sonyps4.ru

Пропускная способность канала. Пропускная способность каналов связи

  • 11. Каковы основные параметры квазигармонического колебания?
  • 12. Почему при спектральном анализе используется представление сигнала виде совокупности гармонических колебаний? Как для этого воспользоваться разложением сигнала в ряд Фурье?
  • 14. Из чего состоит амплитудный спектр монохроматического гармонического колебания?
  • 15. Поясните сущность понятий модуляции и демодуляции (детектирования) радиосигналов.
  • 17. В чём заключаются преимущества однополосной амплитудной модуляции?
  • 18. Почему частотную и фазовую модуляцию называют разновидностями угловой модуляции?
  • 19. В чем заключаются особенности и какие существуют разновидности импульсной модуляции?
  • 20. Как называется процесс дискретного изменения параметров радиосигналов?
  • 27. В чём особенности распространения радиоволн диапазонов овч, увч, свч:
  • 28. Почему большинством радиоэлектронных средств га функционирует в диапазонах овч, увч и свч:
  • 30. На какие разновидности делятся антенны по конструктивному признаку. Каковы различия линейных и апертурных антенн:
  • 31. В чем состоит сущность принципа взаимности:
  • 32. Каковы основные характеристики и параметры антенн. Что показывает диаграмма направленности антенн:
  • 33. Как взаимосвязаны между собой коэффициент усиления антенны и параметры ширины диаграммы направленности в горизонтальной и вертикальной плоскости?
  • 34. В чем заключаются особенности конструкций и размещения бортовых антенн?
  • 35. От чего и каким образом зависит дальность действия радиолиний связи?
  • 36. Почему энергетика радиолиний при радиолокации по точечному объекту обратно пропорциональна четвёртой степени расстояния?
  • 37. Каким образом влияет атмосфера и земная поверхность на дальность распространения радиоволн различных диапазонов?
  • 38. Что такое обнаружение сигналов? Какие процедуры оно включает?
  • 39. Каковы особенности корреляционного приёма сигналов? (из лекций)
  • 40. Каковы особенности согласованной фильтрации сигналов? (из лекций)
  • 41. По каким признакам и на какие разновидности классифицируют радиопередающие устройства (радиопередатчики)?
  • 42. Из каких функциональных элементов состоит типовая схема связного радиопередающего устройства? почему радиопередатчики строятся по многокаскадной схеме?
  • 43. Для чего в составе приемопередающей аппаратуры присутствуют специальные антенно-согласующие устройства? Каковы их основные функции?
  • 44. Для чего предназначены радиоприемные устройства? Какими основными параметрами они характеризуются?
  • 45. Какова структура, достоинства и недостатки радиоприемников прямого усиления?
  • 46. Какова структура, достоинства и недостатки радиоприемников супергетеродинного типа?
  • 47. Что составляет сущность понятий информации и сообщения? Что понимают под кодированием сообщений?
  • 49. От чего зависит пропускная способность канала связи?
  • 50. В чём сущность частотного уплотнения/разделения канала в многоканальных системах передачи информации.
  • 51. В чём сущность временного уплотнения/разделения каналов в многоканальных системах передачи инф-ии?
  • 52. Каковы принципы организации воздушной радиосвязи и наземной электросвязи.
  • 54. Какие эксплуатационные требования предъявляются к бортовым радиостанциям?
  • 57. Каково назначение антенно-согласующих устройств? Чем вызвана необходимость их применения?
  • 58. Чем вызвана необходимость формирования дискретной сетки частот с высокой стабильностью в приемопередающих радиоэлектронных средствах, применяемых в га?
  • 61. Для чего предназначены системы телефонной, телеграфной связи и системы передачи данных?
  • 62. Каковы назначение, решаемые задачи сетей электросвязи aftn, sita?
  • 63. Каковы назначения, принципы построения и функционирование спутниковых систем?
  • 64. Каковы особенности и принципы функционирования спутниковой системы поиска и спасения «коспас-сарсат»?
  • 49. От чего зависит пропускная способность канала связи?

    Под системой связи понимают совокупность устройств и сред, обеспечивающих передачу сообщений от отправителя к получателю. В общем случае обобщённую систему связи представляют блок-схемой.

    Пропускная способность – предельно возможная скорость передачи информации. Пропускная способность равна скорости телеграфирования, измеряемой числом телеграфных звонков, передаваемых в единицу времени. Предельная пропускная способность зависит от ширины полосы пропускания канала, а в общем случае от отношения Pc / Pп (мощность сигнала к мощности помех) и определяется по формуле . Это формула Шеннона, которая справедлива для любой системы связи при наличии флуктуационной помехи.

    50. В чём сущность частотного уплотнения/разделения канала в многоканальных системах передачи информации.

    Уплотнение- объединение абонентских сигналов единый сигнал.

    Разделение- выделение из единого группового сигнала, отдельных абонентских сигналов.

