sonyps4.ru

Распространение дециметровых волн. Дециметровая антенна

Распространение сантиметровых, дециметровых и метровых радиоволн

Радиоволны длиной короче 10 м называются ультракороткими. Эти волны охватывают очень широкий диапазон частот. Ширина диапазона частот только сантиметровых волна составляет 27000 МГц, что в тысячу раз превышает ширину диапазона частот декаметровых волн (см. табл. 1.1). Поэтому на УКВ возможна передача намного больших потоков информации, чем на более длинных волнах. Только на УКВ возможно телевидение и высококачественное радиовещание с использованием частотной модуляции (ЧМ).

Земная волна на УКВ обеспечивает связь практически только в пределах прямой видимости (рис.1.7). За ее пределами в естественных условиях УКВ могут устойчиво распространяться только за счет рассеяния в ионосфере и в тропосфере. Однако для обеспечения связи за счет рассеяния требуются очень мощные радиопередатчики с сложные антенные сооружения.

Для увеличения расстояния прямой видимости антенны радиотелевизионных передающих станций и станций звукового ЧМ вещания устанавливают на высоких башнях. Для передачи радиосигналов на большие расстояния в диапазоне УКВ используют наземные радиорелейные линии и ретрансляторы, расположенные на искусственных спутниках Земли.

Предельное расстояние прямой видимости между антеннами получается тогда, когда луч, соединяющий антенны, касается земной поверхности. Эмпирически установлено, что в километрах определяется выражением

где и – соответственно высоты передающей и приемной антенн, м. Напряженность поля при связи в пределах прямой видимости можно определить по формуле акад. Б.А. Введенского:

,

где – действующее (эффективное) значение напряженности поля, мВ/м; - мощность радиопередатчика, кВт; – расстояние между приемной и передающей антеннами, км ( ; – длина волны электромагнитных колебаний, м; – коэффициент направленного действия антенны.

Рис. 1.7. Распространение радиоволн в пределах прямой видимости

Рассмотрим влияние тропосферы на распространение УКВ. Коэффициент преломления воздуха n очень мало отличается от единицы. У поверхности Земли в среднем = 1,003. На практике преломляющие свойства воздуха оценивают индексом преломления

пользоваться которым удобнее, чем . Индекс преломления зависит от влажности, давления и температуры воздуха: с увеличением давления и влажности увеличивается, а при повышении температуры = уменьшается. Параметры воздуха зависят от высоты и от метеорологических условий. Зависимость от высоты оценивают градиентом индекса преломления

Зависимость коэффициента преломления от высоты приводит к искривлению траектории радиоволн в тропосфере, которое называется тропосферной рефракцией. Такое искривление характеризуют радиусом кривизны луча

Радиус привязки положителен, так как . При этом фазовая скорость волны с высотой возрастает, верхняя граница фронта распространяется быстрее нижней и луч искривляется в сторону поверхности Земли. Такая рефракция называется положительной . Тропосферная рефракция изменяет расстояние прямой видимости, оно несколько увеличивается. С учетом рефракции значение постоянного коэффициента в формуле (1.2) должно быть увеличено до значения, равного 4,52.

Если при положительной рефракции радиус кривизны траектории ( - радиус Земли), то возникает критическая рефракция (рис. 1.8, а). При наступает сверхрефракция (рис.1.8,б). В этих случаях электромагнитная волна может распространяться далеко за пределы прямой видимости. Сверхрефракция возникает при выполнении условия 1/м. При этом индекс преломления должен очень быстро уменьшаться с высотой, что бывает в том случае, когда температура воздуха с высотой не падает, как обычно, а возрастает. Такие условия называют температурной инверсией. Область тропосферы, в которой возникает свехрефракция, называют тропосферным волноводом. Наиболее часто тропосферные волноводы возникают в приморских районах, когда существует большая разница температур воздуха над сушей и над морем. В этих случаях ветер может переместить теплый воздух, который расположится над холодным, и возникнет температурная инверсия. Поскольку тропосферные волноводы возникают нерегулярно, их нельзя использовать для построения радиолиний. Возможность возникновения тропосферных волноводов необходимо учитывать при распределении частот на радиолиниях, чтобы избежать взаимных помех.


Рис. 1.8. Траектории распространения радиоволн в тропосфере:

а - при критической рефракции; б - при сверхрефракции

Другим механизмом сверхдальнего распространения УКВ является тропосферное рассеяние. Тропосферные неоднородности, вызывающие рассеяние, представляют собой области, в которых давление, влажность и температура воздуха отличаются от средних значений, наблюдаемых в окружающей среде. Примером неоднородностей являются облака. Неоднородности возникают и при отсутствии облачности за счет завихрений, образующихся при перемещении воздушных масс. Эти вихри присутствуют при любых метеорологических условиях. Наиболее интенсивно неоднородности образуются на высотах 1…2 км. Каждая неоднородность отличается своей диэлектрической проницаемостью от окружающей среды. Это отличие невелико (не более 20%), поэтому радиоволна, падающая на неоднородность, в основном, проходит сквозь нее. Однако часть энергии радиоволны при этом рассеивается в разные стороны. Зеркальное отражение неоднородность не вызывает, так как не имеет четкой границы.

Поле в точке приема образуется за счет сложения (интерференции) множества волн, рассеянных отдельными неоднородностями в некотором объеме тропосферы. Сдвиги фаз между интерферирующими волнами постоянно хаотически изменяются. В результате значение суммарной напряженности изменяется по случайному закону. Эти флуктуации поля называются интерферирующими замираниями. Сдвиги фаз между интерферирующими волнами зависят от частоты. При широком спектре частот сигнала сдвиги фаз для отдельных составляющих спектра оказываются различными: одни составляющие в данный момент могут иметь максимальный уровень, другие - минимальный. Если отдельные участки спектра замирают неодновременно, замирания называют селективными. Селективные замирания не позволяют передавать по тропосферным линиям широкополосные сигналы, например, телевизионные.

Замирания сигнала при тропосферном рассеянии можно разделить на быстрые и медленные Интерференционные замирания являются быстрыми. Период замираний составляем секунды и их десятые доли. Чем короче длина волны, тем сильнее изменяется сдвиг фаз между интерферирующими волнами при движении рассеивающих неоднородностей, тем меньше период замираний. Медленные замирания с периодом в несколько часов связаны с изменениями метеорологических условий, от которых зависят параметры неоднородностей и условия рефракции радиоволн.



Для повышения устойчивости связи на линиях тропосферного рассеяния применяют разнесенный прием. В этом случае формируют несколько сигналов, несущих одно и то же сообщение, но замирающих независимо друг от друга. Используют разнесение по частоте и пространственное разнесение. При этом увеличивают коэффициент направленного действия и площадь антенн. На тропосферных радиолиниях обычно применяют зеркальные антенны, имеющие площадь 400…900 .

