sonyps4.ru

Радиотехника азы. Начинающий радиолюбитель: школа, схемы, конструкции

Содержание:

Существует множество понятий, которые нельзя увидеть собственными глазами и потрогать руками. Наиболее ярким примером служит электротехника, состоящая из сложных схем и малопонятной терминологии. Поэтому очень многие просто отступают перед трудностями предстоящего изучения этой научно-технической дисциплины.

Получить знания в этой области помогут основы электротехники для начинающих, изложенные доступным языком. Подкрепленные историческими фактами и наглядными примерами, они становятся увлекательными и понятными даже для тех, кто впервые столкнулся с незнакомыми понятиями. Постепенно продвигаясь от простого к сложному, вполне возможно изучить представленные материалы и использовать их в практической деятельности.

Понятия и свойства электрического тока

Электрические законы и формулы требуются не только для проведения каких-либо расчетов. Они нужны и тем, кто на практике выполняет операции, связанные с электричеством. Зная основы электротехники можно логическим путем установить причину неисправности и очень быстро ее устранить.

Суть электрического тока заключается в движении заряженных частиц, переносящих электрический заряд от одной до другой точки. Однако при беспорядочном тепловом движении заряженных частиц, по примеру свободных электронов в металлах, переноса заряда не происходит. Перемещение электрического заряда через поперечное сечение проводника происходит лишь при условии участия ионов или электронов в упорядоченном движении.

Электрический ток всегда протекает в определенном направлении. О его наличии свидетельствуют специфические признаки:

  • Нагревание проводника, по которому протекает ток.
  • Изменение химического состава проводника под действием тока.
  • Оказание силового воздействия на соседние токи, намагниченные тела и соседние токи.

Электрический ток может быть постоянным и переменным. В первом случае все его параметры остаются неизменными, а во втором - периодически происходит изменение полярности от положительной к отрицательной. В каждом полупериоде изменяется направление потока электронов. Скорость таких периодических изменений представляет собой частоту, измеряемую в герцах

Основные токовые величины

При возникновении в цепи электрического тока, происходит постоянный перенос заряда через поперечное сечение проводника. Величина заряда, перенесенная за определенную единицу времени, называется , измеряемой в амперах .

Для того чтобы создать и поддерживать движение заряженных частиц, необходимо воздействие силы, приложенной к ним в определенном направлении. В случае прекращения такого действия, прекращается и течение электрического тока. Такая сила получила название электрического поля, еще она известна как . Именно она вызывает разность потенциалов или напряжение на концах проводника и дает толчок движению заряженных частиц. Для измерения этой величины применяется специальная единица - вольт . Существует определенная зависимость между основными величинами, отраженная в законе Ома, который будет рассмотрен подробно.

Важнейшей характеристикой проводника, непосредственно связанной с электрическим током, является сопротивление , измеряемое в омах . Данная величина является своеобразным противодействием проводника течению в нем электрического тока. В результате воздействия сопротивления происходит нагрев проводника. С увеличением длины проводника и уменьшением его сечения, значение сопротивления увеличивается. Величина в 1 Ом возникает, когда разность потенциалов в проводнике составляет 1 В, а сила тока - 1 А.

Закон Ома

Данный закон относится к основным положениям и понятиям электротехники. Он наиболее точно отражает зависимость между такими величинами, как сила тока, напряжение, сопротивление и . Определения этих величин уже были рассмотрены, теперь нужно установить степень их взаимодействия и влияния друг на друга.

Для того чтобы вычислить ту или иную величину, необходимо воспользоваться следующими формулами:

  1. Сила тока: I = U/R (ампер).
  2. Напряжение: U = I x R (вольт).
  3. Сопротивление: R = U/I (ом).