    Сущность частотного уплотнения- все абоненты работают на одной полосе частот, но каждый в своей полосе.

    При частотном уплотнении имеют место межканальные помехи, обусловленные не идеальностью фильтрующих систем и бесконечностью спектра сигнала.

    Основное достоинство систем многоканальной связи с частотным уплотнением - экономное использование спектра частот; существенные недостатки - накопление помех, возникающих на промежуточных усилительных пунктах, и, как следствие, сравнительно невысокая помехоустойчивость.

    51. В чём сущность временного уплотнения/разделения каналов в многоканальных системах передачи инф-ии?

    При временном уплотнении все абоненты работают в одной полосе частот, на работают циклично- каждый в свое время, а время цикла определяется Т. Котельникова (При временном уплотнении, являющемся логическим развитием импульсных систем связи, линия связи или групповой тракт связи посредством электронных коммутаторов предоставляется поочередно для передачи сигналов каждого канала.)

    При передачи речи Т=125 мкс

    Системы связи с частотным и временным уплотнениями применяют на магистральных кабельных линиях, радиорелейных линиях и т. д.

    52. Каковы принципы организации воздушной радиосвязи и наземной электросвязи.

    Под организацией связи понимают схему соединения абонентов каналами и распределения выделяемых для связи ресурсов, обеспечивающих высокую эффективность обмена информацией между звеньями.

    Осн. элемент авиационной воздушной р/связи – радиосеть. Радиосеть- совокупность РС, устанавливаемых в точках расположения взаимодействующих корреспондентов (в диспетчерском пункте и на борту ВС) и объединенная общими радиоканалами, те работающих на единых радиочастотах. Как правило радиосети организовываются по радиальному признаку. Радиосеть позволяет вести обмен информации между диспетчером и экипажем каждого ВС, а также циркулярную передачу данных всем ВС одновременно. Радиосети создаются в зависимости от числа секторов УВД.

    Важнейшим элементом, обеспечивающим непрерывность, является регламентированный порядок смены радиосетей. В сетях воздушной связи обычно назначается одна частота для передачи и приема, и связь осуществляется в симплексном режиме, когда передача и прием чередуются между собой.

    Элементами сетей наземной связи явл.: абонентские аппараты, канала и узлы связи. Узлы связи УС служат для распделения информации по линиям и каналам связи, ведущим в разные географические пункты. Принцип построения проводной телеграфной связи радиально-узловой, т.е предусматриваются главные узлы ГУС, объединяющие группы региональных узлов, и каналы связи, соединяющие узлы с главными узлами и друг с другом. Такой принцип обеспечивает достижение высокой оперативности и надежности связи, т.к можно использовать обходные пути. При создании сетей наземной связи широко используются каналы общегосударственных сетей связи. Наземная электросвязь в ГА служит для связи между аэродромами, административными и оперативными органами управления. Также организовывается сеть наземной телефонной связи.

    Существует множество факторов, способных исказить или повредить сигнал. Наиболее распространенные из них – помехи или шумы, представляющие собой любой нежелательный сигнал, который смешивается с сигналом, предназначенным для передачи или приема, и искажает его. Для цифровых данных возникает вопрос: насколько эти искажения ограничивают возможную скорость передачи данных. Максимально возможная при определенных условиях скорость, при которой информация может передаваться по конкретному тракту связи, или каналу, называется пропускной способностью канала.

    Существуют четыре понятия, которые мы попытаемся связать воедино.

      Скорость передачи данных – скорость в битах в се к у нду (бит / с), с которой мо г у т

    передаваться данны е;

      Ширина полосы – ширина полосы передаваемого сигнал а, ограничиваемая передатчи к ом и природой передающей среды. Выраж а ется в периодах в се к унд у, или герцах (Гц).

      Ш ум. Средний у рове н ь ш у м а в канале связи.

      Уровень ошибок – частота появления ош и бок. Ошибкой счита е тся прием 1 п р и переданном 0 и наоборот.

    Проблема, заключается в следующем: средства связи недешевы и, в общем случае, чем шире их полоса, тем дороже они стоят. Более того, все каналы передачи, представляющие практический интерес, имеют ограниченную ширину полосы. Ограничения обусловлены физическими свойствами передающей среды или преднамеренными ограничениями ширины полосы в самом передатчике, сделанными для предотвращения интерференции с другими источниками.

    Естественно, нам хотелось бы максимально эффективно использовать имеющуюся полосу. Для цифровых данных это означает, что для определенной полосы желательно получить максимально возможную при существующем уровне ошибок скорость передачи данных. Главным ограничением при достижении такой эффективности являются помехи.