Большое ослабление поля при связи за счет тропосферного рассеяния заставляет принять радиопередатчики большой мощности – до нескольких десятков киловатт (на УКВ радиорелейных линиях прямой видимости мощность радиопередатчиков обычно не превышает 10 ВТ). Расстояние между соседними станциями тропосферного рассеяния составляет 300…600 км. Применение радиолиний тропосферного рассеяния целесообразно в малонаселенных районах, где не имеет смысла часто располагать ретрансляционные станции или прокладывать кабель.

Сверхдальнее распространение метровых волн возможно и за счет влияния ионосферы. Это объясняется возникновением на высоте регулярного слоя E спорадического слоя E s с повышенной электронной концентрацией, обусловленного сгоранием метеоров на высотах 80... 120 км. Протяженные области с повышенной электронной концентрацией, способные рассеивать метровые волны, существуют в течение долей секунды, а иногда и в течение минуты. Регулярную связь путем отражений от E s слоя организовать невозможно.

Регулярное сверхдальнее распространение метровых волн происходит за счет рассеяния на неоднородностях электронной кон­центрации, существующих в слое D и в нижних областях слоя Е . Механизм этого распространения подобен тому, который наблюдается при рассеянии в тропосфере. Большая высота области, в которой происходит ионосферное рассеяние, обеспечивает связь одним скачком на расстояниях до 2000 км. Регулярную связь путем отражений от E s слоя организовать невозможно.

Сверхдальнее распространение метровых волн происходит также за счет отражения от ионизированных метеорных следов. В атмосферу Земли ежегодно с космическими скоростями вторгаются десятки миллиардов метеоров, образующих ионизированные столбы воздуха - метеорные следы. Некоторые из этих следов вызывают зеркальное отражение метровых волн, другие обеспечивают их интенсивное рассеяние. Вследствие движения ионизированного газа метеорные следы обычно расплываются в течение нескольких секунд. В среднем сильное отражение радиоволн от метеорного следа длится 0,2...0,4 с и повторяется несколько раз в минуту. Из-за вращения Земли вокруг своей оси условия попадания метеоров в атмосферу зависят от времени суток. Максимальное их число наблюдается утром, минимальное - вечером.

Метеорная связь прерывиста, так как уровень сигнала, достаточный для передачи информации, существует только во время появления на трассе метеорного следа. Для передачи информации по метеорной линии связи информацию на передающем конце накапливают в промежутках между метеорными вспышками, а во время вспышки быстро передают по радиолинии. В среднем передается несколько килобит в секунду при мощности передатчика около 1 кВт. Дальность метеорной связи составляет около 2000 км. Организация связи за счет ионосферного рассеяния и отражения от метеоров целесообразна в полярных районах, где ионосферные бури часто нарушают распространение гектометровых волн, а прокладка проводных линий и организация тропосферной связи из-за малой плотности населения экономически нецелесообразны.

Содержание:

Электромагнитные волны образуются при изменении электрического поля. А оно меняется, когда движутся электрические заряды. Чтобы электромагнитное поле образовывалось постоянно, и изменение зарядов должно происходить непрерывно. Самое распространенное движение зарядов - это движение по кругу. И в этом случае электромагнитное поле становится периодическим, синусоидальным, а вокруг оно будет распространяться в виде волн, как рябь на водной поверхности.

То, что болтается в серединке, обычно называют осциллятором, это если взять небольшой материальный предмет и придать ему колебательное движение на водной поверхности. Тогда и получится примерно такая картина волн.

Даже если бросить в воду камень, то есть выполнить одиночное воздействие, все равно вокруг разойдется не одна волна, а целый пакет волн. Отсюда следует, что сама природа волн именно колебательная, и так волны и расходятся вокруг - затухая, но не меняя своей колебательной натуры.

Свойства волн

При встрече с волнами объектов нашего материального мира наблюдаются сразу несколько явлений:

  • отражение волн от препятствий;
  • прохождение сквозь препятствие;
  • поглощение волн средой прохождения;
  • огибание волнами препятствий.

Последнее явление относится уже к взаимодействию волн друг с другом. Когда волны встречают другие волны, то они накладываются друг на друга и складываются и вычитаются. Это называется интерференцией волн.

Но волна может интерферировать не только с другой волной - волной от другого источника - она может то же самое делать и с самой собой, когда какое-то препятствие разделяет одну волну на два потока. При прохождении препятствия волна снова объединяется и постепенно «забывает» о препятствии, когда полосы усилений и ослаблений за препятствием гаснут и сходят на нет.

Все эти явления присущи всем волнам, и механическим, таким как на поверхности воды или как акустические волны в воздухе, и электромагнитным, пронизывающим и воздушное пространство, и безвоздушное.

Электромагнитные волны и мы

К электромагнитным волновым явлениям мы привыкли относить совсем разные для нас и нашего восприятия феномены. Своими глазами мы ощущаем видимый свет, кожей - тепло от инфракрасного излучения, наша кожа почти без ощущений может загореть от ультрафиолета, а рентгеновские лучи нами совсем не ощущаются, но именно их работу мы видим на рентгеновском снимке нашего тела, который нам могут сделать в больнице. Радиоволны знаем по работе множества самых разных технических средств.

Различие между ними очень простое - это все разные диапазоны длин волн, или диапазоны частот излучателей, которые изменяются в очень широких пределах. Сами частоты порождаются физическими размерами излучающих тел и скоростями электрических процессов, в них протекающими. А длины получающихся волн при распространении взаимодействуют с встречающимися им объектами тоже по принципу близости длин волн физическим размерам препятствий. Разумеется, не только этим. Еще влияет материал, с которым встречается волна, - материал среды и препятствий. Так как волны электромагнитные, то играют роль именно электрические свойства. Более-менее электрически инертные среды - диэлектрики - с электромагнитными волнами взаимодействуют слабо, остальные среды, проводящие электричество, - сильно. Отсюда диэлектрики часто бывают прозрачными, а металлы все непрозрачны и сильно отражают свет, отчего и блестят металлическим блеском.

Они активно и отражают, и поглощают волны, а также могут внутри себя создавать вторичные электрические явления. На этом основаны вся наша наука о радиоволнах, а также техника использования радио, телевидения, связи и всего такого прочего.