Зависимость этих величин, для лучшего понимания сути процессов, часто сравнивается с гидравлическими характеристиками. Например, внизу бака, наполненного водой, устанавливается клапан с примыкающей к нему трубой. При открытии клапана вода начинает течь, поскольку существует разница между высоким давлением в начале трубы и низким - на ее конце. Точно такая же ситуация возникает на концах проводника в виде разности потенциалов - напряжения, под действием которого электроны двигаются по проводнику. Таким образом, по аналогии, напряжение представляет собой своеобразное электрическое давление.

Силу тока можно сравнить с расходом воды, то есть ее количеством, протекающим через сечение трубы за установленный период времени. При уменьшении диаметра трубы уменьшится и поток воды в связи с увеличением сопротивления. Этот ограниченный поток можно сравнить с электрическим сопротивлением проводника, удерживающим поток электронов в определенных рамках. Взаимодействие тока, напряжения и сопротивления аналогично гидравлическим характеристикам: с изменением одного параметра, происходит изменение всех остальных.

Энергия и мощность в электротехнике

В электротехнике существуют еще и такие понятия, как энергия и мощность , связанные с законом Ома. Сама энергия существует в механической, тепловой, ядерной и электрической форме. В соответствии с законом сохранения энергии, ее невозможно уничтожить или создать. Она может лишь преобразовываться из одной формы в другую. Например, в аудиосистемах осуществляется преобразование электроэнергии в звук и теплоту.

Любые электрические приборы потребляют определенное количество энергии на протяжении установленного промежутка времени. Эта величина индивидуальна для каждого прибора и представляет собой мощность, то есть объем энергии, который может потребить тот или иной прибор. Этот параметр вычисляется по формуле P = I x U, единицей измерения служит . Он означает перемещение одним вольтом через сопротивление в один ом.

Таким образом, основы электротехники для начинающих помогут на первых порах разобраться с основными понятиями и терминами. После этого будет значительно легче использовать полученные знания на практике.

Электрика для чайников: основы электроники

Предисловие 12
Макетные платы, не требующие пайки 12
Простые правила безопасности 13
Простые советы при работе с паяльником 14
Удобная любительская технология изготовления печатных плат 15
Другие полезные советы 16

Глава 1. Вокруг паяльника 20
Рабочее место 20
Инструмент 22
Приборы 27
Компьютер 29
Детали 31
Блок питания 34

Глава 2. Первые опыты с электрическими цепями 36
Что нам понадобится? 36
Резистор 37
Два резистора 41
Диод 43
Транзистор 44
Что мы получили в итоге? 51

Глава 3. Первая собранная схема 52
Перегретый паяльник 52
Блок питания 53
Цифровой вольтметр 64

Глава 4. Активное и реактивное сопротивления 66
Ещё немного о резисторе 66
Конденсатор 67
Катушка индуктивности 71
Колебательный контур 74
Величины и единицы измерения ёмкости и индуктивности 76

Глава 5. Эксперименты с транзистором 79
Некоторые свойства транзистора 79
Схемы включения транзистора 83
Рабочая точка транзистора 85
Несколько слов о полевом транзисторе 88
Выбор транзистора 89

Глава 6. Обратная связь 94
Стабилизация рабочей точки и ООС 94
Частотные характеристики 100
Положительная обратная связь 103

Глава 7. Пополнение рабочего места приборами 109
Генератор синусоидального сигнала 109
Генератор прямоугольных импульсов 113
Делитель напряжения 116
Реализация схем генераторов 117

Глава 8. Как читать электрические схемы 123
Принципиальные схемы – графический язык 123
Как переводить с языка электрических схем 126
Несколько экспериментов со стабилизаторами 130
Компенсационный стабилизатор напряжения 133
Схема реального устройства 135
Ещё одно замечание 136

Глава 9. Разные усилители на транзисторах 139
Входные усилители низкой частоты 139
Выходные усилители 143
Дифференциальный вход и операционный усилитель 147
Высокочастотные входные усилители и АРУ 149
Транзисторы в цифровых микросхемах 152