        1. Методы доступа к среде в беспроводных сетях

    Одна из основных проблем построения беспроводных систем – это решение задачи доступа многих пользователей к ограниченному ресурсу среды передачи. Существует несколько базовых методов доступа (их еще называют методами уплотнения или мультиплексирования), основанных на разделении между станциями таких параметров, как пространство, время, частота и код. Задача уплотнения – выделить каждому каналу связи пространство, время, частоту и/или код с минимумом взаимных помех и максимальным использованием характеристик передающей среды.

    Уплотнение с пространственным разделением

    Основано на разделении сигналов в пространстве, когда передатчик посылает сигнал, используя код с , время t и частоту f в области s i . To есть каждое беспроводное устройство может вести передачу данных только в границах одной определенной территории, на которой любому другому устройству запрещено передавать свои сообщения.

    К примеру, если радиостанция вещает на строго определенной частоте на закрепленной за ней территории, а какая-либо другая станция в этой же местности также начнет вещать на той же частоте, то слушатели радиопередач не смогут получить «чистый» сигнал ни от одной из этих станций. Другое дело, если радиостанции работают на одной частоте в разных городах. Искажений сигналов каждой радиостанции не будет в связи с ограниченной дальностью распространения сигналов этих станций, что исключает их наложение друг на друга. Характерный пример – системы сотовой телефонной связи.

    Уплотнение с частотным разде л ением (Frequency Division Multiplexing, FDM)

    Каждое устройство работает на строго определенной частоте, благодаря чему несколько устройств могут вести передачу данных на одной территории (рисунок 3.2.6). Это один из наиболее известных методов, так или иначе используемый в самых современных системах беспроводной связи.

    Рисунок 3.2.6 – Принцип частотного разделения каналов

    Наглядная иллюстрация схемы частотного уплотнения - функционирование в одном городе нескольких радиостанций, работающих на разных частотах. Для надежной отстройки друг от друга их рабочие частоты должны быть разделены защитным частотным интервалом, позволяющим исключить взаимные помехи.

    Эта схема, хотя и позволяет использовать множество устройств на определенной территории, сама по себе приводит к неоправданному расточительству обычно скудных частотных ресурсов, поскольку требует выделения отдельной частоты для каждого беспроводного устройства.

    Уплотнение с временным разд е лением (Time Division Multiplexing, TDM)

    В данной схеме распределение каналов идет по времени, т. е. каждый передатчик транслирует сигнал на одной и той же частоте f в области s , но в различные промежутки времени t i (как правило, циклически повторяющиеся) при строгих требованиях к синхронизации процесса передачи (рисунок 3.2.7).

    Рисунок 3.2.7 – Принцип временного разделения каналов

    Подобная схема достаточно удобна, так как временные интервалы могут динамично перераспределяться между устройствами сети. Устройствам с большим трафиком назначаются более длительные интервалы, чем устройствам с меньшим объемом трафика.

    Основной недостаток систем с временным уплотнением – это мгновенная потеря информации при срыве синхронизации в канале, например, из-за сильных помех, случайных или преднамеренных. Однако успешный опыт эксплуатации таких знаменитых TDM-систем, как сотовые телефонные сети стандарта GSM, свидетельствует о достаточной надежности механизма временного уплотнения.

    Уплотнение с кодовым разделением (Code Division Multiplexing, CDM)

    В данной схеме все передатчики передают сигналы на одной и той же частоте f , в области s и во время t , но с разными кодами c i .

    Именем основанного на CDM механизма разделения каналов (CDMA, CDM Access)

    даже назван стандарт сотовой телефонной связи IS-95a, а также ряд стандартов третьего поколения сотовых систем связи (cdma2000, WCDMA и др.).

    В схеме CDM каждый передатчик заменяет каждый бит исходного потока данных на CDM-символ - кодовую последовательность длиной в 11, 16, 32, 64 и т.п. бит (их называют чипами). Кодовая последовательность уникальна для каждого передатчика. Как правило, если для замены «1» в исходном потоке данных используют некий CDM-код, то для замены «0» применяют тот же код, но инвертированный.

    Приемник знает CDM-код передатчика, сигналы которого должен воспринимать. Он постоянно принимает все сигналы, оцифровывает их. Затем в специальном устройстве (корреляторе) производит операцию свертки (умножения с накоплением) входного оцифрованного сигнал с известным ему CDM-кодом и его инверсией. В несколько упрощенном виде это выглядит как операция скалярного произведения вектора входного сигнала и вектора с CDM-кодом.

    Если сигнал на выходе коррелятора превышает некий установленный пороговый уровень, приемник считает, что принял 1 или 0. Для увеличения вероятности приема передатчик может повторять посылку каждого бита несколько раз. При этом сигналы других передатчиков с другими CDM-кодами приемник воспринимает как аддитивный шум.