Радиоволны

Достаточно представить, что оба процесса симметричны: когда волны излучаются и когда они улавливаются и превращаются в электрический сигнал. Чтобы волны излучать, используется источник, а чтобы принимать - приемник. И в обоих случаях используется антенна материальная, геометрическая часть радиоприбора. Она при излучении придает волне определенные пространственные свойства, а в случае приемника - «снимает» из пространства электромагнитную волну, формируя сигнал «уверенного приема», то есть такой, чтобы его можно было отделить от прочего радиофона. Отделить и усилить.

При этом размеры антенн или их деталей как раз и получаются зависимыми от длин принимаемых волн. Часто антенны выглядят как некоторые повторяющиеся в пространстве композиции из проводников. Это делается для резонансного взаимодействия в них волн с возникающим переменным электрическим током, что делается для усиления радиосигнала именно конкретных длин волны.
Другой характеристикой антенны является направленность. Она или излучает, или принимает сигналы преимущественно с некоторого направления, что тоже способствует выделению именно этого сигнала от конкретного излучающего устройства.

Диапазоны электромагнитных волн

Вообще полезно представлять весь спектр диапазонов электромагнитных волн и уметь сопоставлять волны с объектами нашего материального мира.

Диапазоны электро-

магнитных излучений

Радиоволны

Инфракрасное излучение

Видимое излучение

Ультрафиолетовое

Рентгеновские

Длины волн, λ

более 10 км - 1 мм

1 мм - 780 нм

380нм - 10нм

10 нм - 5 пм

менее 5 пм

Частоты, ν

менее 30 кГц - 300 ГГц

300 ГГц - 429 ТГц

429 ТГц - 750 ТГц

3·10 14 Гц - 3·10 16 Гц

3·10 16 Гц - 6·10 19 Гц

более 6·10 19 Гц

Источники

Атмосфера и магнитосфера. Антропогенное радиоизлучение.

Тепловые и электрические явления молекул и атомов.

Бомбардировка атомов электронами (электронные оболочки).

Бомбардировка атомов частицами.

Ядерные реакции (распад и синтез).

Радиодиапазон делится на несколько других по длинам волн.

Радиоволны

Сверхдлинные

Короткие

Ультракороткие

более 10 км

10 км - 1 км

менее 30 кГц

30 кГц - 300 кГц

300 кГц - 3 МГц

3 МГц - 30 МГц

30 МГц - 300 ГГц

Связь в средах:

под водой, под землей;

геофизика;

геохронология

Радиосвязь, радиовещание, радионавигация

Радиосвязь земная и ионосферная, радиовещание

Радиовещание и радиосвязь ионосферная,
загоризонтная радиолокация, рации

Радиовещание, радиосвязь прямая и тропосферная, рации, мобильники, спутниковые, телевидение, волновая терапия, микроволновые печи, спутниковая навигация

Масштаб: планетарный

Географический

Популяционный

Архитектурный

Технические объекты; биологические объекты

Как видим, диапазоны радиоволн как раз и охватывают всю нашу обыденность от звездочек дальних до самого человека и его органов. А также всех предметов нашего быта.

Например, желаете горячий бутерброд? - одну минуточку в микроволновке.

А вот УКВ еще подразделяются на:

Ультракороткие волны

Децимиллиметровые

Миллиметровые

Сантиметровые

Дециметровые

Метровые

0,1 мм – 1 мм

1 мм – 10 мм

10 см – 1 м

3000–300 ГГц

3 ГГц – 300 МГц

Каждый из этих поддиапазонов по-своему интересен, но нам нужны именно дециметровые волны.

Дециметровые волны

Дециметровые волны, в отличие от всех остальных, работают только по прямой видимости. Они не отражаются ионосферой как короткие волны - ионосфера для них прозрачна; они не огибают препятствия, как длинные волны. Препятствия, которые они могут обойти, пользуясь своей дифракцией, сопоставимы с нашими обычными объектами, то есть человека или табуретку они обойдут, а вот дом - уже тяжко. Зато от больших для них объектов они отражаются и могут зайти, например, через окно, отразившись от соседнего дома. То есть, ведут себя почти как люди с хулиганскими наклонностями. Чем нам близки и по-своему дороги.

Самостоятельное изготовление

Для приема волн, чья длина вполне соизмерима с предметами нашего окружения, и антенна получится такой, что впишется в наше окружение. Следовательно, в этом плане возможно изготовление, не просто, несомненно, полезного предмета, но даже и детали, говорящей многое о характере и вкусах хозяина. И которую часто можно называть уже деталью архитектурной, а иногда даже и фэн-шуйной.

Антенна ДЦМ укрепляется на вертикальной обычно деревянной рейке-основании и состоит из нескольких металлических частей.

В направлении предполагаемого прохождения волн антенна дециметрового диапазона протягивает металлическую несущую пластину, которая называется траверса.

Поперек нее, то есть параллельно фронту волны, на ней устанавливается несколько пластин-резонаторов. Один обычно активный, от него отводят провод антенны, ставится посредине. Два других ставят один перед ним (в направлении излучателя), другой после него. Который перед ним, называется директором, его роль - создать препятствие волне, заставив ее его огибать, заставляя волну создавать дифракционную картину, то есть волне входить в резонанс самой с собой (см. рисунок вначале).

Та пластина, которая ставится после активного резонатора, называется рефлектором, то есть отражателем. Она отражает волну назад, на активную пластину, также усиливая сигнал. Понятно, что такие воздействия на волну возможны при четком соблюдении размеров пластин, так, чтобы они соответствовали длинам принимаемых волн. Длины пластин делают в размер полуволны - 0,5 λ. Активный элемент, равный полуволне, рефлектор чуть больше, директор чуть меньше. Расстояние между резонаторами - четверть длины волны, 0,25 λ .

Часто можно видеть не три пластины, а множество. Это говорит о том, что и волны можно принимать не одной длины, а нескольких длин. Такие антенны называют «многоволновыми» или даже «всеволновыми». Но мы-то знаем, что волны имеются в виду только нашего, дециметрового диапазона.

Такие антенны можно конструировать и устанавливать в собственное удовольствие, пользуясь тем, что невидимые нами радиоволны создают в пространстве весьма замысловатые картины отражений, дифракций и интерференций. И если поместить пластины-вибраторы в точки максимумов волн, то можно добиться хорошего резонанса, который заметно усилит сигнал. По такому принципу строится логопериодическая антенна, в которой резонаторы с двух сторон - справа и слева - попеременно включены в две шины в шахматном порядке.

Две шины кабеля подключены к двум рядам резонаторов в шахматном порядке

Самодельный вариант

Из подручных материалов вполне получается комнатная антенна - ДМВ-антенна т2. Например, из двух компьютерных дискет, если вынуть из конверта собственно магнитные поверхности дисков, легко получится антенна чебурашка - этакое глазастое создание, если иметь чуточку воображения.

