Введем m дополнительных переменных x n+j ≥0(j =1,m ) и преобразуем ограничения к виду равенств

(2)

Предположим, что все исходные переменные задачи x 1 , x 2 ,..., x n – небазисные. Тогда дополнительные переменные будут базисными, и частное решение системы ограничений имеет вид

x 1 = x 2 = ... = x n = 0, x n+ j = b j , j =1,m . (3)

Так как при этом значение функции цели F 0 = 0 , можно представить F(x) следующим образом:

F(x)=∑c i x i +F 0 =0 (4)

Начальная симплекс-таблица (симплекс-табл. 1) составляется на основании уравнений (2) и (4). Если перед дополнительными переменными x n+j стоит знак «+», как в (2), то все коэффициенты перед переменными x i и свободный член b j заносятся в симплекс-таблицу без изменения. Коэффициенты функции цели при ее максимизации заносятся в нижнюю строку симплекс-таблицы с противоположными знаками. Свободные члены в симплекс-таблице определяют решение задачи.

Алгоритм решения задачи следующий:

1-й шаг. Просматриваются элементы столбца свободных членов. Если все они положительные, то допустимое базисное решение найдено и следует перейти к шагу 5 алгоритма, соответствующему нахождению оптимального решения. Если в начальной симплекс-таблице есть отрицательные свободные члены, то решение не является допустимым и следует перейти к шагу 2.

2-й шаг. Для нахождения допустимого решения осуществляется , при этом нужно решать, какую из небазисных переменных включить в базис и какую переменную вывести из базиса.

Таблица 1.

x n
базисные переменные Свободные члены в ограничениях Небазисные переменные
x 1 x 2 ... x l ...
x n+1 b 1 a 11 a 12 ... a 1l ... a 1n
x n+2 b 2 a 21 a 22 ... a 2l ... a 2n
. . . . . . . .
. . . . . . . .
. . . . . . . .
x n+r b2 a r1 a r2 ... a rl ... a rn
. . . . . . . .
. . . . . . . .
. . . . . . . .
x n+m b m a m1 a m2 ... a ml ... a mn
F(x) max F 0 -c 1 -c 2 ... -c 1 ... -c n

Для этого выбирают любой из отрицательных элементов столбца свободных членов (пусть это будет b 2 ведущим, или разрешающим. Если в строке с отрицательным свободным членом нет отрицательных элементов, то система ограничений несовместна и задача не имеет решения.

Одновременно из БП исключается та переменная, которая первой изменит знак при увеличении выбранной НП x l . Это будет x n+r , индекс r которой определяется из условия

т.е. та переменная, которой соответствует наименьшее отношение свободного члена к элементу выбранного ведущего столбца. Это отношение называется симплексным отношением. Следует рассматривать только положительные симплексные отношения.

Строка, соответствующая переменной x n+r , называется ведущей, или разрешающей. Элемент симплекс-таблицы a rl , стоящий на пересечении ведущей строки и ведущего столбца, называется ведущим, или разрешающим элементом. Нахождением ведущего элемента заканчивается работа с каждой очередной симплекс-таблицей.

3-й шаг. Рассчитывается новая симплекс-таблица, элементы которой пересчитываются из элементов симплекс-таблицы предыдущего шага и помечаются штрихом, т.е. b" j , a" ji , c" i , F" 0 . Пересчет элементов производится по следующим формулам:

Сначала в новой симплекс-таблице заполнятся строка и столбец, которые в предыдущей симплекс-таблице были ведущими. Выражение (5) означает, что элемент a" rl на месте ведущего равен обратной величине элемента предыдущей симплекс-таблицы. Элементы строки a ri делятся на ведущий элемент, а элементы столбца a jl также делятся на ведущий элемент, но берутся с противоположным знаком. Элементы b" r и c" l рассчитываются по тому же принципу.

Остальные формулы легко записать с помощью .