    Более того, благодаря большой избыточности (каждый бит заменяется десятками чипов), мощность принимаемого сигнала может быть сопоставима с интегральной мощностью шума. Похожести CDM-сигналов на случайный (гауссов) шум добиваются, используя CDM-коды, порожденные генератором псевдослучайных последовательностей. Поэтому данный метод еще называют методом расширения спектра сигнала посредством прямой последовательности (DSSS - Direct Sequence Spread Spectrum), о расширении спектра будет рассказано ниже.

    Наиболее сильная сторона данного уплотнения заключается в повышенной защищенности и скрытности передачи данных: не зная кода, невозможно получить сигнал, а в ряде случаев - и обнаружить его присутствие. Кроме того, кодовое пространство несравненно более значительно по сравнению с частотной схемой уплотнения, что позволяет без особых проблем присваивать каждому передатчику свой индивидуальный код.

    Основной же проблемой кодового уплотнения до недавнего времени являлась сложность технической реализации приемников и необходимость обеспечения точной синхронизации передатчика и приемника для гарантированного получения пакета.

    Механизм мультиплексирования посредством ортогональных несущих частот (Orthogonal Frequency Div i sion Multiplexing , OFDM )

    Весь доступный частотный диапазон разбивается на достаточно много поднесущих (от нескольких сот до тысяч). Одному каналу связи (приемнику и передатчику) назначают для передачи несколько таких несущих, выбранных из всего множества по определенному закону. Передача ведется одновременно по всем поднесущим, т. е. в каждом передатчике исходящий поток данных разбивается на N субпотоков, где N – число поднесущих, назначенных данному передатчику.

    Распределение поднесущих в ходе работы может динамически изменяться, что делает данный механизм не менее гибким, чем метод временного уплотнения.

    Схема OFDM имеет несколько преимуществ. Во-первых, селективному замиранию будут подвержены только некоторые подканалы, а не весь сигнал. Если поток данных защищен кодом прямого исправления ошибок, то с этим замиранием легко бороться. Но что более важно, OFDM позволяет подавить межсимвольную интерференцию. Межсимвольная интерференция оказывает значительное влияние при высоких скоростях передачи данных, так как расстояние между битами (или символами) является малым.

    В схеме OFDM скорость передачи данных уменьшается в N раз, что позволяет увеличить время передачи символа в N раз. Таким образом, если время передачи символа для исходного потока составляет T s , то период сигнала OFDM будет равен NT s . Это позволяет существенно снизить влияние межсимвольных помех. При проектировании системы N выбирается таким образом, чтобы величина NT s значительно превышала среднеквадратичный разброс задержек канала.

    1.Что представляет из себя процесс передачи информации?

    Передача информации - физический процесс, посредством которого осуществляется перемещениеинформации в пространстве. Записали информацию на диск и перенесли в другую комнату. Данный процесс характеризуется наличием следующих компонентов:

    Источник информации. Приёмник информации. Носитель информации. Среда передачи.

    Схема передачи информации:

    Источник информации – информационный канал – приемник информации.

    Информация представляется и передается в форме последовательности сигналов, символов. От источника к приёмнику сообщение передается через некоторую материальную среду. Если в процессе передачи используются технические средства связи, то их называют каналами передачи информации (информационными каналами). К ним относятся телефон, радио, ТВ. Органы чувств человека исполняют роль биологических информационных каналов.

    Процесс передачи информации по техническим каналам связи проходит по следующей схеме (по Шеннону):

    Термином «шум» называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи, прежде всего, возникают по техническим причинам: плохое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемой по одним и тем же каналам. Для защиты от шума применяются разные способы, например, применение разного рода фильтров, отделяющих полезный сигнал от шума.

    Клодом Шенноном была разработана специальная теория кодирования, дающая методы борьбы с шумом. Одна из важных идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части информации при передаче может быть компенсирована. Однако нельзя делать избыточность слишком большой. Это приведёт к задержкам и подорожанию связи.

    2. Общая схема передачи информации

    3.Перечислите известные вам каналы связи

    Канал связи (англ. channel, data line ) - система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле (тракт связи ), представляет только физическую среду распространения сигналов, например, физическую линию связи.

    По типу среды распространения каналы связи делятся на:

    проводные ; акустические ; оптические ; инфракрасные ; радиоканалы .

    4. Что такое телекоммуникации и компьютерные телекоммуникации?

    Телекоммуникации (греч. tele - вдаль, далеко и лат. communicatio - общение) - это передача и прием любой информации (звука, изображения, данных, текста) на расстояние по различным электромагнитным системам (кабельным и оптоволоконным каналам, радиоканалам и другим проводным и беспроводным каналам связи).

    Телекоммуникационная сеть - это система технических средств, посредством которой осуществляются телекоммуникации.

    К телекоммуникационным сетям относятся:

    1. Компьютерные сети (для передачи данных)

    2. Телефонные сети (передача голосовой информации)

    3. Радиосети (передача голосовой информации - широковещательные услуги)

    4. Телевизионные сети (передача голоса и изображения - широковещательные услуги)

    Компьютерные телекоммуникации - телекоммуникации, оконечными устройствами которых являются компьютеры.