Глава 10. Пополнение рабочего места усилителем 153
Описание одной из схем усилителя 153
Использование операционного усилителя 154
Использование микросхемы усилителя мощности 156
Некоторые соображения и рекомендации по сборке усилителя 157
Простые правила работы с готовым устройством 159
В измерениях можно потренироваться за компьютером 160

Глава 11. Токи и сигналы 165
Постоянный и переменный ток 165
Сигнал 167
Что ещё полезно знать о сигналах? 169

Глава 12. Радиоприёмник под объективом осциллографа 175
Виртуальный осциллограф и радиоприёмник 175
Чем приёмник прямого усиления отличается от супергетеродинного? 179
Формирование амплитудно-модулированного сигнала 183
Генератор по схеме емкостной трёхточки 186
Приёмники и передатчики 187

Глава 13. Цифровые микросхемы 189
Формируют ли цифровые микросхемы цифры? 189
Триггер 190
Счёт 192
Сумматор 195
Логика и цифры 199
Практическое применение цифровых микросхем 200
О программах и макетной плате 203

Глава 14. Датчики 206
Зачем нужны датчики? 206
Датчик влажности 207
Датчик газа 208
Датчик давления 209
Датчик магнитного поля 209
Датчик оптический 209
Датчик положения (расстояния) 210
Датчик температуры 210
Датчик тока 211
Датчики угла (энкодеры) 211
Датчики ультразвуковые 212
Датчики уровня жидкости 212
Датчики усилия 213
Датчики ускорения 214
Детектор потока жидкости и датчик расхода газа 214
О применении датчиков в любительских условиях 215

Глава 15. Как разговорить датчик? 216
Электрические эквиваленты датчиков 216
Напряжение 216
Резистор 220
Конденсатор 222
И ещё один рецепт 226

Глава 16. Микроконтроллер – это круто? 231
Откладываем по оси времени… 231
Архитектура микроконтроллера 233
Что нужно для работы с микроконтроллером? 234
Среды разработки микроконтроллеров 235
Резюмируя сказанное 240

Глава 17. Пора включить паяльник 241
Подготовка 241
Немного о PCSGU250 243
Опыты с диодом 247

Глава 18. Опыты с конденсаторами, резисторами и транзисторами 253
Интегрирующая электрическая цепь 253
Дифференцирующая RC цепь 254
Опыты с транзисторами 259

Глава 19. Опыты с индуктивностью и микросхемами (ОУ и 555) 267
Дифференцирующая LR цепь 267
Колебательный контур 268
Операционный усилитель 272
Таймер 555 (КР1006ВИ1) 276

Глава 20. Зачем изучать программирование? 283
То, о чём мы будем говорить дальше 283
О программировании «в общем» 287
Программатор 288
Программные инструменты 292

Глава 21. Пополняем домашнюю лабораторию 295
Начало программирования на практике 295
Проверка работы программы 305

Глава 22. Продолжаем разрабатывать свой генератор 310
Разбор результатов предыдущего эксперимента 310
Первое усовершенствование генератора 313
То, что следовало бы выкинуть из рассказа 315
Возвращение к первому усовершенствованию 318

Глава 23. Пополнение лаборатории (продолжение) 321
Несколько диапазонов генератора 321
Выбор диапазонов генератора прямоугольных импульсов 325
Неприятности с большими числами 330

Глава 24. Пополняем домашнюю лабораторию (окончание) 335
Начинаем завершающую работу над программой 335
Когда же появится сигнал? 340
Первая проверка программы 346
Зачем нужен режим отладки (debugging)? 349

Глава 25. Встроенные модули микроконтроллеров 358
Такие разные микроконтроллеры 358
Встроенный модуль АЦП 363
Модуль таймера 365
Модули последовательного обмена данными 366
Модуль PWM 370
Прерывания 373

