sonyps4.ru

Прошивка ST Link, установка драйверов. Финальный вариант платы

Собственно можно сказать: "А на кой он мне нужен, когда есть Discovery". С какой-то стороны да... Но. Первый камень в огород. Собирал схему на Discovery1 для работы с параллельной ОЗУ на 1 Мб. 40 проводков. Отлаживал, отлаживал и бац, нужно залить другой контроллер. Ё-ё-ё мое. Все разбери, после перепрошивки собери. Благо есть еще Discovery4. Но та же проблема. Второй камень. Discovery голая плата. Как-то ваяя очередной шедевр в 60 проводков я где-то на что-то наехал и бум. Коротнул Discover-ку напрочь. Начал разбираться. Короче коротыш попал на входное питание от USB. Слава богу или скорее инженеру ST за то что он поставил диод. Тот принял все на себя и порт не сгорел. Все бы хорошо, да вот надпись 60 на диоде мне ничего не говорила. Полез на сайт ST, нашел телефон поддержки, звоню. Але говорю, нужон наминал диёда. А мне в ответ, не волнуйтесь, давайте ка вашу почту. Даю адрес и бац мне скидывают документацию на Discovery. Схемы, платы, описание. Ну просто сказка. Я тут же нашел диод, впаял и о чудо, все заработало. После этого случая дабы не повторить содеянное я решил прикупить программатор от ST. Я думаю все его видели, такое белое яйцо с эмблемкой. Но так и не купил. Цена, какая цена. За такую цену можно купить 3 Discovery и иметь сразу три программатора. Немного подумав я вспомнил про схему которую мне скинули. Там же есть та самая... Открыл файл, заценил. Хмы, а в первой платке-то ST-LINK и усе, а интересно что в Discovery4. Взял плату и вижу надпись на ней. www.st.com/stm32f4-discovery. Так... Зашел по ссылке, куча файлов и о чудо, архив с документацией и схемой. С надеждой решил зайти на страничку родного программатора. Ага. Ща... Так вам и дали схему. В общем решил довольствоваться схемой от Discovery4.
Вот она.

Изучил сей манускрипт и понял что тут чего-то не хватат. Полез в ейнтернет и вижу что на всех просторах есть только две схемы. Одна ну ооочень замороченная, другая слишком простая (тока SWD). Не думаю, надо их скрестить. Посидел, покумекал, порисовал и радил вот такое чудо.

На проводок не обращайте внимания. Это я не запаял перемычку, а узрел после впайки разъема. Так как перемычка оказалась под разъемом и подлезть к ней не удалось, я припаял проводок. Если пропаять перемычку, то провод не нужен. После сборки его нужно прошить. Ха. Вот тут затык. Где взять прошивку для МК. Полазив в интернете я нарыл какую-то кривую прошивку, которая не работает, но имеет одну важную вещь. С этой прошивкой программатор цепляется к родному ST-шному драйверу и отдается на обновление прошивкой от ST. То есть после прошивки обнавляемся и все. И так к делу. Если вы еще не собрали плату, то дальше читать нет смысла. Для тех кто спаял, смотрим на свое изваяние. Если посмотреть на светодиоды, то рядом с красным можно увидеть два пина. Перед подачей питания на него нужно надеть джампер.

Далее справа от основного разъема есть еще три пина, это Rx, Tx и GND. К ним нужно подключить COM-порт. Эта к стати еще один плюс, данный программатор лишен проблемы курицы и яйца. Для программирования его МК нужен только COM-порт. Какой вы будете использовать, решать вам. Я использовал физический с переходником на TTL. Питание нужно подать 3,3в на 1 пин основного разъема. Если программатор положить светодиодами кверху, то на основном разъеме этот пин будет в левом нижнем углу. Лично я не стал замарачиватся и запитал от USB. У меня есть USB-хаб с возможностью подключить внешнее питание, вот через него я и запитал. То есть питание от USB пришло, а пины для данных не активны.

После того как подключили питание, если все спаяно нормально и без ошибок, МК должен быть готов к прошиванию. Далее запускаем программу Да кстати вот архив со всем что нужно. Распаковать в корень диска.

Жмем Next. Видим как идет общение с МК.

Когда все успокоится снова жмем Next.

В этом окне нужно указать загружаемый файл. Выбираем из архива файл STLinkV2.J16.S4 и жмем Next. После загрузки окно будет выглядеть так.

Теперь снимаем джампер и отключаем COM-порт. Следующим шагом устанавливаем драйвер st-link_v2_usbdriver . На момент написания статьи драйвер самый последний. Если время прошло много, то можно более свежий драйвер скачать на сайте ST. После установки драйвера подключаем программатор к USB. Если все до этого момента было сделано правильно, windows увидит девайс и установит для него драйвер.

Если все установилось удачно, то запускаем программу ST-LinkUpgrade с бабочкой. Появится окно с тетенькой у которой взгляд "Не скажу куда гляжу". Интересно кто такую нашел. Все же это лицо компании. Ну дело не в этом.

Жмем Device Connect. Если программа увидит программатор, а это должно произойти, то активируется кнопка.

Жмем на кнопку Yes >>>> и ждем пока не появится уведомление о удачном обновлении.

Собственно все. Программатор работает. Осталась выпилить отверстия в корпусе и напечатать этикетку. Вот что у меня получилось.

Для мучений и изучений данного девайса. Сказано, сделано. Была собрана платка и пошло поехало. Ах да! Тема нашего разговора зашла о сравнении двух МК. Один выше сказанный против ATmega328. Почему именно они. Оба МК в корпусе TQFP-32. (Правда ATmega328 бывает и в DIP корпусе)
Теперь давайте рассмотрим по ближе их внутренности. Для большего понимания я собрал все необходимые данные в одну табличку.

Параметры ATmega328 STM32F030K6T6
Разрядность 8 бит 32 бита
FLASH 32кб 32кб
SRAM 1кб 4кб
EEPROM 512б -
Таймер 8 бит 2 шт -
Таймер 16 бит 1 шт 16 шт
ШИМ 3 канала 6 каналов
USART 1 шт 1 шт
SPI 1 шт 1 шт
I2C 1 шт (TWI) 1 шт
АЦП 8 каналов 10 бит 16 каналов 12 бит
Питание 2,7 - 5,5 2,4 - 3,6
Скорость 0 - 16МГц 48МГц при внешних 4 - 32МГц
Стоимость 160 - 170 руб. 80 - 140 руб.
Как видно из таблицы, STM32 довольно интереснее и богаче чем AVR. Есть правда одна мелочь. У STM32 нет EEPROM, но зато есть DMA которое просто убивает AVR напрочь. Правда AVR может похвастаться Ардуиной и простатой программирования. Да не спорю, но у STM32 есть STM32Cube, который генерит код для IAR и берет на себя всю рутину настройки периферии. И последний гвоздь в "гроб" AVR это RTOS. Да, на AVR тоже можно установить, но с ней надо разбираться, а в STM32 ставим галочку "FREERTOS" и все. Система сама сделает все что нужно, а нам останется только создавать потоки и писать код в них. Ну это так для затравки. На самом деле там все немного сложнее. Короче STM32 мне нравится и для того чтобы окончательно склонить вас на эту платформу, бросив в ящик стола Ардуину, я создам от начала до конца плату и покажу как с ней работать. О, забыл. У всех STM32 есть отладчик SWD. Это три провода SWDIO, SWCLK, GND и можно скакать по строкам кода прямо в железе, а не как у ATmega328 виртуально в Протеусе. Для этого нужен всего лишь универсальный программатор ST-LINK. Его можно использовать если приобрести плату Discovery или отдельно программатор . А теперь от слов к делу.
Схема. Покрупнее
Данную плату я делал как модуль для своей отладочной платы под AVR. Но ее можно повторить разведя плату по своему усмотрению (Проект под DipTrace я выложу в конце статьи). Что на схеме. А на схеме простая обвязка как и для AVR. Кварц на 8МГц с двумя конденсаторами по 20p. Так же как и в AVR собрана схема питания для опорки АЦП. Цепь сброса как у AVR. Единственное отличие это цепь BOOT. В отличии от AVR у всех STM32 на борту есть железный загрузчик. По умолчанию он выведен на USART. То есть если прижать к питанию ножку BOOT0 и рестартануть МК, то при помощи программы Flash Loader Demonstrator можно прошить МК без программатора. Данная фишка полезна если у вас уже есть готовое и работающее устройство и необходимо обновить прошивку, то нужно лишь переходник USB USART. Многие не хотят связываться с STM32 из-за питания не более 3,6 вольт. Ерунда. Если посмотреть в таблицу пинов, то можно заметить что все ножки могут принимать на себя 5 вольт без последствий. Поехали дальше.