    Передача информации с компьютера на компьютер называется синхронной связью, а через промежуточную ЭВМ, позволяющую накапливать сообщения и передавать их на персональные компьютеры по мере запроса пользователем, - асинхронной.

    Компьютерные телекоммуникации начинают внедряться в образование. В высшей школе их используют для координации научных исследований, оперативного обмена информацией между участниками проектов, обучения на расстоянии, проведения консультаций. В системе школьного образования - для повышения эффективности самостоятельной деятельности учащихся, связанной с разнообразными видами творческих работ, включая и учебную деятельность, на основе широкого использования исследовательских методов, свободного доступа к базам данных, обмена информацией с партнерами как внутри страны, так и за рубежом.

    5. Что такое пропускная способность канала передачи информации?

    Пропускная способность - метрическая характеристика , показывающая соотношение предельного количества проходящих единиц (информации , предметов, объёма ) в единицу времени через канал, систему, узел.

    В информатике определение пропускной способности обычно применяется к каналу связи и определяется максимальным количеством переданной/полученной информации за единицу времени.

    Пропускная способность - один из важнейших с точки зрения пользователей факторов. Она оценивается количеством данных, которые сеть в пределе может передать за единицу времени от одного подсоединенного к ней устройства к другому.

    Скорость передачи информации зависит в значительной степени от скорости её создания (производительности источника), способов кодирования и декодирования. Наибольшая возможная в данном канале скорость передачи информации называется его пропускной способностью. Пропускная способность канала, по определению, есть

    скорость передачи информации при использовании «наилучших» (оптимальных) для данного канала источника, кодера и декодера, поэтому она характеризует только канал.

    5. В каких единицах измеряется пропускная способность каналов передачи информации?

    Может измеряться в различных, иногда сугубо специализированных, единицах - штуки, бит/сек , тонны ,кубические метры и т. д.

    6. Классификация компьютерных каналов связи(по способу кодирования, по способу коммуникации, по способу передачи сигнала)

    широковещательные сети; сети с передачей от узла к узлу.

    7. Характеристика кабельных каналов передачи информации (коаксиальный кабель, витая пара, телефонный кабель, оптоволоконный кабель)

    проводные – телефонные, телеграфные (воздушные) линии связи; кабельные – медные витые пары, коаксиальные, оптоволоконные;

    а также на основе электромагнитных излучений:

    радиоканалы наземной и спутниковой связи; на основе инфракрасных лучей.

    кабели на основе скрученных (витых) пар медных проводов; коаксиальные кабели (центральная жила и оплётка из меди); волоконно-оптические кабели.

    Кабели на основе витых пар

    Кабели на основе витых пар служат для передачи цифровых данных, широкое применение получили в компьютерных сетях. Возможно, также использовать их и для передачи аналоговых сигналов. Скручивание проводов снижает влияние внешних помех на полезные сигналы и уменьшает излучаемые электромагнитные колебания во внешнее пространство. Экранирование удорожает кабель, усложняет монтаж и требует качественного заземления. На рис. представлена типовая конструкция UTP на основе двух витых пар.

    Рис. Конструкция кабеля с незащищенной витой парой.

    В зависимости от наличия защиты – электрически заземлённой медной оплетки или алюминиевой фольги вокруг скрученных пар, определяют разновидности кабелей на основе витых пар:

    незащищенная витая пара UTP (Unshielded twisted pair) – отсутствует защитный экран вокруг отдельной пары;

    фольгированная витая пара FTP (Foiled twisted pair) – имеется один общий внешний экран в виде фольги;

    защищенная витая пара STP (Shielded twisted pair) – имеется защитный экран для каждой пары и общий внешний экран в виде сетки;

    фольгированная экранированная витая пара S/FTP (Screened Foiled twisted pair) – имеется защитный экран для каждой пары в фольгированной оплетке и внешний экран из медной оплетки;

    незащищенная экранированная витая пара SF/UTP (Screened Foiled Unshielded twisted pair) – двойной внешний экран из медной оплетки и фольги, каждая витая пара без защиты.

    1.5.2.2. Коаксиальный кабель

    Назначение коаксиального кабеля – передача сигнала в различных областях техники: системы связи; вещательные сети; компьютерные сети; антенно-фидерные системы аппаратуры связи и др. Этот тип кабеля имеет несимметричную конструкцию и состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции.

    Типовая конструкция коаксиального кабеля представлена на рис.1.22.