Глава 26. Микроконтроллер и некоторые датчики 377
Датчик температуры 377
Фотодатчик 379
Свето- и фотодиоды и микроконтроллер 384
Микрофон 386
Датчики емкостной природы 388

Глава 27. «Живой» радиоприёмник и усилитель 389
Что нам сегодня понадобится? 389
Радиоприёмник, усилитель низкой частоты 390
Радиоприёмник, тестовый сигнал 392
Радиоприёмник, гетеродин 394
Радиоприёмник, усилитель промежуточной частоты 395
Генератор-пробник испытательного радиосигнала 396

Глава 28. Осциллограф 400
Что нам понадобится в этой главе? 400
Модуль Arduino и программа Xoscillo 401
Как прочитать синусоиду? 405
Реализация сканирующего напряжения 407
Реализация передачи данных 410
Модернизация процесса ска 413

Глава 29. Связь между электронными устройствами 416
Что нам понадобится? 416
Связи внутри устройств 417
Связь между разными электронными устройствами 418
Что такое протокол? 421
RS485 422
SPI 423
I2C 423
One-wire (1-Wire) 424
CAN 424
Bluetooth 425
Wi-Fi 425
Что мы получили в результате? 426

Глава 30. Передатчик и приёмник данных 427
Передатчик 427
Приёмник 431
Второй этап предварительной проверки 435

Глава 31. Эксперименты с радиоканалом 438
Первые эксперименты с приёмником 438
Окончательные эксперименты с приёмником 446
Что мы получили? 452

Глава 32. Разрабатываем схему кодового замка 453
Что нам понадобится? 453
Электронный кодовый замок (с сайта www.radio-portal.ru) 454
Что мы получили? 464

Глава 33. Разрабатываем регулятор скорости вращения 465
Схема регулятора скорости вращения двигателя постоянного тока 465
Микроконтроллер в схеме регулятора скорости вращения 468
Что мы получили? 479

Глава 34. Такие разные «Мяу» 480
Звуковая сигнализация 480
Эксперименты с микроконтроллером 484

Глава 35. Продолжаем знакомство с микроконтроллером 491
Азы программирования 491
Некоторые детали программирования 494
И вновь азы программирования 497

Глава 36. Микроконтроллер или без него? 502
Переключатель ёлочных гирлянд 502
Переключатель гирлянд на реле 504
Реле на цифровых микросхемах 507
Что мы получили? 510

Глава 37. А не замахнуться ли нам..? 511
Какие есть конструкторы-роботы? 511
Конструктор IE-ROBOPICA 515
Что такое datasheet? 517
Что такое конфигурация МК? 519

Глава 38. Начинаем осваивать микроконтроллер PIC16F887 521
Что нам понадобится? 521
Первая программа 522
Нас трудности не пугают. Нам их только подавай! 525
Что мы получили? 534

Глава 39. Плата RBX-877V2.0 и программирование 536
Что нам понадобится? 536
Продолжаем опыты с микроконтроллером 537
Вновь немного о языке Си 539
Продолжаем опыты с PIC16F887 540
Что мы получили? 545

Глава 40. В движении жизнь 546
Что нам понадобится? 546
Первые опыты с моторами 547
Программа простого движения 549
Первые движения 554
Что мы получили? 557

Глава 41. Если что-то мешает движению вперёд 558
Что нам понадобится? 558
Как работает датчик расстояния? 559
Робот движется вперёд 561
Ещё раз о датчике расстояния и АЦП 562
Революционный держите шаг! 566
Что мы получили? 568

Глава 42. Робот ищет свой путь 569
Что нам понадобится? 569
Что представляют собой датчики в наборе IE-ROBOPICA? 569
Эксперимент по использованию датчиков отражения 570

Глава 43. Ручное управление роботом 576
Сигналы управления 576
Что мы получили? 587

Глава 44. Дочитав руководство к ROBOPICA до конца 588
Что дальше? 588
Модификация ручного управления 588
Управляем роботом с компьютера 590
Программа в Visual Basic 593
Что мы получили? 599