А так она выглядит установленная на плату.

Теперь подключаем программатор ST-LINK-GA к SWD разъему.

Теперь когда все готово, качаем свежую версию с сайта ST (ссылка в самом низу страницы). Устанавливаем и запускаем.

Жмем New Project. И в появившемся окне находим наш контроллер. Жмем Ок.

После небольших раздумий. программа выдаст вот такое окно.

Расписывать что и зачем я не буду, так как это тема отдельной статьи. Сейчас для примера просто сделайте то что я покажу. Что мы будем делать. Мы запустим операционную систему и в единственном потоке будем моргать светодиодом. Этакий "Хелой Ворд" из пушки.))) Для этого в левом окошке нажмите на плюс у надписи "FREERTOS" и в выпавшем списке поставте галочку.

Причем как только будет выбран внешний кварц, справа на контроллере подсветятся зеленым ножки на которые нужно его повесить. Следующим делом надо выбрать ножку на которой будет висеть светодиод. Я выбрал порт В и пин 0. И нашел граблю.Я с перепугу что ли, не знаю зачем, перевернул выводную гребенку первых четырех пинов к верху ногами. Отсюда неразбериха на порте В. Этот косяк касается только моей платы. Но ничего, от этого МК работать не перестал. И так как настроить пин. Дело в том что у STM все пины могут принимать кучу значений, но если касаться дискретного ввода/вывода, то на выход может быть три варианта. Выход в воздухе, выход с подтяжкой к плюсу питания, выход с подтяжкой к общей шине. По умолчанию STM32CubeMX вешает ножку в воздухе. Ну и пусть, нам же нужно просто проверить работу и продемонстрировать силу STM32. Для того чтобы настроить ножку, нужно щелкнуть по ней левой кнопкой мышки и в появившемся окне выбрать GPIO_Output. Если МК мелковат, то можно покрутить колесиком и увеличить его.)))

Следующим этапом нужно настроить тактование МК. Дело в том что у STM32 с этим делом очень мутно. В отличии от AVR у STM32 на входе стоит кварц с частотой от 4 до 32 МГц, а на шинах его можно разогнать до 48 МГц. Внутри МК очень сложная система тактования, но на помощь нам идет опять STM32CubeMX. Переходим во вкладку Clock Configuration и настраиваем как на картинке ниже.

Вот и все. Жмем на иконку с шестеренкой на верху.

Появится вот такое окно.

А вот тут я забыл сказать. Скачайте и установите себе IAR. Его можно скачать у официалов но урезанный по количеству кода, либо можно найти в торрентах. Либо если много лишних денег, то можно и прикупить лицензию. Ну я думаю многие пойдут по тропе с CodeVisionAVR. В общем это оставляю на ваше усмотрение. У меня версия 7.40. Возвращаемся к Кубу. В окошке назовите проект, но только латинскими, IAR не любит русские буквы в путях. И задайте где будет хрониться проект. В окне IDE нужно выбрать (а он по умолчанию) EWARM. Жмем Ок. Программа думает, а потом выдает вот такое окно. Бла-бла-бла. В общем жмем открыть проект (для тех кто в танке средняя кнопка).

Окно исчезнет, а вместо него запустится IAR и наш проект. Слева заходим в Aplication->User и запускаем main.c. Вот эта куча кода и есть то что нагенерил за нас STM32CubeMX.

И что теперь с этим ужасом делать? А вот для этого нужно целую серию статей))) А сейчас просто находим вот такой кусок кода.

Это и есть наш единственный поток. В теле цикла for(;;) удаляем единственную функция osDelay(1);, а вместо нее запишем вот такой код. HAL_GPIO_WritePin(GPIOB,GPIO_PIN_0,GPIO_PIN_SET);
osDelay(500);
HAL_GPIO_WritePin(GPIOB,GPIO_PIN_0,GPIO_PIN_RESET);
osDelay(500);

Чудненько. Теперь просто жмем на кнопочку с зеленой стрелочкой справа на верху и ждем компиляцию и загрузку.

Если все правильно и без ошибок, то программа соберет весь проект, создаст все что нужно и загрузит прошивку в МК. После этого перейдет в режим отладки. Вот он родной. Мечта AVR-щика. Если есть не преодолимое желание поюзать, то можно прям на железе походить по шагам, строка за строкой. А если охота посмотреть как работает программа, то жмен на крестик сверху слева и наслаждаемся микание светодиода.

Вот и все. Микроконтроллеры можно купить по самой низкой цене аж по 78 рублей за штуку в магазине ЧипРезистор . Ну а если хочется по дешевле то есть и мелкий опт. От 35 штук уже по 50 руб.
Проект для DipTrace.
И конечно же видео.


гость 31.12.15 10:35

Недавно хотел сделать частотомер на АТМЕГА16 плюс внешний 8 бит счетчик на 74логике, -не хватило быстродействия.На ассемблере писать-голова не выдержит,городить внешний счетчик на 16 бит-геморойно.АВР - это прошлый век, недешевый контроллер.Поддержу автора, АВР это пройденый этап,я тоже купил чип stm32f100 плюс чип адаптера ЮСБ CP2103, скоро от АВР все откажутся.

Алексей 31.12.15 12:26

Я не согласен. Все таки еще развивается Arduino и многие на нее подсели, а последняя в свою очередь работает на AVR. Переход на STM это что-то вроде перехода на следующий уровень. Так сказать из Детсада в школу.

АНОНИМ 12.02.16 10:44

AVR и STM32 это процессоры не конкурирующие друг с другом. В вашей табличке нет самого главного параметра - это ток потребления!! А посмотрев на них - можно прослезится. Atmega 328 - – Active Mode: 0.2 mA – Power-down Mode: 0.1 µA – Power-save Mode: 0.75 µA (Including 32 kHz RTC) STM32F030K6T6 48 MHz - Active Mode: периферия включена 23.3 mA периферия выключена 11.5 mA - Stop Mode: 0.048 mA STM32 жрёт электричество нещадно - грубо говоря в 100 раз больше чем AVR. От батарейки девайс на STM32 не запитаешь. А вот AVR будут работать месяцами. Так что отказаться от AVR трудно. Удачи всем.