    Рис. 1.22. Типовая конструкция коаксиального кабеля

    Благодаря металлической экранирующей оплетке он имеет высокую помехозащищенность. Основным преимуществом коаксиала над витой парой является широкая полоса частот пропускания, что обеспечивает потенциально более высокие по сравнению с кабелями на основе витых пар скорости передачи данных, которые составляют до 500 Мбит/с. Кроме этого коаксиал обеспечивает значительно большие допустимые расстояния передачи сигналов (до километра), к нему труднее механически подключиться для несанкционированного прослушивания сети, а также он заметно меньше загрязняет окружающую среду электромагнитными излучениями. Однако монтаж и ремонт коаксиального кабеля сложнее, чем витой пары, а стоимость выше.

    Здесь используются обычные светодиодные трансиверы, что снижает стоимость и увеличивает срок службы по сравнению с одномодовым кабелем. На рис 1.24. приведена характеристика затухания сигналов в оптоволокне. По сравнению с другими типами кабелей используемых для линий связи этот тип кабеля имеет существенно более низкие величины затухания сигнала, которые обычно находятся в пределах от 0,2 до 5 дб на 1000 м длины. Многомодовое оптоволокно характеризуется окнами прозрачности затухания в диапазонах длин волн 380-850, 850-1310 (нм), а одномодовое соответственно 850-1310, 1310-1550 (нм).

    Рис 1.24. Окна прозрачности оптоволокна.

    Преимущества оптоволоконного типа связи:

    Широкая полоса пропускания.

    Обусловлена чрезвычайно высокой частотой несущего колебания. При применении технологии спектрального уплотнения каналов связи методом волнового

    мультиплексирования в 2009 г сигналы 155 каналов связи со скоростью передачи по 100 Гбит/с в каждом удалось передать на расстояние 7000 километров. Таким образом, общая скорость передачи данных по оптоволокну составила 15,5 Тбит/с. (Тера = 1000 Гига);

    Малое затухание светового сигнала в волокне.

    Позволяет строить волоконно-оптические линии связи большой длины без промежуточного усиления сигналов;

    Низкий уровень шумов в волоконно-оптическом кабеле.

    Позволяет увеличить полосу пропускания, путем передачи различной модуляции сигналов с малой избыточностью кода;

    Высокая помехозащищенность и защищенность от несанкционированного доступа.

    Обеспечивается абсолютной защищенностью оптоволокна от электрических помех, наводок и полным отсутствием излучения во внешнюю среду. Это объясняется природой светового колебания, которое не взаимодействует с электромагнитными полями других диапазонов частот, как и само оптоволокно, которое является диэлектриком. Используя ряд свойств распространения света в оптоволокне, системы мониторинга целостности оптической линии связи могут мгновенно отключить "взламываемый" канал связи и подать сигнал тревоги. Такие системы особенно необходимы при создании линий связи в правительственных, банковских и некоторых других специальных службах, предъявляющих повышенные требования к защите данных;

    Отсутствие необходимоости гальванической развязки узлов сети.

    Оптоволоконные сети принципиально не могут иметь электрических "земельных" петель, которые возникают, когда два сетевых устройства имеют заземления в разных точках здания;

     Высокая взрыво и пожаробезопасность, стойкость к агрессивным средам.

    Из-за отсутствия возможности искрообразования оптоволокно повышает безопасность сети на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска;

     Малый вес, объем, экономичность волоконно-оптического кабеля.

    Основу волокна составляет кварц (двуокись кремния), который является широко распространенным недорогим материалом. В настоящее время стоимость волокна по отношению к медной паре соотносится как 2:5. Стоимость самого оптоволоконного кабеля постоянно снижается, однако применение специальных оптических приемников и передатчиков (оптоволоконных модемов), преобразующих световые сигналы в электрические и обратно, существенно увеличивает стоимость сети в целом;

     Длительный срок эксплуатации.

    Срок службы оптоволокна составляет не менее 25 лет. Оптоволоконный кабель имеет и некоторые недостатки. Основным из них является высокая сложность монтажа. При соединении концов кабеля необходимо обеспечить высокую точность поперечного среза стекловолокна, последующую полировку среза и центровку стекловолокна при установке в разъём. Установка разъемов производится с помощью сварки стыка или методом склеивания с помощью специального геля, имеющего такой же коэффициент преломления света, что и стекловолокно. В любом случае для этого необходима высокая квалификация персонала и специальные инструменты. Кроме этого оптоволоконный кабель менее прочен и менее гибок, чем электрический, чувствителен к механическим воздействиям. Он чувствителен также и к ионизирующим излучениям, из-за которых снижается прозрачность стекловолокна, то есть увеличивается затухание сигнала в кабеле. Резкие перепады температур могут привести к растрескиванию стекловолокна. Для уменьшения влияния этих факторов используются различные конструктивные решения, что сказывается на стоимости кабеля.

    Учитывая уникальные свойства оптоволокна электросвязь на её основе находит всё более широкое применение во всех областях техники. Это компьютерные сети, городские, региональные, федеральные, а также межконтинентальные подводные первичные сети связи и многое др. С помощью оптоволоконных каналов связи осуществляются: кабельное телевидение, удалённое видеонаблюдение, видеоконференции и видеотрансляции, телеметрические и другие информационные системы.