Возможен и наружный вариант чебурашки, тогда стоит подумать о более прочном креплении всех деталей и кабеля.

Нужна, кроме дискет, еще палка-стойка, кусок кабеля и несколько гвоздиков или шурупов.

Для мастеров-радиолюбителей большой интерес представляют ТА дециметрового диапазона, которые позволяют значительно расширить возможности лампово-полупроводниковых моделей телевизоров. В данной главе предлагаются для повторения только три типа ТА ДМВ, так как автор подготовил к изданию новую книгу, полностью посвященную ТЛ для приема ДМВ и спутникового телевидения.

В соответствии с принятой классификацией прием телепередач на 21-61-м каналах обеспечивается в диапазоне ДМВ на частотах свыше 300 МГц. В большинстве случаев владельцы телевизоров, оборудованных соответствующими селекторами каналов, применяют комнатные индивидуальные малогабаритные антенны. Но на садово-огородных участках эти антенны не всегда дают положительный результат. Поэтому в большинстве случаев приходится использовать самодельные дециметровые антенны, которые рассматриваются в настоящей главе.

Каждый цветной телеприемник имеет три антенных ввода: два для подключения антенны метровых волн (MB), один из которых обеспечивает ослабление сигнала в 10 раз, и специальный ввод для подключения антенны ДМВ. Все антенные вводы рассчитаны на подключение коаксиального радиочастотного кабеля с волновым сопротивлением 75 Ом.

Подключение антенны к дециметровому вводу специальной конструкции должно обеспечивать такое же высокое качество основных технических характеристик телевизора, как и при приеме в диапазоне MB.

Важнейшей характеристикой, определяющей качество изображения и чистоты звукового сопровождения, является чувствительность. В диапазоне MB чувствительность канала изображения должна быть не хуже 100 мкВ,

а в диапазоне ДМВ - не хуже 500 мкВ. Для современных телевизоров чувствительность звукового сопровождения в диапазоне MB должна быть не хуже 50 мкВ. а в диапазоне ДМВ - не хуже 200 мкВ.

Не менее важным электрическим параметром является избирательность, которая характеризуется способностью ослаблять сигналы помех вне рабочей полосы частот. Избирательность при настройке от несущей частоты изображения принимаемого канала на 1,5 МГц должна быть не хуже 40 дБ (100 раз), на 3,5 МГц - 40 дБ, на +6,5 МГц - 36 дБ, на +8 МГц - 40 дБ,

От качества изготовления антенн зависят также такие параметры, как контрастность и максимальная яркость. Величина контрастности зависит от размеров взаимного удаления темных и светлых элементов изображения. В общем случае контрастность должна быть не хуже 80:1 и выше. Максимальная яркость свечения определяется как яркость наиболее светлых крупных участков телеизображения, она может составлять до 100 кд/м^2.

Диапазон воспроизводимых звуковых частот должен находиться в пределах от 80 до 12 500 Гц.

При проектировании и изготовлении ТА дециметрового диапазона используются известные формулы, в основу которых входят следующие понятия: действующая длина антенны пропорциональна длине волны; коэффициенты усиления и защитного действия антенны ДМВ должны быть выше, чем у антенн метрового диапазона; с увеличением частоты возрастает затухание в коаксиальных кабелях, соединяющих антенну с входом телевизора; внутренние шумы входных цепей телевизоров в диапазоне ДМВ больше, чем в диапазоне MB.

Эти электрические параметры сравнительно легко реализуются в различных типах антенн за счет увеличения числа пассивных элементов. Например, в антеннах типа «волновой канал», логопериодических антеннах и антеннах для дальнего приема телевидения.

В диапазоне ДМВ все элементы антенны имеют малые конструктивные размеры, и при увеличении числа директоров габаритные размеры самой антенны остаются небольшими. (Интересное решение было опубликовано в журнале «Радио», № 2 за 1988 г.).

Зона уверенного приема ДМВ радиопередающей станцией, как правило, оценивается статистическими методами, она непостоянна во времени и зависит от диэлектрической проницаемости воздуха. В диапазоне ДМВ длины

волн короче 0,65 м - для работы в каналах с 21-го и выше. Минимальные потери при распространении ДМВ наблюдаются до тех пор, пока между передающей и приемной антеннами существует прямая видимость, за.пределами которой сигнал существенно уменьшается и уверенный прием становится невозможным.

В теоретических исследованиях распространение ДМВ представляют в виде окружности, радиус которой равен максимальному расстоянию прямой видимости, с тем допуском, что мощность, излучаемая передающей станцией, достаточно велика для приема непосредственно на границе. Известно, что чем выше частота радиосигнала, тем больше требуется напряженность поля в месте приема. Для первых каналов MB в месте установки приемной антенны напряженность поля находится в пределах от 300 до 700 мкВ, а для ДМВ - 3200 мкВ и выше. Напряженность поля по мере удаления от передающей станции уменьшается. Для ДМВ нельзя рассчитывать радиус зоны прямой, видимости по максимальному расстоянию прямой видимости, так как мощность станций недостаточна для приема на максимальном расстоянии прямой видимости. Например, минимальная напряженность поля для 33-го канала - 70 дБ (3200 мкВ).

Радиолюбителями разработано достаточно большое число антенных усилителей несложной конструкции, предназначенных для усиления сигналов в телевизионном диапазоне ДМВ, которые решают почти в полной мере изложенные проблемы и конкретные задачи.

Для приема ДМВ используются широкополосные направленные антенны, работающие без перестройки в широком диапазоне волн и для приема телепередач на расстоянии до 60-70 км от ТЦ.

Для расчета такой антенны необходимо знать крайние волны рабочего диапазона частот lдл.mах и lдл.min. Сначала определяют длину наибольшего вибратора l, которая должна быть равна (с определенным допуском) 0,55 lдл.max. Затем строится равнобедренный треугольник с заданным углом а при вершине, который лежит в пределах от 30 до 45°, и основанием треугольника, равным в масштабе построения длине наибольшего вибратора l. Второй вибратор располагается на расстоянии а1, которое определяется из пределов (0,15...0,18) lдл.max от первого (в масштабе построения).

Длина второго вибратора в этом случае определяется

однозначно, исходя из построения, так как он должен полностью вписываться в треугольник. Далее определяется длина третьего вибритора, который располагается на расстоянии а2=а1 t, где t - коэффициент уменьшения длины вибратора. Затем строится четвертый вибратор на расстоянии а3=а2 t от третьего и т. д. Построение продолжается до тех пор, пока длина очередного вибратора, вписанного в треугольник, не будет равна (ориентировочно) (0,14...0.45.) lдлmin. Этот вибратор и будет последним.