Алексей 12.02.16 10:54

А никто и не предлагает отказаться от AVR. Я лишь показа разницу в периферии. Я до сих пор поддерживаю библиотеку для AVR и до сих пор мой основной МК ATMega8A.

Сергей 24.02.16 18:02

На мой взгляд как то странно сравнивать свежие STM32 с пенсионерами AVR. Если хотите сравнивать STM32 с контролерами ATMEL, то сравнивайте их с семейством ATSAM но не как ни с AVR.

Андрей 24.02.16 18:06

Это кто это пенсионер? AVR жив и будет еще жить хрен знает сколько. И глядя в таблицу, сравнение по моему идет больше по периферии, а не по архитектуре.

Алексей 24.02.16 19:04

Ну начинается. Давайте теперь обсудим АМД и Интел.

Сергей 24.02.16 22:02

На хабре один "знаток" написал, что у AVR нет параллельной шины для подключения стандартного LCD, а у STM32 есть...

Алексей 24.02.16 22:36

Что значит стандартный LCD? Это про FSMC? Так это не только для дисплея, это и для памяти. Просто параллельная шина. У AVR тоже есть, например у Mega8515. К ней через регистр-защелку можно SRAM подключить.

Сергец 25.02.16 06:24

Алексей, ну а я про что?! Такое впечатление, что вы даже не пытаетесь вникнуть в смысл моих сообщений.

Алексей 25.02.16 09:38

Ну, а какой смысл сравнивать два одинаковых микроконтроллера разных фирм. Оба на ядре ARM. Если совсем придираться, то тогда уж надо сравнивать AVR с STM8. Я то придерживался приближенностью периферии, формфактора и цены. И как раз разной архитектуры.

Адлан 03.06.16 17:40

Здравствуйте. Помогите, пожалуйста, кто может. Установил последнюю версию Куба 4.15, Библиотеки F1 1.4.0. Созданный пустой проект в EWARM не компилируется - больше сотни ошибок. ЧТо может быть? Спасибо [email protected]

Алексей 03.06.16 20:48

Адлан, первое что нужно сделать, так это скинуть проект который не компилится.

Doc 18.07.16 21:51

"Правда AVR может похвастаться Ардуиной и простатой программирования." ЧЕМ может похвастаться? ;D

Алексей 19.07.16 11:41

Это глупое сравнение. Во первых у STM есть аналог ардуины под названием нуклео. Программы пишутся в онлайн IDE прямо через браузер. А вот если плюсы лично камня, то. Частота работы ядра 72МГц, AVR и не снилась такая скорость. Конечно если маргать светодиодом, то разницы никакой, а вот если запустить ось и кучу периферии, то AVR сдуется. Разряднось, 32 далеко не 8. Попериферии на STM может находиться 3 I2C, 3 SPI, 6 UART, USB, CAN, Ethernet. Почти все имеет возможность ремапится, то есть переноситься на другие ноги мк. Есть так же DMA, это независимый сопроцессор для работы с периферией. Так что прерывания у AVR нервно курят в сторонке. Есть аппаратный SDIO для полноценной работы с CD картами, а не костыльный ISP в AVR. В общем там много чего еще есть, но самый жирный камень в огород AVR, это помехоустойчивосиь. AVR выбить пролегающим рядом кабелем от электромортора как нефиг делать, а вот STM нужно постараться. Так что язвить с ардуиной я бы не советовал.

гость 11.08.16 23:27

MICROCHIP поглотила AVR!))))))))))

Алексей 12.08.16 08:35

Опоздали с новостью, уже как лет пять назад.

Владимир 17.08.16 22:56

Алексей! В январе 2016 года фирма Microchip покупает Atmel за 3,56 млрд долларов.Каких 5лет?

Алексей 18.08.16 10:30

Это деюро, а дефакто это тянется аж с 2008 года. Так что я действительно ошибся, не 5 лет, а 8 лет назад.))))

Владимир 18.08.16 23:53

Алексей!Стал переходитьна stm32 !А насчёт потребления в авотономном режиме советует всё не тактировать, тогда и снизится ток потребления.

Олег 09.11.16 22:31

В datashet на STM не нашел графиков потребления оттактовой CLK системной как у AVR - а по тем табличкам что есть - STM32 вчистую проигрывает акак в обычном режмие, так и в Idle. Да и нет у этого STM32 тактовой в 72Мгц - только 48 макс, ивсе, так что даже при 32 разрядах 8 битник AVR - лучше получается, и кстати производитель в datasheet не написал сколько тактов в STM32 машинный цикл у него, так что если окажется 2 такта против 1 у AVR - то считай что 48/2=24 реальных Мгца - почти те же самые что и у 20 Мгц у AVR. Вот и вопрос - а чудо-то где у этого STM32 о котором Вы все талдычете?

АНОНИМ 09.11.16 23:03
Алексей 10.11.16 00:23

Я даже не хочу спорить. Что лучше Интел или АМД? Или Жигули или Волга? У СТМ есть аппаратный USB, CAN, Ethernet, SDIO и еще куча периферии которой AVRу только может присниться во сне. В конце концов есть ДМА как самостоятельный сопроцессор с прямым доступом к памяти перед которым все прерывания AVR нервно покуривают в сторонке. Например у первых сериях на борту сразу 3 UARTа, 2 SPI, 3 I2C. Ремап портов есть и не нужно ломать башку как развести плату. Если вам по нраву работать с AVR, то работайте, кто вам мешает. Я по сей день под мелкие проекты леплю меги восьмые и не жалуюсь. Ай да, воткните AVR рядом с пускателем и посмотрите как ему башку снесет наводками. У AVR нет защиты от ЭМН. Поэтому в автосигнализации всегда ставили ПИКи, так как АВР умирает в таких условиях. Да чего спорить, дохлый номер.

Корнет 27.11.16 21:22

Ну кстати уже есть ардуино и на STM32. Это и Амперка и Espruino всякие на JS) Тем более если Микрочип взял Атмел ну нафиг их

Алексей 27.11.16 21:44

Название Espruino пародирует Arduino, самую известную на тот момент хобби-платформу, но Espruino не совместима с классической Arduino Uno ни механически, ни программно.(цитата из Амперки)
Еще у меня есть плата Нуклео и она тоже никаким боком к Arduino не относится, разве что геометрией самой платы)))
Вообще по сути я использую тот МК, который подходит для текущей задачи.

Андрей 20.12.16 22:50

Кому нравится переплачивать: стоит attiny2313-20 - 2Kb-flash /128bit-ram/16bit_ timer -1/8bit_ timer -1 =2.1$ против stm32f103c8t6 64Kb-flash/20Kb-sram/16BIT timer (+контроль мертвого времени для двухканального режима ШИМ) -4/ADC-2/72MHz CPU/=2.3$.По-моему сделать измеритель импеданса цепи RLC c помощью авр практически нереально,либо городить 10 камней.А с STM и БПФ можно сделать(ДМА помогает).Попытался как-то сделать на Меге10 частотомер (точность 1 герц)- банально не хватило быстродействия (либо городить внешний 32-битный счетчик с регистром сдвига-откуда габариты).От АВР отказался год назад, AVR- выходит, для небедных людей.