    8. Характеристика беспроводных каналов передачи информации(спутниковые,

    радиоканалы, Wi-Fi, Bluetooth)

    Беспроводные технологии - подкласс информационных технологий , служат для передачи информации на расстояние между двумя и более точками, не требуя связи их проводами. Для передачи информации может использоваться инфракрасное излучение , радиоволны , оптическое или лазерное излучение.

    В настоящее время существует множество беспроводных технологий, наиболее часто известных пользователям по их маркетинговым названиям, таким как Wi-Fi , WiMAX , Bluetooth . Каждая технология обладает определёнными характеристиками, которые определяют её область применения.

    Существуют различные подходы к классификации беспроводных технологий.

    По дальности действия:

    o Беспроводные персональные сети ( WPAN - Wireless Personal Area Networks). Примеры технологий -Bluetooth .

    o Беспроводные локальные сети ( WLAN - Wireless Local Area Networks).

    Примеры технологий - Wi-Fi .

    o Беспроводные сети масштаба города ( WMAN - Wireless Metropolitan Area Networks). Примеры технологий -WiMAX .

    o Беспроводные глобальные сети ( WWAN - Wireless Wide Area Network).

    Примеры технологий - CSD , GPRS , EDGE , EV-DO , HSPA .

    По топологии:

    o «Точка-точка».

    o «Точка-многоточка».

    По области применения:

    o Корпоративные (ведомственные) беспроводные сети - создаваемые компаниями для собственных нужд.

    o Операторские беспроводные сети - создаваемые операторами связи для возмездного оказания услуг.

    Кратким, но ёмким способом классификации может служить одновременное отображение двух наиболее существенных характеристик беспроводных технологий на двух осях: максимальная скорость передачи информации и максимальное расстояние.

    Задачи Задача 1 . За 10 с по каналу связи передано 500 байт информации. Чему равна

    пропускная способность канала? (500/10=50 байт/с=400бит/с)

    Задача 2 . Какой объем информации можно передать по каналу с пропускной способностью 10 кбит/с за 1 минуту? (10 кбит/с*60 с = 600 кбит)

    Задача 3. Средняя скорость передачи данных с помощью модема равна 36864 бит/с. Сколько секунд понадобится модему, чтобы передать 4 страницы текста в кодировке КОИ-8, если считать, что на каждой странице в среднем 2304 символа.

    Решение: Количество символов в тексте: 2304*4 = 9216 символов.

    В кодировке КОИ-8 каждый символ кодируется одним байтом, тогда информационный объем текста 9216*8 = 73 728 бит.

    Время = объем / скорость. 73728: 36864 = 2 с

    Наименование параметра Значение
    Тема статьи: Пропускная способность
    Рубрика (тематическая категория) Технологии

    Основная задача, для решения которой строится любая сеть - быстрая передача информации между компьютерами. По этой причине критерии, связанные с пропускной способностью сети или части сети, хорошо отражают качество выполнения сетью ее основной функции.

    Существует большое количество вариантов определœения критериев этого вида, точно также, как и в случае критериев класса "время реакции". Эти варианты могут отличаться друг от друга: выбранной единицей измерения количества передаваемой информации, характером учитываемых данных - только пользовательские или же пользовательские вместе со служебными, количеством точек измерения передаваемого трафика, способом усреднения результатов на сеть в целом. Рассмотрим различные способы построения критерия пропускной способности более подробно.

    Критерии, отличающиеся единицей измерения передаваемой информации. В качестве единицы измерения передаваемой информации обычно используются пакеты (или кадры, далее эти термины будут использоваться как синонимы) или биты. Соответственно, пропускная способность измеряется в пакетах в секунду или же в битах в секунду.

    Так как вычислительные сети работают по принципу коммутации пакетов (или кадров), то измерение количества переданной информации в пакетах имеет смысл, тем более что пропускная способность коммуникационного оборудования, работающего на канальном уровне и выше, также чаще всœего измеряется в пакетах в секунду. При этом, из-за переменного размера пакета (это характерно для всœех протоколов за исключением АТМ, имеющего фиксированный размер пакета в 53 байта), измерение пропускной способности в пакетах в секунду связано с некоторой неопределœенностью - пакеты какого протокола и какого размера имеются в виду? Чаще всœего подразумевают пакеты протокола Ethernet, как самого распространенного, имеющие минимальный для протокола размер в 64 байта (без преамбулы). Пакеты минимальной длины выбраны в качестве эталонных из-за того, что они создают для коммуникационного оборудования наиболее тяжелый режим работы - вычислительные операции, производимые с каждым пришедшим пакетом, в очень слабой степени зависят от его размера, в связи с этим на единицу переносимой информации обработка пакета минимальной длины требует выполнения гораздо больше операций, чем для пакета максимальной длины.