Глава 45. Управление роботом с компьютера (продолжение) 600
Что нам понадобится? 600
Аппаратный модуль интерфейса COM-IR 600
Выбор элементов интерфейса 603
Окончательная сборка интерфейса 609
Что мы получили? 611

Глава 46. Управление с компьютера (продолжение) 612
Если нет полнофункциональной программы Visual Basic 612
Что мы получили? 621

Глава 47. Если не хватает 2 кбайт памяти для программы 622
Windows Vista 622
Linux Fedora 16 630
Подведём некоторые итоги 633

Глава 48. Движение робота в программе для SDCC 634
Файл для работы с модулем PWM (ШИМ) 634
Первое крушение в моём цехе роботостроения 640
Переделываем файл motor.h 642

Глава 49. Продолжение работы с компилятором SDCC 646
Что можно сделать, чтобы работать было удобнее? Windows 646
Что можно сделать, чтобы работать было удобнее? Linux 653
Что мы получили? 657

Глава 50. Жидкокристаллический индикатор и компилятор SDCC 658
Что такое ЖКИ (он же LCD)? 658
Вывод символа на дисплей робота 661
Что ещё нужно выяснить? 667

Глава 51. АЦП и компилятор SDCC 672
Описание работы с АЦП в справке к PIC16F887 672
Конфигурация порта 672
Выбор канала 673
Опорное напряжение АЦП 673
Генератор тактовой частоты преобразователя 673
Форматирование результата 673
Запуск преобразования 674
Пример процедур преобразования 674
Начинаем создавать свои функции для работы с АЦП 676
Преобразование результата работы АЦП в текст 678
Вывод результата работы АЦП на ЖКИ с компилятором SDCC 681

Глава 52. Модуль USART и компилятор SDCC 684
Несколько слов о модуле USART PIC16F887 684
Асинхронный режим EUSART 684
Включение передачи 685
Передача данных 686
Асинхронная передача 686
Включение приёмника 686
Получение данных 686
Асинхронный приём 687
Регистры USART 687
Передача данных через USART 691
Проблемы с прерыванием 693
RB0/INT INTERRUPT 693
Простая программа проверки прерывания 693
Заключение 694

Глава 53. Самодельный дальномер 696
Многозадачность и недорогие микроконтроллеры 696
Дальномер из подручных средств 696
Объединение самодельного дальномера и микроконтроллера 704

Послесловие 713
Вместо последней главы 713
Где в программе транзистор КТ315? 715
Приложение А. Программа TINA-TI 718
P.S. TINA-TI и Linux 736
Приложение Б. Программа Flowcode пятой версии 738
Приложение В. HiAsm вместо VB или Gambas 749
Приложение Г. ROBOPICA и SDCC 760
Приложение Д. Руководство к программе idealCircuit 771
Приложение Е. Руководство к программе Qucs 849

Название: Радиоэлектроника для начинающих.

Данной книгой автор намерен вовлечь в интереснейший мир радиоэлектроники новых юных поклонников этого творчества.
Подача материала производится от простого к сложному. Использован многолетний опыт преподавания в радиокружке.
Книга рассчитана на учащихся 5-11 классов, учащихся колледжей, техникумов, студентов ВУЗов, а также на начинающих радиолюбителей.

Книга «Радиоэлектроника для начинающих (и не только)» написана педагогом-практиком, по многолетнему опыту знающим как заинтересовать учащихся для появления у них интереса к радиоэлектронике.
Теоретический материал в книге излагается в доступной для начинающих радиолюбителей форме, для понимания физических процессов используются аналогии из механики и гидравлики, с которыми они часто встречаются в жизни.
Конструкции, рекомендуемые для самостоятельного изготовления, взяты из курса, который автор уже много лет ведет в радиокружке. Автор книги надеется, что авторы используемых в книге статей благосклонно отнесутся к такому подходу. Рекомендуемые конструкции подобраны таким образом, что каждый радиолюбитель может проверить свои знания на практике. Если в предлагаемой для изготовления конструкции радиолюбитель найдет незнакомые для себя элементы (транзисторы, микросхемы и т.д.), он может обратиться к соответствующей главе книги, где, как правило, может найти ответ на свой вопрос.