Логопериодические антенны сравнительно просты по конструкции, хорошо согласуются с 75-омным коаксиальным кабелем снижения, имеют КПД от 4 до 7 дБ. Все логопериодические антенны и существующие их разновидности могут быть представлены в виде замкнутой системы вибраторов, расположенных и горизонтальной плоскости.

Схема плоской вибраторной логопериодической антенны (ЛПА) представлена на рис. 5.1. Антенна состоит из двухпроводной распределительной линии длиной А, в которую включены вибраторы различной длины и различного расположения. Наибольший вибратор состоит из двух отрезков, отстоящих друг от друга на расстоянии 2 d, где d - диаметр трубки распределительной линии.

Электрические параметры антенны определяются тремя основными составляющими: периодом структуры t, углом раствора а и длиной антенны L.

Параметры антенны рассчитываются так, чтобы внутри каждого интервала частот элементов антенны (например, f7 - f6) характеристики антенны менялись незначительно.

Первый параметр t характеризует частотную периодичность антенны, при которой каждый вибратор имеет свою резонансную частоту. На самой низкой частоте, в зависимости от выбранного канала, рабочего диапазона f1 = fmin резонирует первый вибратор 1 с длиной плеча l1, на следующей, более высокой, частоте f2 резонирует вибратор 2 с длиной плеча l2 = l1 t и т. д.

Незначительное изменение характеристик антенны при расчете параметров должно быть во всем рабочем диапазоне частот, поэтому антенна, построенная по рассматриваемому принципу, и носит название логарифмически-периодической, или логопериодической.

Длина антенны L рассчитывается по формуле: L = (l1 -


т. е.зависит от угла и принимаемого диапазона

частот, который определяется, в свою очередь, размерами граничных элементов антенны l1 и l9. Здесь необходимо заметить, что количество элементов в антенне не ограничивается девятью элементами и может составлять от шести до двадцати двух.

Логопериодическая антенна может быть изготовлена для приема телепередач во всех диапазонах частот.

Расстояние между двумя соседними вибраторами можно определить также по формуле: а6= l6 (1-t)ctg(а/2). При изготовлении антенны для приема телепередач на первых 12 каналах рекомендуется принять в расчетных формулах t = 0,84; а = 60°; L = 2285 мм; число вибраторов равно 13. Для антенны, предназначенной для приема первых 3 каналов, необходимо взять шесть вибраторов, тогда L = 1515 мм.

Антенну, работающую на первых каналах телевидения в метровом диапазоне волн, рекомендуется изготавливать из трубок с тонкими стенками диаметром 20 мм. Антенну для 6-12-го каналов можно сделать из дюралевых или латунных трубок диаметром 15 мм, а антенну для приема сигналов ДМВ - из трубок диаметром 8 мм, с толщиной стенки до 1 мм.

Второй вариант логопериодической антенны приведен на рис. 5.2, где проводники распределительной линии расположены в вертикальной плоскости, а вибраторы - в горизонтальной плоскости в два ряда. Все вибраторы поочередно направлены в разные стороны. Коаксиальный кабель снижения проложен внутри нижней трубки без верхней полиэтиленовой оболочки. Экран коаксиального кабеля припаян в точках б и г, а центральная жила кабеля припаивается в точке а.

Проводники распределительной линии, как правило, скрепляются между собой крепежными изоляторами в двух точках. Концы трубок распределительной линии в точках виг должны быть накоротко замкнуты металлической перемычкой. К вертикальной штанге логопериодическая антенна прикрепляется с помощью крепежных деталей, расположенных в центре тяжести собранной антенны.

Телевизионная антенна дециметрового диапазона для приема телепрограмм с 21-го по 40-й канал, которая по принятой классификации относится к антеннам типа «волновой канал», показана на рис. 5.3.

Техническая характеристика:

коэффициент усиления............. 2,8-4 (9,2...12 дБ)

КБВ, не менее................... 0,55-0,85

КЗД, не менее................... 14-24 .

входное сопротивление активного

петлевого вибратора............. 292 Ом

волновое сопротивление фидера..... 75 Ом

рабочая частота.................. 470-622 МГц

неравномерность коэффициента

усиления...................... 0,8

кпд, не менее.................... 0,96

количество принимаемых программ

без перестройки................ 20

внешние нагрузки в местностях

с климатом.................... УХЛ, ХЛ, В

диаграмма направленности односторонняя

в горизонтальной плоскости....... узкая, объемная

ширина главного лепестка диаграммы

направленности в горизонтальной

плоскости...................... 32-46

Как следует из рисунка, антенна имеет одиннадцать директоров, петлевой вибратор 3, рефлектор, состоящий

из трех элементов 1 и 2, и несущую стрелу 4, которая изготавливается из металлической трубки диаметром 20- 22 мм.

Для изготовления активного 3 и пассивного вибраторов (директоров) используется дюралюминиевая трубка диаметром не менее 8 мм. Рефлектор можно выполнить из алюминиевой полоски толщиной 5 мм, но можно применить и меньшую толщину - до 2,5 мм. Ширина пассивных элементов рефлектора равна 16-20 мм. Средний элемент рефлектора крепится непосредственно к несущей стреле с помощью специальных шайб и крепежных деталей, а два других элемента рефлектора 1 - с помощью металлической стойки, которая также жестко прикреплена к стреле. Расстояние между этими элементами равно 49 мм при проекции на горизонтальную плоскость.

Петлевой вибратор выполнен из дюралюминиевой трубки диаметром 8-12 мм с толщиной стенки не менее 1 мм. Рекомендуется изготавливать петлевой вибратор из дюралюминиевой полоски толщиной 2.5 мм и шириной до 50 мм. Он может иметь фигурную конструкцию, удобную для крепления и, самое главное, обеспечивающую хорошее согласование во всем диапазоне частот принимаемых телепередач. Размеры основных элементов антенны - пассивных и активных - приведены в табл. 5.1. Длина четвертого элемента антенны рассчитывается, исходя из об-


щего количества вибраторов, и в данном случае равна 1400-1450 мм.

Наилучшие результаты дает подключение коаксиального кабеля снижения к петлевому вибратору через УСС типа «проволочный трансформатор». Изготавливается это УСС на двух ферритовых кольцевых сердечниках марки 100ВЧ размерами 8,4 х 3,5 х 2 мм. на которые виток к витку вплотную наматываются обмотки в два провода марки ПЭЛШО диаметром 0,23 мм. УСС должно обеспечивать КБВ, равный 0.75, в широкой полосе частот (от 470 до 622 МГц) со стороны подключения коаксиального кабеля с волновым сопротивлением 75 Ом.