Прямоугольник строится по старой симплекс-таблице таким образом, что одну из его диагоналей образует пересчитываемый (a ji) и ведущий (a rl) элементы (рис. 1). Вторая диагональ определяется однозначно. Для нахождения нового элемента a" ji из элемента a ji вычитается (на это указывает знак « – » у клетки) произведение элементов противоположной диагонали, деленное на ведущий элемент. Аналогично пересчитываются элементы b" j , (j≠r) и c" i , (i≠l).

4-й шаг. Анализ новой симплекс-таблицы начинается с 1-го шага алгоритма. Действие продолжается, пока не будет найдено допустимое базисное решение, т.е. все элементы столбца свободных членов должны быть положительными.

5-й шаг. Считаем, что допустимое базисное решение найдено. Просматриваем коэффициенты строки функции цели F(x) . Признаком оптимальности симплекс-таблицы является неотрицательность коэффициентов при небазисных переменных в F-строке.

Рис. 1. Правило прямоугольника

Если среди коэффициентов F-строки имеются отрицательные (за исключением свободного члена), то нужно переходить к другому базисному решению. При максимизации функции цели в базис включается та из небазисных переменных (например x l), столбцу которой соответствует максимальное абсолютное значение отрицательного коэффициента c l в нижней строке симплекс-таблицы. Это позволяет выбрать ту переменную, увеличение которой приводит к улучшению функции цели. Столбец, соответствующий переменной x l , называется ведущим. Одновременно из базиса исключается та переменная x n+r , индекс r которой определяется минимальным симплексным отношением:

Строка, соответствующая x n+r , называется ведущей , а элемент симплекс-таблицы a rl , стоящий на пересечении ведущей строки и ведущего столбца, называется ведущим элементом.

6-й шаг. по правилам, изложенным на 3-м шаге. Процедура продолжается до тех пор, пока не будет найдено оптимальное решение или сделан вывод, что оно не существует.

Если в процессе оптимизации решения в ведущем столбце все элементы неположительные, то ведущую строку выбрать невозможно. В этом случае функция в области допустимых решений задачи не ограничена сверху и F max ->&∞.

Если же на очередном шаге поиска экстремума одна из базисных переменных становится равной нулю, то соответствующее базисное решение называется вырожденным. При этом возникает так называемое зацикливание, характеризующееся тем, что с определенной частотой начинает повторяться одинаковая комбинация БП (значение функции F при этом сохраняется) и невозможно перейти к новому допустимому базисному решению. Зацикливание является одним из основных недостатков симплекс-метода, но встречается сравнительно редко. На практике в таких случаях обычно отказываются от ввода в базис той переменной, столбцу которой соответствует максимальное абсолютное значение отрицательного коэффициента в функции цели, и производят случайный выбор нового базисного решения.

Пример 1. Решить задачу

max{F(x) = -2x 1 + 5x 2 | 2x 1 + x 2 ≤7; x 1 + 4x 2 ≥8; x 2 ≤4; x 1,2 ≥0}

Симплексным методом и дать геометрическую интерпретацию процесса решения.

Графическая интерпретация решения задачи представлена на рис. 2. Максимальное значение функции цели достигается в вершине ОДЗП с координатами . Решим задачу с помощью симплекс-таблиц. Умножим второе ограничение на (-1) и введём дополнительные переменные, чтобы неравенства привести к виду равенств, тогда

Исходные переменные x 1 и x 2 принимаем в качестве небазисных, а дополнительные x 3 , x 4 и x 5 считаем базисными и составляем симплекс-таблицу(симплекс-табл. 2). Решение, соответствующее симплекс-табл. 2, не является допустимым; ведущий элемент обведен контуром и выбран в соответствии с шагом 2 приведенного ранее алгоритма. Следующая симплекс-табл. 3 определяет допустимое базисное решение, ему соответствует вершина ОДЗП на рис. 2 Ведущий элемент обведен контуром и выбран в соответствии с 5-м шагом алгоритма решения задачи. Табл. 4 соответствует оптимальному решению задачи, следовательно: x 1 = x 5 = 0; x 2 = 4; x 3 = 3; x 4 = 8; F max = 20.

Рис. 2. Графическое решение задачи



Загрузка...