Andrey 20.12.16 22:53

АНОНИМ писал-"И вот еще, цитата из описания STM32 на русском - "...С
момента
получения
прерывания
до
начала
выполнения
первой
команды
обработчика
прерывания
затрачивается
только
двенадцать
циклов
тактового
сигнала"

Это правда.Но перемножьте два 32-битных числа на avr - явно 8-10 тактов!

Алексей 20.12.16 23:31

Да, я уже сожалею что этот халивар начал.))))

Александр 21.12.16 00:27

Почитал коменты и вспомнил.
Два малыша в песочнице
Один дудука!
Второй, бибика!
Первый, ДУдука! (интонация более грозная)
Второй, БИБИКА! (С еще более выразительной интонацией)
Первый ДУДУКА! (Уже крича)
Второй БИБИКА!!! (Чуть ли не плача)
....
Закончилось эта баталия, оба стоят и плачат, один громче другова.)))

Вал 10.02.17 01:43

Какая частота будет если зациклить без задержки
while (1)
{
HAL_GPIO_WritePin(GPIOB,GPIO_PIN_0,GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOB,GPIO_PIN_0,GPIO_PIN_RESET);
}

Алексей 10.02.17 10:07

Та что на шине APB

Игорь 08.06.17 22:33

Так давайте сразу ноутбуки во встраиваемые системы встраивать, они же лучше чем СТМ в сотни раз, и пееферии там ну просто охрененно сколько, там уже и вай фай есть и блютузы и даже программаторы не нужны, сразу и монитор есть с клавой чтобы писать прогу и сразу запустить, и программаторы не нужны и отладчики.
Всё равно что купить себе на дачу в личное пользование экскаватор для того чтобы ИНОГДА выкапывать пару ям глубиной в пол метра.
Ставить в термостат, часы, весы СТМ ну по моему это не нормально. Кстати да, как насчёт энергонезависимой памяти, вот делаю я термостат, выставляю температуру, тут вырубается свет, и что, настройки потеряны. А ведь во встроенные системы которые должны настраиваться 1 раз для дальнейшей работы, значения должны сохраняться навсегда

Алексей 09.06.17 08:25

Ну например в чип-дип STM32F030F4P6 стоит 48р, а прямой аналог ATtiny2313 98р. Я думаю для построения термостата любого из них будет достаточно. А компенсация памяти у STM может быть в любом датчике температуры. Да хотя бы в том же DS18B20. А что касается ноутов, так в любом терминале приема оплаты как раз установлен ПК с ОС и монитором. Так что даже такие системы есть. При выборе МК в первую очередь выбирают тот что дешевле. Это если хобби, то можно купить ардуину дабы не заморачиваться с пайкой, а когда систему планируется ввести на производство и выпускать сотнями, то считается каждая копейка. И переплата за МК 50 рублей при его цене в 48 это непозволительная роскошь.

Руслан 17.06.17 21:46
Я ее переделал под хол!
Но при подключении вилазят еррори!
Нужна информация как работать с не родними библиотеками!
В интернете ничего не нашел там только расказивают как подключать родние библиотеки.
Если "плохо искал" то дайте ссилку где можно посмотреть или почитать как ето делать!
А еще лучше сделайте видео, думаю многим начинающим (и не только) оно будет интересно посмотреть!
Заранее благодарен!
Алексей 05.08.17 10:19
Руслан 22.11.17 12:17

Я имел ввиду ето https://www.youtube.com/watch?v=wOIlhRd-vN8
5 - 7 минута!!!

Руслан 22.11.17 12:18

Алексей подскажите пожалуйста как работать с перечислениями "enum" а то нигде нету такой информации и в ваших видео "Си для самих маленьких" тоже нету а мне как раз очень надо!
Когда баловался AVR-ками то такоє чудо как перечисления не встречал а сейчас заинтересовался STM-ками а там их очень много! И нету информации как с ними работать!
Есть такой пример из реального кода:


StatusCode MIFARE_Read(byte blockAddr, byte * buffer, byte * bufferSize);

Где StatusCode ето перечисление:


enum StatusCode: byte {
STATUS_OK , // Success
STATUS_ERROR , // Error in communication
STATUS_COLLISION , // Collission detected
STATUS_TIMEOUT , // Timeout in communication.
STATUS_NO_ROOM , // A buffer is not big enough.
STATUS_INTERNAL_ERROR , // Internal error in the code. Should not happen ;-)
STATUS_INVALID , // Invalid argument.
STATUS_CRC_WRONG , // The CRC_A do es not match
STATUS_MIFARE_NACK = 0xff // A MIFARE PICC responded with NAK.
};

Ето из ардуиновской библиотеки(С++), но Keil ругается на ето!
Как правильно записать возврат функцией перечисления?

Руслан 22.11.17 12:29

И еще как обьявить в функции одним из аргументов которой есть перечисление:


void PCD_WriteRegister(PCD_Register reg, byte value);

Где PCD_Register перечислениє:


enum PCD_Register: byte {
// Page 0: Command and status
// 0x00 // reserved for future use
CommandReg = 0x01 << 1, // starts and stops command execution
ComIEnReg = 0x02 << 1, // enable and disable interrupt request control bits
DivIEnReg = 0x03 << 1, // enable and disable interrupt request control bits
ComIrqReg = 0x04 << 1, // interrupt request bits
...
};

А reg ето как я понял име перечисления но его нигде нету обьявленним в коде и откуда оно взялось мне не понятно!
Много страний перечитал в интернете и нашел информацию что ети перечисления можно заменить дефайнами но все же хотелось би узнать как с ними работать!!!

Руслан 22.11.17 12:35

С нетерпением жду ответа!
Может снимите видосик как с ними работать,чтоб и для других било, думаю видео будет очень полезним потому что таких видео нету(по крайней мере я не нашел)!

Дмитрий 28.11.17 22:02

"простатой программирования"

Интересный орган для программирования контроллеров. Вообще как можно было сравнивать 32-битные с 8-битными непонятно. Как Порш Каен с Зарпорожцем.

Алексей 29.11.17 10:24

Можно сравнивать, можно. Просто нужно учесть что в данном сравнении Порш стоит дешевле Запорожца. По поводу урологии, так пикантнее. Так что исправлять не буду.

Константин 23.12.17 00:06

Руслан, я не понимаю, как ты ищешь и ничего не находишь (видимо, не ищешь). Это самые-самые основы языка С (не только для МК, но и для компов). Почитай книгу Кернигана и Ритчи, там весь С прекрасно описан.
А на твои вопросы никто тебе отвечать не будет, это элементарщина.

АНОНИМ 11.02.18 16:27

Почему вы сравниваете 32разрядный МК ST с 8разрядным Atmel. Глупое сравнение. Равносильно сравнивать 32разрядный Atmel AT91SAM с 8разрядными STM8 учитывая даже что у Atmel есть 32 разрядники еще мощнее

Алексей 13.02.18 12:18

Потому что на момент написания статьи, 8-ми бинтных ST не было в продаже, а по цене мега и СТМ32 стоят одинаково.

ST-Link/V2 специальное устройство разработанное компанией ST для отладки и программирования микроконтроллеров серии STM8 и STM32. Про сам прибор можно прочитать на сайте компании ST .