Введение
Глава 1. Электро- и радиотехнические материалы.

Пайка и основы электрического монтажа
1.1.Металлы
1.1.1.Правка листового материала
1.1.2.Изгибание листового металла
1.1.3.Изгибание листового дюралюминия
1.1.4.Резка металлов
1.1.5.Простые правила сверления
1.1.6.«Рубашка» для сверла
1.1.7.Вместо сверла - напильник
1.1.8.Опасности при сверлении
1.1.9.Резьба в отверстиях
1.1.10.Самодельные метчики для нарезки резьбы
1.1.11.Очистка загрязненных поверхностей
1.1.12. Уход за напильником
1.1.13.Надписи на металле
1.1.14.Совместимые и несовместимые пары металлов
1.2.Изоляционные материалы
1.2.1.Области применения
1.2.2.Работа с изоляционными материалами
1.3.Работа с древесиной
1.3.1.Покрытие эпоксидным клеем
1.3.2.Как освежить изделия и детали из светлой древесины
1.3.3.Ремонт трещин
1.4.Магнитные материалы
1.5.Провода
1.5.1.Обмоточные провода
1.5.1.1.Медные обмоточные провода
1.5.1.2.Высокочастотные обмоточные провода (литцендраты)
1.5.1.3.Обмоточные провода высокого сопротивления (манганин, константан, нихром)
1.5.2.Монтажные провода
1.6.Пайка и основы электрического монтажа
1.6.1. Устройство паяльника
1.6.2.Ремонт паяльника
1.6.3.Методика обучения пайке
1.6.4.Припои и флюсы
1.7.Полезные советы
1.7.1.Пайка алюминия
1.7.2.Пайка нихрома
1.7.3. Лужение провода в эмалевой изоляции
1.7.4.Вместо припоя - клей
1.7.5.Провод типа «литцендрат»
1.7.6. Лак для закраски паек
1.7.7. Зашита переводных надписей
Глава 2. Постоянный электрический ток
2.1.Электрическая цепь постоянного тока
2.2.Электрический ток и напряжение
2.3.Закон ома. сопротивление проводов
2.4.Последовательное и параллельное соединение резисторов
2.5.Измерение силы тока, напряжения и сопротивления
2.6.Мощность электрического тока
2.7. Для самостоятельного изготовления
2.7.1. Миллиавометр
2.8.Полезные советы
2.8.1. Измерение напряжений вольтметром с малым входным сопротивлением
2.8.2. Измерение постоянных напряжений миллиамперметром
2.8.3. Измерение силы тока низкоомным вольтметром
2.8.4. Измерение малых сопротивлений миллиамперметром
2.8.5. Измерение сопротивлений вольтметром
2.8.6.Два способа измерения сопротивления и тока полного отклонения микроамперметра с помощью двух постоянных резисторов
2.8.7. На что способна батарейка
2.9.Задачи
Глава 3. Переменный ток
3.1.Переменный ток синусоидальной формы, получение переменного тока, основные параметры
3.2.Электрическая цепь переменного тока. Элементы цепи
3.2.1. Конденсатор как накопитель электрической энергии
3.2.2. Конденсатор «не пропускает» постоянный ток
3.2.3.Сопротивление конденсатора переменному току зависит от его емкости и частоты тока
3.2.4. Сила тока опережает напряжение на емкости на угол п/2
3.2.5. Катушка индуктивности обладает индуктивным сопротивлением, которое также называется реактивным
3.2.6. Последовательное и параллельное соединение катушек индуктивности
3.2.7. Катушка индуктивности как накопитель магнитной энергии