В данной антенне можно применить другое УСС, изготовленное без ферритовых сердечников,- эквивалент кабельной петли, выполненной из отрезка спиральной полосовой линии, которая наматывается на ферритовый или


стальной стержень из электротехнической стали марки 3311, 3312, 3313. Спираль изготавливается из медной или латунной ленты толщиной до 0,1 мм, шириной до 1 мм, имеет 5,25 витка и укладывается в пазы, сделанные в диэлектрике, выполненном в виде трубки, которая устанавливается на этот стержень. Намотка спирали на стержень показана на рис. 5.4.

Эту антенну можно устанавливать на одной штанге с антенной MB, но расстояние между ними должно быть не менее 1,0-1,2 м.


В настоящее время почти всё телевизионное вещание перешло на трансляцию в дециметровом диапазоне. Это обусловлено тем, что волны этого диапазона малочувствительны к влиянию внешних помех и оборудование, применяемое для обеспечения трансляции в этом диапазоне, обладает невысокой стоимостью . В качестве диапазона для использования цифрового телевидения Т2 был выбран именно он.

Дециметровые волны (ДМВ) располагаются в диапазоне радиоволн, имеющих длину волны от одного метра до 10 см, и лежат в частотах от 300 МГц до 3 ГГц. Для приёма ДМВ применяются широкополосные антенны направленного действия они могут осуществлять приём телетрансляций на удалении 60-70 км от телецентра.

Особенности приёма ДМВ

Необходимо понимать, что чёткого различия между профессиональными и домашними антеннами не существует. Профессиональные антенны для телевизионного режима имеют узкую диаграмму направленности, а значит и больший коэффициент усиления. Благодаря этому они имеют более усложнённую , с множеством элементов конструкцию, чем домашние.

Перечислим основные части, из которых состоит антенна:

  • фидер;
  • рефлектор;
  • вибратор;
  • директор.

В первую очередь на качество приёма оказывает влияние рельеф местности . Различные барьеры, возникающие на пути прохождения сигнала, ослабляют его уровень или не дают его распространению. В зоне отсутствия прямой видимости антенны нередко настраивают на отражённый сигнал и из-за этого приходится применять различного вида активные усилители и согласователи.

В близости от передатчика антенна может ставиться внутри помещения или снаружи. В отдалении, конечно, нужно ставить снаружи: на стену, балкон, крышу, мачту. Обычно в удалении от ретранслятора антенна размещается на высоте 8-15 м на мачте.

Симметрирование антенн

Симметрирующие устройства устраняют попадание токов радиочастоты на внешнюю площадь наружного проводника (оплётки) коаксиального провода. Подключать без такого устройства нельзя, так как это приводит к искривлению диаграммы направленности антенны и уменьшению помехоустойчивости приёма. Когда входное сопротивление антенны отличается от волнового сопротивления провода, то такое устройство применяется и как согласующее.

Согласующее устройство для антенны своими руками выполнить несложно. Обычно применяют четвертьволновой мостик или волновое U-колено. Мостик представляет собой двухпроводную короткозамкнутую линию с величиной длины Lcp/4, подключённую к зажимам вибратора. Мостик состоит из двух трубок, изолятора и короткозамкнутого шунта. Через одну из трубок (например, левую) пропускается кабель. Внешний проводник (оплётка) подключается к левой трубке вибратора и левой трубке мостика, центральный контакт - к правой трубке вибратора .

Волновое колено выполняется из кабеля и состоит из двух отрезков с волновым сопротивлением 75 Ом, соответственно длиной Lc/4 и Lc/3, где Lc средняя длина волны в кабеле. Выдерживать определённое расстояние между кабелями не нужно. Рабочая полоса частот составляет 12- 15 процентов.

И также может использоваться проволочный трансформатор . Он трансформирует входной импеданс антенны в импеданс равный 73 Ом. Две пары катушек трансформатора намотаны поочерёдно на двух каркасах диаметром 5- 7 мм. Намотка непрерывная, в два провода. Промежуток между каркасами 15-20 мм. Монтаж выполняется на металлической плате, к концам которой припаиваются оплётка фидера и концы обмоток.

Проволочная антенна

Самую простую конструкцию можно выполнить из куска медной проволоки . Такая антенна представляет собой петлевую рамку, которая состоит из двух разделённых зазором проводников. В случае использования мачты, крепление осуществляется с помощью изоляционной пластины, например, гетинакс, покрытый лаком или текстолит. Место подключения кабеля при использовании на улице следует закрыть от прямого попадания атмосферных осадков.

Основная операция будет заключаться в расчёте длины петли. Для этого необходимо знать частоту передачи эфирного сигнала. Длина волны, соответствующая несущей частоте изображения f, вычисляется по формуле L = 300/f. Например, для частоты 600 МГц это значение будет L = 300/600= 0,5 м. То есть длина петли составит 50 см.

Алюминиевый диск

Для изготовления нам понадобится:

  • алюминиевый диск толщиной 1 мм;
  • печатная плата из стеклотекстолита толщиной 1 мм;
  • согласующий трансформатор;
  • кабель с волновым сопротивлением 75 Ом.

В алюминиевом диске диаметром 356 мм, с отверстием посередине с диаметром 170 мм, делается пропил 10 мм. Вместо выпиленного куска устанавливается печатная плата, к которой припаивается согласующий трансформатор. Вместо него можно установить усилительное устройство, взятое из комплекта, идущего с польской антенной.

Волновой канал

Несложная по конструкции высокоэффективная антенна направленного действия, которая может быть использована практически во всём диапазоне телевизионного вещания. Антенна представляет собой активный полуволновой вибратор (обычно петлевой), рефлектор из нескольких директоров, укреплённых на основании стрелы, зафиксированные скобами или сваркой. Вибратор со стрелой закрепляется на мачте. Соединение кабеля и симметрирующе-согласующего U образного колена к активному вибратору производится с помощью специальной коробки.

Полуволновое колено выполняется из отрезков коаксиального кабеля длиной равной средней длины волны поделённой на два. U-колено является сразу как симметрирующим устройством, так и трансформатором сопротивлений: оно изменяет входное сопротивление петлевого вибратора 292 Ом до 73 Ом, что даёт возможность обеспечить согласование вибратора с фидером. Оплётки кабеля колена нужно спаять между собой, а также с оплёткой фидера. Длина отрезка используемого провода примерно будет около 185 мм.

Расчёт

ДМВ антенны вибраторы изготавливаются из трубок диаметром от 14 до 25 мм, несущую стрелу 18-35 мм. Мачта может быть изготовлена из трубок диаметром 40-50 мм, со стенкой 3-4 мм или деревянного бруса 60×60 мм.

Расстояние между элементами устройства можно рассчитать в специально созданных для этого программах: Antwu 15, 4K6D и т. п. Эти утилиты русифицированные , разобраться будет нетрудно.