Основные его возможности:

    Выход 5В для питания устройства

    USB 2.0 высокоскоростной интерфейс

    SWIM, JTAG/serial wire debugging (SWD) интерфейсы

    SWIM поддержка низкоскоростного и высокоскоростного режимов

    SWD and serial wire viewer (SWV)

    Возможность Обновление прошивки

Так как микроконтроллеры STM32 построены на ядре ARM Cortex , которое имеет интерфейс отладки SWD, то ST-Link позволяет программировать и отлаживать и другие 32-битные микроконтроллеры на базе ARM-Cortex.

Это, можно сказать, единственный программатор микроконтроллеров STM8. Для программирования STM32 существуют и другие универсальные программаторы.

Где можно купить программатор STM8 STM32 ST-Link

На текущий момент интерес к микроконтроллерам ST очень большой. Поэтому программатор ST link довольно широко распространен на рынке. Существует несколько версий, отличающихся по цене.

Оригинальный ST Link от компании ST, как всегда, самый дорогой вариант. Стоит больше 2 000 руб.

Мини ST link (очень похож на наш вариант этого программатора) стоит около 600 руб. Купить его можно у крупных поставщиков электроники - Компэл, Терра электроника и другие.

Ali express (Китай) - тут предлагается большое количество самых простых вариантов Программатора, но в общем, они все рабочие, ими вполе можно пользоваться. Как правило они годятся для программирования STM8 и STM32. Единственное, они не имеют SWO выхода, но он нужен не так часто. Пожалуй, единственный минус тут, это ожидание покупки. Стоимость около 150-200 руб.

Если вам не нужен программатор STM8, а нужна только серия STM32, то хорошим вариантом будут платы Discovery от ST, они имеют на бору и программатор ST link. Однако, как правило, разъем для программирования STM8 там не разведен.

Ну и конечно, можно просто купить детали и сделать данное устройство самостоятельно. В основе лежит не самый дешевый микроконтроллер STM32, да и купить детали дешево не так просто, так что, стоимость будет от 300 до 400 рублей. В данной статье мы будем рассказывать, как собрать данный прибор самостоятельно из набора необходимых SMD компонент. Конечно же мы рекомендуем пойти этим путем. Только так вы сможете научится трассировке плат, их изготовлению и паянию.

Как изготовить программатор ST-LINK V2

2. Подготовить или приобрести необходимые инструменты: все для пайки , USB UART адаптер (будет нужен для программирования МК)

4. Скачать необходимые файлы по данному прибору с github .

5. Изготовить плату для прибора самостоятельно (это совсем несложно, в нашей инструкции все подробно описано).

6. Приобрести все необходимые комплектующие можно в нашем магазине за 300 руб.

7. Запаять все компоненты на плату, смотри наше видео .

ПРИБОР ГОТОВ , можно пользоваться!

Поиск схемы для ST Link программатора, отладчика

Сама компания ST не дает нам схему данного прибора, однако есть схемы ее ознакомительных плат серии DISCOVERY, в которых приводится и схема отладчика. Например документ UM0919. Но она не полная, там присутсвует только SWD интерфейс. В основе микроконтроллер STM32F103C8T6.


Вторая схема, которая есть в документе UM1670, содержит выводы SWIM выходов, но это уже версия V2.2 на другом микроконтролере STM32F103CBT6.


Также в интернет удалось найти схему ST-LINK v2, восстановленную по оригинальному прибору:

Вот из этих трех схем нам надо разработать схему для нашего устройства. Но сначала давайте составим основные требования к прибору, который мы будем делать.

Требования к нашему ST-LINK

Мы будем делать приборы на базе STM8, а также STM32, процессоров NUVOTON Cortex-M0, ATMEL. Все они будут питаться от 3.3В или 5В. Так что, нам не нужна возможность работать с микроконтроллерами на напряжении 1.8В. Но сама возможность программировать STM8 нужна обязательно.

Мы делаем прибор для своих задач, поэтому у нас нет необходимости в стандартных разъемах SWIM и JTAG. Будет делать такой разъем, который удобнее для трассировки платы.

Версия 2.2 на микроконтролере STM32F103CBT6 добавляет второе USB устройство - COM порт UART, но он уже у нас есть, так что, нет смысла переплачивать, микроконтроллер там дороже. Правда у него есть хорошая возможность - прошивка через интерфейс DFU, то есть микроконтроллер видится как флешка при подключении по USB, и прошивку просто надо скопировать на диск. Но прошить надо будет один раз, и для этого у нас есть USB UART адаптер, прошивать первый раз будет через него. Дальнейшее обновление прошивки идет уже через программу от ST по USB. Мы будем делать версию 2.0 на базе STM32F103C8T6.

Оригинальная версия ST-Link содержит микросхему преобразования уровней, что удобно для отладки и прошивки готового устройства, и необходимо для работы с напряжением ниже 3.3В. У нас таких не будет, а для работы с 5В и 3.3В - преобразование уровней не нужно.

Прибор будем делать в формате USB dongle, соответсвенно будет использоваться разъем USB-A male.

На защите выходов можно сэкономить, так что не будем использовать защитные диоды. Достаточно будет сопротивлений на всех выходах разъемов на случай, если вдруг мы их подключим на 5В или землю. Надо обязательно иметь в виду, что пользоваться данным прибором надо аккуратно! Все выходы при подключении проверять несколько раз! Выход 3.3В больше защищен, он идет через регулятор напряжения, защищающий от КЗ. Так что, лучше питать тестовые схемы от него!

Теперь можно составить финальную схему нашего ST-Link.

В интернет предложено много готовых плат и схем данного прибора, но в целях обучения мы специально строим схему и делаем плату сами, основываясь на DATASHEET, выложенных проиводителем. Если вы копируете схему с какого либо другого сайта вы должны в ней разобраться, что и как там сделано, почему выкинули или добавили какие-то элементы.

Финальная схема

Саму схему вы можете посмотреть в файлах данного прибора. Здесь же приведем ее для комментирования основных узлов.

Основная часть:


Питание и разъемы:

Небольшие комментарии.

В качестве регулятора питания на 3.3в используем NCP603 - очень хороший LDO, выдает ток до 300ма с падением 300mv и точностью +-3%. Светодиоды индикации - обычные smd светодиоды двух цветов. Для программирования по UART необходимо вывод BOOT0 соединить с +3В, для этого выведем его на разъем. Также необходимо вывести сам UART - ножки RX TX. Все остальные выводы без защиты выведем на разъем. Пользуюсь этим программатором уже больше года, и кз были и помехи - ничего не сгорело ни разу.

В некоторых схемах ставится самовостанавливающийся предохранитель на питание от USB для защиты самого порта. Современные компьютеры имеют защиту на портах USB, в том числе предохранители и токовые ограничивающие ключи, так что он не нужен. Но лучше конечно не проверять это, и не ошибаться! Напряжение 3.3в идет с нашего LDO , который имеет защиту от КЗ и от перегрева, и не выдает больше 600ма , там тоже защищать нечего.

Очень удобно подключать STM8 для программирования с помощью ST-Link, нужно всего 3 провода - питание, земля и SWIM выход. Это так же удобно при разводке плат, можно разводить только SWIM выход, землю и питание всегда можно найти на плате.