3.2.8. Сила тока отстает от напряжения на катушке индуктивности на угол п/2
3.2.9. На активном сопротивлении (на резисторе) сила тока и напряжение совпадают по фазе
3.3. Интегрирующие и дифференцирующие цепи
3.4. Последовательный колебательный контур
3.5. Для самостоятельного изготовления
3.5.1.Цветомузыкальная приставка
3.5.2. Усилитель звуковой частоты «электронное ухо»
3.5.3. Электронная сирена с усилителем
3.5.4.Когда напряжение сети нестабильно
3.5.5. Тиристорный регулятор напряжения
3.5.6. Два варианта включения ламп дневного света
3.6. Полезные советы
3.6.1. Определение назначения обмоток сетевого трансформатора
3.6.2. Определение числа витков обмоток сетевого трансформатора
3.6.3. Нахождение обмотки с большим числом витков
3.6.4. Электродвигатель станет сильнее
3.6.5. Устройство для намагничивания магнитов
3.6.6. Как размагнитить инструмент
3.7.Задачи
Глава 4. Полупроводниковые приборы
4.1. Полупроводниковые диоды
4.2.1.Рекомендации по применению диодов
4.2.2.Стабилитроны -
4.3. Биполярные транзисторы
4.3.1. Общие сведения
4.3.2. Схемы включения транзисторов
4.3.3.Основные параметры транзисторов
4.3.4.Статические вах транзистора
4.3.5. Анализ усилительных каскадов
4.4.Полевые транзисторы
4.4.1. Основные параметры полевых транзисторов
4.4.2. Максимально допустимые параметры
4.4.3. Вольт-амперные характеристики ПТ
4.4.4. Рекомендации по применению ПТ
4.5. Тиристоры
4.4.1.Основные параметры тиристоров
4.6. Для самостоятельного изготовления
4.6.1. Испытатель тиристоров
4.6.2. Универсальный вольтметр
4.6.3. Индикатор радиоактивности
4.6.4. Пробник для проверки однопереходных транзисторов
4.7. Полезные советы. Простые эксперименты с диодами и стабилитронами
4.7.1. Как снять ВАХ диода? (рис. 4.39)
4.7.2. Регулятор мощности на одном диоде (рис. 4.40)
4.7.3. Управление люстрой по двум проводам (рис. 4.41)
4.7.4. Простейший генератор шума (рис. 4.42)
4.7.5. Получение прямоугольных импульсов из синусоидального напряжения (рис. 4.43)
4.7.6. Стабилитрон - ограничитель постоянного напряжения (рис. 4.44)
4.7.7. Как «растянуть» шкалу вольтметра (рис. 4.45)
4.7.8. Подключение кассетного магнитофона или приемника к автомобильной сети (рис. 4.46)
4.7.9. Транзистор - переменный резистор (рис. 4.47)
4.7.10. Транзистор в качестве стабилитрона (рис. 4.48)
4.7.11. Транзистор как выпрямительный диод (рис.4.49)
4.7.12. Устройство для термоиспытаний транзисторов (рис. 4.50)
4.7.13. Определение цоколевки транзистора (рис. 4.51)
4.7. Задачи
Глава 5. Питание радиоэлектронных устройств от сети переменного тока
5.1.Однофазные выпрямители
5.2.Сглаживающие фильтры
5.2.1.Емкостные фильтры
5.2.2.Г-образные фильтры
5.3.Внешние характеристики выпрямителей
5.4.Стабилизаторы напряжения
5.4.1. Параметрические стабилизаторы напряжения
5.5. Для самостоятельного изготовления
5.5.1.Приставка-автомат к блоку питания
5.5.2. Стабилизатор в адаптере
5.5.3. Электрошоковое средство защиты
5.5.4. Формирователь биполярных напряжений }

Загрузка...