Зигзагообразное устройство

Несложная в изготовлении антенна широкого диапазона. Работает в двукратной полосе частот. Конструкция представляет собой две вертикальные рейки, закреплённые на диэлектрической стойке. На верхнем и нижнем конце стойки крепят стальные планки. Планки такого же вида, но через изоляционные шайбы, закрепляют на концах реек. На стойке между рейками располагают непроводящую пластину, на которой установлены две пластины из проводника .

Кабель диаметром 3-4 мм соединяют со стальными планками. Его также подпаивают к нижней планке. Провод прокладывают параллельно стороне внутреннего кабеля нижней рамки и припаивают к планкам (оплётку - слева, центральный проводник справа).

Для упрощения конструкции можно использовать только один ромб, зигзаг. Размер такого ромба составит 340×340 мм. Расстояние между двумя металлическими планками в центре ромба берут около 10 мм. В качестве материала применяют алюминиевые, медные или латунные трубки, или полоски шириной 6-10 мм.

Усилитель

Для улучшения приёма телевизионного эфира часто применяют антенну с активным усилителем сигнала. Обычно такой усилитель не нуждается в настройке и выполняется на малошумящих транзисторах с усилением около 20 дБ.

Для того чтоб изготовить усилитель ТВ сигнала своими руками, понадобится печатная плата и следующий перечень радиоэлементов:

  1. Резисторы: R1, R5-220 Ом; R2, R6-8,2 кОм; R3-3,3 кОм; R4, R8-22 Ом; R7- 1,5 кОм.
  2. Конденсаторы: C1-0,01 мкФ; C2, C4, C6-220 пФ; C3, C5-100 нФ.
  3. Транзисторы: VT1, VT2 S790T.

Схема антенного усилителя для телевизора своими руками будет выглядеть так:

https://masterkit.ru/images/magazines/3_SH3 04 .gif

Усилитель выполнен на транзисторах S790T по схеме с общим эмиттером и имеет две корректирующие цепочки R1, C3 и R5, C5. Устройство собирается на двух усилительных каскадах. Центральная жила входного кабеля подпаивается на вход конденсатора C2, а оплётка экрана на общую землю. Усиленный сигнал снимается с выхода конденсатора C6.

Усилитель для антенны распаивают на отдельной независимой плате, радиоэлементы на ней устанавливаются навесным способом. Крепят плату посередине антенны, такое расположение позволяет эффективно принимать сигнал.

Рамочная антенна

Самодельное устройство будет состоять из следующих элементов:

  • алюминиевые полосы размером 320 мм;
  • мачта;
  • рефлектор;
  • усилительное устройство;
  • кабель.

Вначале собирается рамка из четырёх полос. Крепление между собой осуществляется с помощью винтов. В середину рамки устанавливается крестовина. От центра каждая часть крестовины укорачивается на 5 мм. Ближайшие друг к другу части обрезанных пластин соединяются проводником, образовывая два внутренних, разделённых квадрата. К этим пластинам припаивается кабель, к одной центральная жила, к другой оплётка. Далее антенна устанавливается на мачте, и крепится усилитель.

Логопериодическая

Такая антенна выделяется хорошим согласованием с коаксиальным кабелем и узкой диаграммой направленности, что позволяет принимать телевизионный сигнал на значительном удалении.

Антенна состоит из двухпроводной симметрично распределённой линии, образованной из одинаковых трубок, лежащих параллельно друг другу. На эти трубки устанавливаются полувибраторы в количестве семи штук, при этом направление их чередуется на противоположное относительно предыдущего.

Кабель с волновым сопротивлением 75 Ом прокладывается в одну из линий, концы труб в месте входа фидера соединяются пластинкой из проводника. Экран кабеля распаивается при его выходе из линии, а центральная жила припаивается к лепестку, установленном на заглушке другой трубы. Расстояние между вибраторами выбирают от начала 80, 94,77, 63, 52, 43, 35 мм, а их размер соответственно 160, 131, 107, 88, 72, 60, 49 мм.

Польская

Если выполнить самостоятельно усилитель нет возможности или желания, можно приобрести готовый. Особой популярностью пользуются те, что стоят в так называемых польских антеннах, например, фирмы Sowar. Польская антенна работает в широкополосном диапазоне, т. е. может принимать дециметровый и метровый сигнал. Однако, в том виде в котором она есть, она не очень приспособлена для приёма цифрового телевидения DVB-T, поэтому для её использования рекомендуется выполнить доработки.

Всё дело в том, что входное сопротивление усилителя выше сопротивления антенны. Для начала убираем длинные метровые активные вибраторы или укорачиваем их до размеров дециметровых, затем удаляем полотно рефлектора от активных вибраторов. Таким образом, изменяется сопротивление антенны. Из усилителя желательно выпаять и узел согласования, кольцо из феррита. Это поможет расширить диапазон, увеличит сопротивление, изменит частотную характеристику.

Баночная

Эта оригинальная антенна, которую просто сделать самостоятельно, не уступит по параметрам логопериодической антенне. Собирается из двух консервных банок. Банки берутся размерами 75×95 мм. С помощью двух полосок стеклотекстолита банки соединяются путём пайки. Одна полоска сплошная, а на второй делается разрыв в который подпаивается кабель. Принцип работы её основан на свойстве симметричного широкополосного вибратора, за счёт чего она обладает большим коэффициентом усиления.

Рассмотренные виды антенн без проблем можно подключать к всевозможным приставкам для приёма цифрового телевидения и даже фм диапазона.

Дециметровая терапия (ДМВ-терапия) – это метод физиотерапии, который сформирован на применении электромагнитных волн сверхвысокой частоты и мощности. Ток проходит в глубокие слои тканей, воздействуя на физиологические механизмы, которые происходят в организме человека. Существует второй вид терапии с применением сверхвысокочастотной энергии – сантиметроволновая (СВЧ) терапия с длиной волны от 1 до 10 см. Благодаря своим свойствам, методы приобрели широкое применение в комплексном лечении многих заболеваний.

В ДМВ-терапии применяется электромагнитное поле частотой 461,5 МГц и 915 МГц с интенсивностью до 60 Вт. Энергия дециметроволновых волн поглощается тканью, содержащей большое количество жидкости, но 35-63% ее отражается и рассеивается во внешней среде. Длина волны составляет от 10 см до 1 метра, а глубина действия 5-13 см. Использование специальных аппаратов-излучателей позволяет достичь локального воздействия в области необходимого участка тела.