Трассировка платы в Kicad с помощью автотрассировщика Topor

В приборе USB UART адаптер мы уже тренировались трассировать плату в Kicad вручную. Данный прибор чуть сложнее. На нем можно поучиться разводить плату в автотрассировщике TOPOR . Весь процесс лучше просмотреть на видео в конце статьи, здесь будут лишь небольшие комментарии к видео.

Подготовка платы к автотрассировке

Для того, чтобы работать с Topor, надо сначала подготовить плату в Kicad. Необходимо определить границы платы, импортировать все компоненты и предварительно их расположить. У нас нет требований к разъемам, поэтому на первом этапе лучше сам разъем удалить с платы. Так как каждый вывод разъема соединен через резистор, то резисторы и будут ориентиром выводов разъема. Также для расстановки компонент можно удалить все конденсаторы питания, кварцы, микросхемы питания (их лучше располагать на обратной стороне - там обычно много места) - это все можно расставить потом.

Теперь необходимо определить сторону кажого копонента. И примерно расположить их как необходимо, разъемы расположить у края. И на этом этапе можно все это перебросить в Topor и там продолжить размещение копонентов. USB разъем, светодиоды сразу располагаем на обратной стороне, все остальное на лицевой.

Размещение компонентов с помощью Topor

Теперь переносим это все в Topor и продолжаем там. Чем хорош Topor? Тем, что каждый раз, подвигав компоненты, можно перепроложить все трассы автоматически и посмотреть стало лучше или хуже. Также Topor умеет переворачивать простые компоненты - резисторы, конденсаторы. Нам важно понять как удобнее расположить выводы разъемов, и основные компоненты.

Покрутив и подвигав компоненты в Topor мы пришли к такому расположению:


Теперь необходимо этот результат перекинуть в Kicad обратно и добавить остальные компоненты. Перед финальной трассировкой необходимо:

    расположить микросхемы питания

    развести вручную цепи питания

    распложить и подключить кварц, и конденсаторы питания

    переопределить выводы разъема на схеме.

Автотрассировка

Перебрасываем нашу полутрассировку в Topor.

Необходимо сразу установить правила трассировки - ширину зазоров, дорожек, размеры переходных отверстий. При первом импорте из Kicad надо выделить все компоненты и зафиксировать их, чтобы можно было легко удалить кнопкой del и заново перепроложить трассировку, оставляя наш полуручной вариант. В параметрах автотрассировки обязательно необходимо установить галку «Использовать имеющуюся разводку в качестве начального варианта», иначе наши ручные трассы будут перепроложены (Сам процесс работы в Topor смотри на видео).

После автотрассировки перебрасываем все обратно и доводим до финального варианта - добавляем земляные полигоны, выравниваем где необходимо дорожки. Плата готова.

Финальный вариант платы

Лицевая сторона


Обратная сторона

Прошивка ST Link, установка драйверов

Плата готова, делаем ее методом холодного переноса тонера ацетоном (или любым другим), травим, собираем прибор. Перед первым включением, обязательно проверьте любым мультиметром , что между 5В и GND сопртивления нет (бесконечно велико) - это будет гарантировать, что нет короткого замыкания. Также надо проверить сопротивление между 3.3В и GND.

Для работы с нашим устройством необходимо установить драйвера, прошить его первый раз по UART стартовой прошивкой и потом обновить прошивку до последней версии специальной программой от ST.

Все микроконтроллеры STM32 имеют bootloader и прошиваются по UART. Для прошивки необходимо:

Теперь у нас есть ST LINK, но со старой прошивкой. Убираем все провода. Скачиваем с сайта ST программу обновления прошивки STSW-LINK007 и драйвера STSW-LINK009 для windows. Вставляем новоиспеченный ST-Link в USB порт компьютера, и запускаем программу обновления прошивки, в ней жмем CONNECT и потом обновить прошивку до последней версии. Прибор ГОТОВ! Теперь у вас есть программатор-отладчик и можно перейти к программированию.

Готовое устройство

Самостоятельная работа

Потренируйтесь разводить плату. Сделайте это вручную, с помощью программы Topor и без. Вы должны уметь быстро делать любую несложную плату.

В последние годы 32 разрядные микроконтроллеры (МК) на основе процессоров ARM стремительно завоёвывают мир электроники. Этот прорыв обусловлен их высокой производи тельностью, совершенной архитектурой, малым потреблением энергии, низкой стоимостью и развитыми средствами программирования.

КРАТКАЯ ИСТОРИЯ
Название ARM является аббревиатурой Advanced RISC Machines, где RISC (Reduced Instruction Set Computer) обозначает архитектуру процессоров с сокращённым набором команд. Подавляющее число популярных МК, а пример семейства PIC и AVR, также имеют архитектуру RISC, которая позволила увеличить быстродействие за счёт упрощения декодирования инструкций и ускорения их выполнения. Появление совершенных и производительных 32 разрядных ARMмикроконтроллеров позволяет перейти к решению более сложных задач, с которыми уже не справляются 8 и 16 разрядные МК. Микропроцессорная архитектура ARM с 32 разрядным ядром и набором команд RISC была разработана британской компанией ARM Ltd, которая занимается исключительно разработкой ядер, компиляторов и средств отладки. Компания не производит МК, а продаёт лицензии на их производство. МК ARM – один из быстро развивающихся сегментов рынка МК. Эти приборы используют технологии энергосбережения, поэтому находят широкое применение во встраиваемых системах и доминируют на рынке мобильных устройств, для которых важно низкое энергопотребление. Кроме того, ARM микроконтроллеры активно применяются в средствах связи, портативных и встраиваемых устройствах, где требуется высокая производительность. Особенностью архитектуры ARM является вычислительное ядро процессора, не оснащённое какими либо дополнительными элементами. Каждый разработчик процессоров должен самостоятельно до оснастить это ядро необходимыми блоками под свои конкретные задачи. Такой подход хорошо себя зарекомендовал для крупных производителей микросхем, хотя изначально был ориентирован на классические процессорные решения. Процессоры ARM уже прошли несколько этапов развития и хорошо известны семействами ARM7, ARM9, ARM11 и Cortex. Последнее делится на подсемейства классических процессоров CortexA, процессоров для систем реального времени CortexR и микропроцессорные ядра CortexM. Именно ядра CortexM стали основой для разработки большого класса 32 разрядных МК. От других вариантов архитектуры Cortex они отличаются, прежде всего, использованием 16разрядного набора инструкций Thumb2. Этот набор совмещал в себе производительность и компактность «классических» инструкций ARM и Thumb и разрабатывался специально для работы с языками С и С++, что существенно повышает качество кода. Большим достоинством МК, построенных на ядре CortexM, является их программная совместимость, что теоретически позволяет использовать программный код на языке высокого уровня в моделях разных производителей. Кроме обозначения области применения ядра, разработчики МК указывают производительность ядра CortexM по десятибалльной шкале. На сегодняшний день самыми популярными вариантами являются CortexM3 и CortexM4. МК с архитектурой ARM производят такие компании, как Analog Devices, Atmel, Xilinx, Altera, Cirrus Logic, Intel, Marvell, NXP, STMicroelectronics, Samsung, LG, MediaTek, MStar, Qualcomm, SonyEricsson, Texas Instruments, nVidia, Freescale, Миландр, HiSilicon и другие.
Благодаря оптимизированной архитектуре стоимость МК на основе ядра CortexM в некоторых случаях даже ни же, чем у многих 8разрядных приборов. «Младшие» модели в настоящее время можно приобрести по 30 руб. за корпус, что создаёт конкуренцию предыдущим поколениям МК. МИКРОКОНТРОЛЛЕРЫ STM32 Рассмотрим наиболее доступный и широко распространённый МК семейства STM32F100 от компании STMicroelectronics , которая является одним из ведущих мировых производителей МК. Недавно компания объявила о начале производства 32битного МК, использующего преимущества индустриального
ядра STM32 в недорогих приложениях. МК семейства STM32F100 Value line предназначены для устройств, где не хватает производительности 16разрядных МК, а богатый функционал «обычных» 32разрядных приборов является избыточным. Линейка МК STM32F100 базируется на современном ядре ARM CortexM3 с периферией, оптимизированной для применения в типичных приложениях, где использовались 16разрядные МК. Производительность МК STM32F100 на тактовой частоте 24 МГц превосходит большинство 16разрядных МК. Данная линейка включает приборы с различными параметрами:
● от 16 до 128 кбайт флэшпамяти программ;
● от 4 до 8 кбайт оперативной памяти;
● до 80 портов ввода вывода GPIO;
● до девяти 16разрядных таймеров с расширенными функциями;
● два сторожевых таймера;
● 16канальный высокоскоростной 12разрядный АЦП;
● два 12разрядных ЦАП со встроенными генераторами сигналов;
● до трёх интерфейсов UART с поддержкой режимов IrDA, LIN и ISO7816;
● до двух интерфейсов SPI;
● до двух интерфейсов I2С с поддержкой режимов SMBus и PMBus;
● 7канальный блок прямого доступа к памяти (DMA);
● интерфейс CEC (Consumer Electronics Control), включённый в стандарт HDMI;
● часы реального времени (RTC);
● контроллер вложенных прерываний NVIC.

Функциональная схема STM32F100 представлена на рисунке 1.

Рис. 1. Архитектура МК линейки STM32F100

Дополнительным удобством является совместимость приборов по выводам, что позволяет, при необходимости, использовать любой МК семейства с большей функциональностью и памятью без переработки печатной платы. Линейка контроллеров STM32F100 производится в трёх типах корпусов LQFP48, LQFP64 и LQFP100, имеющих, соответственно, 48, 64 и 100 выводов. Назначение выводов представлено на рисунках 2, 3 и 4. Такие корпуса можно устанавливать на печатные платы без применения специального оборудования, что является весомым фактором при мелкосерийном производстве.


Рис. 2. МК STM32 в корпусе LQFP48 Рис. 3. МК STM32 в корпусе LQFP64


Рис. 4. МК STM32 в корпусе LQFP100

STM32F100 – доступный и оптимизированный прибор, базирующийся на ядре CortexM3, поддерживается развитой средой разработки МК семейства STM32, которая содержит
бесплатные библиотеки для всей пе риферии, включая управление двига телями и сенсорными клавиатурами.

СХЕМА ВКЛЮЧЕНИЯ STM32F100C4
Рассмотрим практическое использование МК на примере самого простого прибора STM32F100C4, который, тем не менее, содержит все основные блоки линейки STM32F100. Принципиальная электрическая схема включения STM32F100C4 представлена на рисунке 5.


Рис. 5. Схема включения МК STM32F100C4

Конденсатор С1 обеспечивает сброс МК при включении питания, а конденсаторы С2-С6 фильтруют напряжение питания. Резисторы R1 и R2 ограничивают сигнальный ток выводов МК. В качестве источника тактовой частоты используется внутренний генератор, поэтому нет необходимости применять внешний кварцевый резонатор.


Входы BOOT0 и BOOT1 позволяют выбрать способ загрузки МК при включении питания в соответствии с таб лицей. Вход BOOT0 подключён к шине нулевого потенциала через резистор R2, который предохраняет вывод BOOT0 от короткого замыкания при его использовании в качестве выход ного порта PB2. С помощью соединителя J1 и одной перемычки можно из менять потенциал на входе BOOT0, определяя тем самым способ загрузки МК – из флэшпамяти или от встроенного загрузчика. При необходимости загрузки МК из оперативной памяти аналогичный соединитель с перемычкой можно подключить и к входу BOOT1.
Программирование МК осуществляется через последовательный порт UART1 или через специальные программаторы – отладчики JTAG или STLink. Последний входит в состав популярного отладочного устройства STM32VLDISCOVERY , изображённого на рисунке 6. На плате STM32VLDIS COVERY 4контактный разъём программатора – отладчика STLink – имеет обозначение SWD. Автор статьи предлагает программировать МК через последовательный порт UART1, поскольку это значительно проще, не требует специального оборудования и не уступает в скорости JTAG или ST Link. В качестве управляющего устройства, способного формировать команды и отображать результаты работы про граммы МК, а также в качестве программатора можно использовать любой персональный компьютер (ПК), имеющий последовательный COM порт или порт USB с преобразователем USBRS232.

Для сопряжения COMпорта ПК с МК подойдет любой преобразователь сиг налов RS232 в уровни логических сигналов от 0 до 3,3 В, например, микросхема ADM3232. Линия передачи TXD последовательного порта компьютера, после преобразователя уровней, должна подключаться к входу PA10 микроконтроллера, а линия приёмника RXD, через аналогичный преобразователь, – к выходу PA9.

При необходимости использования энергонезависимых часов МК, к нему следует подключить элемент питания типа CR2032 с напряжением 3 В и кварцевый резонатор на частоту 32768 Гц. Для этого МК оснащён выводами Vbat/GND и OSC32_IN/OSC32_OUT. Предварительно вывод Vbat необходимо отключить от шины питания 3,3 В.

Оставшиеся свободными выводы МК можно использовать по необходимости. Для этого их следует подключить к разъёмам, которые расположены по периметру печатной платы для МК, по аналогии с популярными устройствами Arduino и отладочной платой STM32VLDISCOVERY .


Рис. 6. Отладочное устройство STM32VLDISCOVERY


Схема электрическая принципиальная STM32VLDISCOVERY.

Таким образом, в зависимости от назначения и способа применения МК, к нему можно подключать необходимые элементы, чтобы задействовать другие функциональные блоки и пор ты, например, ADC, DAC, SPI, I2C и т.п. В дальнейшем эти устройства будут рас смотрены подробнее.

ПРОГРАММИРОВАНИЕ
Сегодня многие компании предлагают средства для создания и отладки программ микроконтроллеров STM32. К их числу относятся Keil от ARM Ltd, IAR Embedded Workbench for ARM, Atol lic TrueStudio, CooCox IDE, GCC и Eclipse IDE. Разработчик может выбрать про граммные средства по своему пред почтению. Ниже будет описан инструментарий Keil uVision 4 от компании Keil , который поддерживает огромное число типов МК, имеет развитую систему отладочных средств и может быть использован бесплатно с ограничениями размера генерируемого кода 32 кбайт (что, фактически, максимально для рассматриваемых МК).

Простой и быстрый старт с CooCox CoIDE.

Итак приступим. Идем на официальный сайт CooCox и качаем последнюю версию CooCox CoIDE . Для скачивания необходимо зарегистрироваться, регистрация простая и бесплатная. Затем инсталлируем скачанный файл и запускаем.