Характеристики дециметровых волн и их свойства

Механизм действия волн заключается в резорбции энергии органами и превращением ее в тепло, что приводит к активации метаболизма и кровообращения, уменьшению проницаемости сосудистой стенки, усилению выработки гормонов и витаминов. Данный физиотерапевтический метод оказывает общее и местное действие. При локальном воздействии активируются обменные процессы, благодаря чему температура возрастает на 3-5°С местно и во всем теле. Кровообращение в подкожно-жировом слое развито недостаточно, из-за чего возможно его перегревание. Стоит строго соблюдать время проведения процедуры, для получения лечебного эффекта оно должно составлять от 3 до 30 минут.

Направленное излучение расширяет капилляры, улучшая локальное и общее кровообращение. Понижение сосудистой проницаемости ведет к уменьшению отека в очаге воспаления, а улучшение оттока лимфатической жидкости уменьшает лимфостаз.

ДМВ-терапия активирует обменные процессы, благоприятно влияет на питание клеток и возобновляет утраченную функцию.

Общий эффект от данной физиопроцедуры заключается в стимуляции эндокринной системы. Увеличивается продукция гормонов гипоталамо-гипофизарной системы и щитовидной железы, активируется клеточный и гуморальный иммунитет. Благоприятно волны действуют на головной мозг, улучшают кровообращение и нервную проводимость. Уменьшается спазм сосудов и снижается артериальное давление, усиливается микроциркуляция. Увеличиваются сердечные толчки, позволяя в полной мере обеспечить все органы и ткани кислородом.

Дециметровая терапия обладает бронхолитическим эффектом, снимает спазм, уменьшает приступы кашля и улучшает выделение мокроты при бронхообструкции. Воздействуя на органы желудочно-кишечного тракта, усиливает продукцию ферментов, улучшающих пищеварение, снимает спазм и снижает перистальтику кишечника, купируя боль. ДМВ-терапия увеличивает функциональную способность почек, снимает воспаление даже при наличии урогенитальной инфекции.

Показания и ограничения к использованию ДМВ-терапии

Применение дециметровой терапии целесообразно при таких заболеваниях:

  • Патологические процессы костно-суставного аппарата: остеохондроз, деформирующий остеоартроз суставов, артрит, сколиоз, эпикондилит, травмы костей.
  • Воспалительные заболевания нижних дыхательных путей: бронхиальная астма, пневмония, обструктивный бронхит, дыхательная недостаточность.
  • Патологические процессы центральной и периферической нервной системы: корешковый синдром при остеохондрозе позвоночника, вегетососудистая дистония, радикулопатия, болезнь Паркинсона, неврит, дизартрия.
  • Заболевания сердца и сосудов: артериальная гипертензия 1 ст., инфаркт миокарда в анамнезе (не ранее, чем через 1 месяц), атеросклероз, облитерирующий эндартериит.
  • Заболевания органов пищеварения: хронический гастрит и язва желудка, печеночная недостаточность 1 степени, дискинезия желчных путей, калькулезный холецистит, ферментопатия, синдром раздраженного кишечника.
  • Воспалительные процессы мочевыделительной системы: почечная колика, цистит, почечная недостаточность 1 степени, мочекаменная болезнь, гломерулонефрит.
  • Заболевания соединительной ткани: ревматоидный артрит, болезнь Рейно, ревматизм 2 ст. активности.
  • Болезни половой сферы: климактерический синдром, простатит, воспаление предстательной железы, аднексит.
  • Воспалительные заболевания ЛОР-органов: острый и хронический ринит, синусит, гайморит, отит, тонзиллит, аденоидит.
  • Патологические процессы кожных покровов: фурункул, карбункул, инфильтрат после операции.
  • Воспалительные заболевания челюстно-лицевой области: пародонтит, остеомиелит, периостит.

Противопоказания к применению дециметровой терапии:

  • Гиперфункция щитовидной железы (гипертиреоз) с повышением уровня гормонов.
  • Эпилепсия.
  • Сужение сфинктера (привратника) желудка вследствие дефектов (язв) слизистой.
  • Наличие любой металлоконструкции в теле пациента, кардиостимулятора.
  • Аутоиммунные заболевания.
  • Болезни крови с нарушением ее свертываемости.
  • Онкологические заболевания или предрасположенность к ним.
  • Гнойные и воспалительные заболевания в острой стадии.
  • Сердечно-сосудистые заболевания в стадии декомпенсации: стенокардия покоя, ишемическая болезнь сердца 2-3 степени, артериальное давление более 150/90 мм рт. ст.
  • Дерматит, экзема, повреждения кожи.
  • Активная стадия туберкулеза.
  • Истощение (кахексия) тяжелой степени.
  • Индивидуальная непереносимость.
  • Беременность.
  • Детский возраст до 2 лет.

Методика проведения дециметровой терапии

При выполнении ДМВ-терапии используют специальные аппараты: «ДМВ-02 «Солнышко», ДМВ-01-1 «Солнышко», «ДМВ-15», «ДМВ-20», «Волна-2», «Ромашка». В зарубежных клиниках используют Radiotherm, ThermaSpec 600. Действие отечественных и импортных аппаратов одинаковое, различие составляют технические характеристики: максимальная и минимальная исходящая сила, количество и размер излучателей. На основании этих данных физиотерапевт выбирает необходимый прибор, подходящий для лечения заболевания, определяет интенсивность воздействия, длительность сеанса и курс лечения.

Перед проведением физиолечения определяется место воздействия и форма излучателя. Выбирается метод осуществления физиопроцедуры: контактный или дистанционный (расстояние между излучателем и кожей составляет 3-4 см). Контактный способ возможен с помощью портативного аппарата «Ромашка», а дистанционный с применением стационарного прибора «Волна-2». Мощность излучения определяется по ощущениям пациента, и составляет от 30 до 60 и более Вт в стационарных приборах, и 4-10 Вт в передвижных аппаратах. Длительность процедуры определяется количеством полей и не превышает 60 минут.

Сеансы проводятся каждый день или раз в два дня, лечение включает 8-15 сеансов.

При использовании контактного метода на необходимый участок направляется излучатель, его диаметр зависит от объема патологического очага. На приборе выставляют необходимую мощность, основываясь на ощущениях больного, до чувства слабого или умеренного тепла (5-8 Вт). В течение последующих процедур можно пробовать постепенно увеличивать интенсивность.

При дистанционном способе излучатель необходимой формы и размера направляется на область проекции пораженного органа. Промежуток между аппаратом и кожей составляет 3-4 см. Интенсивность увеличивают до чувства легкого тепла (30-60 Вт). Применение дециметровой терапии возможно дома, при использовании переносного прибора: ДМВ «Солнышко», «Ромашка». Эффект наступает после 3-4 сеансов, но для полного выздоровления необходимо пройти весь курс.



Загрузка...