CooCox CoIDE — среда разработки, на базе Eclipse, которая помимо STM32 поддерживает кучу других семейств микроконтроллеров: Freescale, Holtek, NXP, Nuvoton, TI, Atmel SAM, Energy Micro и др. С каждой новой версией CoIDE список МК постоянно пополняется. После успешной установки CoIDE запускаем:

Появится стартовое окно Step 1, в котором необходимо выбрать производителя нашего микроконтроллера. Нажимаем ST и переходим к Step 2 (выбор микроконтроллера), в котором необходимо выбрать конкретную модель. У нас STM32F100RBT6B, поэтому нажимаем на соответствующую модель:

Справа, в окне Help отображаются краткие характеристики каждого чипа. После выбора нужного нам микроконтроллера переходим к третьему шагу Step 3 — к выбору необходимых библиотек для работы:

Давайте создадим простейший проект для мигания светодиодом, как это принято для изучения микроконтроллеров.

Для этого нам понадобится библиотека GPIO, при включении которой, CoIDE попросит создать новый проект. На это предложение нажимаем Yes, указываем папку где будет храниться наш проект и его название. При этом, CoIDE подключит к проекту 3 другие, необходимые для работы библиотеки, а также создаст всю необходимую структуру проекта:

Чем еще хорош CoIDE, это тем, что в нем есть возможность загружать примеры прямо в среду разработки. В вкладке Components вы можете видеть, что почти к каждой библиотеке есть примеры, нажимаем на GPIO (with 4 examples) и видим их:

Туда можно добавлять и свои примеры. Как видно на скриншоте выше, в примерах уже присутствует код для мигания светодиодом GPIO_Blink. Можно нажать кнопку add и он добавиться в проект, но как подключаемый файл, поэтому мы сделаем по другому просто скопируем весь код примера в файл main.c. Единственное, строку void GPIO_Blink(void) замените на int main(void). Итак, нажимаем F7 (или в меню выбираем Project->Build), чтобы скомпилировать проект и… не тут то было!

Среде нужен компилятор GCC, а у нас его нет. Поэтому идем на страничку GNU Tools for ARM Embedded Processors , справа выбираем тип вашей ОС и качаем последнюю версию тулчайна. Затем запускаем файл и инсталируем gcc toolchain. Далее, в настройках CoIDE укажем правильный путь к тулчайну:

Опять нажимаем F7 (Project->Build) и видим, что компиляция прошла успешно:

Осталось прошить микроконтроллер. Для этого при помощи USB подключаем нашу плату к компьютеру. Затем, в настройках дебаггера необходимо поставить ST-Link, для этого в меню выбираем Project->Configuration и открываем вкладку Debugger. В выпадающем списке выбираем ST-Link и закрываем окно:

Попробуем прошить МК. В меню выбираем Flash->Program Download (или на панели инструментов щелкаем по соответствующей иконке) и видим, что МК успешно прошит:

На плате наблюдаем мигающий светодиод, видео или фото я думаю приводить нет смысла, т.к. все это видели.

Также, в CoIDE работают различные режимы отладки, для этого нажимаем CTRL+F5 (или в меню Debug->Debug):

На этом все. Как видите, настройка среды CoIDE и работа с ней очень проста. Надеюсь данная статья подтолкнет вас в изучении очень перспективных и недорогих микроконтроллеров STM32.

ST-LINK/V2 - крайне экономичное решение для внутрисхемного программирования и отладки микроконтроллеров STM8 и STM32. Изделие имеет минимальные габариты. На плате для защиты от короткого замыкания установлен самовосстанавливающийся предохранитель на 500 мА. Выходные уровни напряжения ST-LINK/V2 составляют 3.3 В и 5 В. К компьютеру плата подключается через стандартный USB порт. Для работы с целевой платой используются SWIM и SWD интерфейсы, которые характеризуются быстрым откликом при отладке и высокой скоростью программирования. Отладчик работает в полноскоростном (FS) режиме. Доступны стандартные функции отладки: пошаговое выполнение программы, точки останова, просмотр переменных и регистров и т. д. ST-LINK/V2 имеет обновляемое firmware для расширения списка совместимых МК. Режим обновления ПО - автоматический. Изделие поддерживается широким спектром программных средств, среди которых интегрированные среды разработки IAR, Keil, ATOLLIC, а также утилиты STM.

ST-LINK/V2 поддерживает все STM8 (SWIM интерфейс) и все STM32 (SWD интерфейс).

Для работы с изделием требуется установить USB драйвер.

Таблица 1. Сравнительные характеристики различных моделей программаторов/отладчиков

Параметр

ST-LINK/V2 (mini)

ST-LINK/V2

Примечание

Диапазон напряжений SWD

ST-LINK/V2 иST-LINK/V2 (mini) низковольтные МК STM32

Диапазон напряжений SWIM

Поддержка SWV

Отладочные интерфейсы

ST-LINK/V2 и ST-LINK/V2 (mini) поддерживает STM8/STM32 с использованием отдельных интерфейсов

LED индикатор

Двухцветный LED

Двухцветный LED

Красный LED

Двухцветный светодиод увеличивает возможности индикации состояний

Предохранитель

Предохранитель поможет избежать повреждений при КЗ

Таблица 2. ST-LINK/V2 (mini) должен быть подключен к приложению на STM8 через SWIM интерфейс

Таблица 3. ST-LINK/V2 (mini) должен быть подключен к приложению на STM32 через SWD интерфейс

Примечание. Чтобы избежать повреждения ST-LINK/V2 (mini), VCC и GND должны быть подключены корректно.

Рис. 1. Программатор/отладчик ST-LINK/V2 . Общий вид

Рис. 2. Программатор/отладчик ST-LINK/V2 . Вид сверху

Рис. 3. Программатор/отладчик ST-LINK/V2 . Вид снизу

Отличительные особенности:

  • На плате установлен самовосстанавливающийся предохранитель 500 мА, чтобы избежать повреждения от КЗ;
  • Уровни выходного напряжения (3.3 V/5 V), простота отладки и программирования;
  • Стандартный USB интерфейс для простого подключения к PC;
  • Возможности отладки/программирования:
    • отладка: работа в полноскоростном режиме, пошаговое выполнение, точки останова, просмотр переменных и регистров и т. д.,
    • программирование: поддержка FLASHROM, EEPROM и т. д.,
    • USB2.0 и SWIM/ SWD интерфейсы: быстрый отклик в режиме отладки и высокая скорость программирования;
  • Обновляемое firmware:
  • Поддерживаемое ПО:
    • ST-LINK Utility v2.0 (или выше),
    • STVD Version 4.2.1 (или выше),
    • STVP Version 3.2.3 (или выше),
    • IAR EWARM Revision v6.20 (или выше),
    • IAR EWSTM8 Revision v1.30 (или выше),
    • KEIL RVMDK Revision v4.21 (или выше),
    • ATOLLIC,
    • TASKING;
  • Поддерживаемые микроконтроллеры:
    • все STM8 (SWIM интерфейс),
    • все STM32 (SWD интерфейс).

Дополнительную информацию и программное обеспечение можно найти на сайте производителя .

Анонс составил и подготовил
Шрага Александр,
a.



Загрузка...