    Измерение пропускной способности в битах в секунду (для локальных сетей более характерны скорости, измеряемые в миллионах бит в секунду - Мб/c) дает более точную оценку скорости передаваемой информации, чем при использовании пакетов.

    Критерии, отличающиеся учетом служебной информации. В любом протоколе имеется заголовок, переносящий служебную информацию, и поле данных, в котором переносится информация, считающаяся для данного протокола пользовательской. К примеру, в кадре протокола Ethernet минимального размера 46 байт (из 64) представляют из себяполе данных, а оставшиеся 18 являются служебной информацией. При измерении пропускной способности в пакетах в секунду отделить пользовательскую информацию от служебной невозможно, а при побитовом измерении - можно.

    В случае если пропускная способность измеряется без делœения информации на пользовательскую и служебную, то в данном случае нельзя ставить задачу выбора протокола или стека протоколов для данной сети. Это объясняется тем, что даже если при замене одного протокола на другой мы получим более высокую пропускную способность сети, то это не означает, что для конечных пользователœей сеть будет работать быстрее - если доля служебной информации, приходящаяся на единицу пользовательских данных, у этих протоколов различная (а в общем случае это так), то можно в качестве оптимального выбрать более медленный вариант сети. В случае если же тип протокола не меняется при настройке сети, то можно использовать и критерии, не выделяющие пользовательские данные из общего потока.

    При тестировании пропускной способности сети на прикладном уровне легче всœего измерять как раз пропускную способность по пользовательским данным. Для этого достаточно измерить время передачи файла определœенного размера между сервером и клиентом и разделить размер файла на полученное время. Для измерения общей пропускной способности необходимы специальные инструменты измерения - анализаторы протоколов или SNMP или RMON агенты, встроенные в операционные системы, сетевые адаптеры или коммуникационное оборудование.

    Критерии, отличающиеся количеством и расположением точек измерения. Пропускную способность можно измерять между любыми двумя узлами или точками сети, к примеру, между клиентским компьютером 1 и сервером 3 из примера, приведенного на рисунке 1.2. При этом получаемые значения пропускной способности будут изменяться при одних и тех же условиях работы сети исходя из того, между какими двумя точками производятся измерения. Так как в сети одновременно работает большое число пользовательских компьютеров и серверов, то полную характеристику пропускной способности сети дает набор пропускных способностей, измеренных для различных сочетаний взаимодействующих компьютеров - так называемая матрица трафика узлов сети. Существуют специальные средства измерения, которые фиксируют матрицу трафика для каждого узла сети.

    Так как в сетях данные на пути до узла назначения обычно проходят через несколько транзитных промежуточных этапов обработки, то в качестве критерия эффективности может рассматриваться пропускная способность отдельного промежуточного элемента сети - отдельного канала, сегмента или коммуникационного устройства.

    Знание общей пропускной способности между двумя узлами не может дать полной информации о возможных путях ее повышения, так как из общей цифры нельзя понять, какой из промежуточных этапов обработки пакетов в наибольшей степени тормозит работу сети. По этой причине данные о пропускной способности отдельных элементов сети бывают полезны для принятия решения о способах ее оптимизации.

    В рассматриваемом примере пакеты на пути от клиентского компьютера 1 до сервера 3 проходят через следующие промежуточные элементы сети:

    Сегмент АR КоммутаторR Сегмент ВR МаршрутизаторR Сегмент СR ПовторительR Сегмент D.

    Каждый из этих элементов обладает определœенной пропускной способностью, в связи с этим общая пропускная способность сети между компьютером 1 и сервером 3 будет равна минимальной из пропускных способностей составляющих маршрута͵ а задержка передачи одного пакета (один из вариантов определœения времени реакции) будет равна сумме задержек, вносимых каждым элементом. Для повышения пропускной способности составного пути необхдимо в первую очередь обратить внимание на самые медленные элементы - в данном случае таким элементом скорее всœего будет маршрутизатор.

    Имеет смысл определить общую пропускную способность сети как среднее количество информации, переданной между всœеми узлами сети в единицу времени. Общая пропускная способность сети может измеряться как в пакетах в секунду, так и в битах в секунду. При делœении сети на сегменты или подсети общая пропускная способность сети равна сумме пропускных способностей подсетей плюс пропускная способность межсегментных или межсетевых связей.

    Пропускная способность - понятие и виды. Классификация и особенности категории "Пропускная способность" 2017, 2018.


  • - Файл размером 30 Мбайт передается по сети за 24 с. Пропускная способность сети равна

    О 10 Мбит/с 261. Фотография устройства для чтения CD представлена на рисунке. О 4 О 1 О 2 О +3 Х 228. Хронологическая последовательность появления операционных систем: а) MS DOS б) Windows ХР в) Windows"98 г) Windows Vista О +а), в), б), г) Характеристиками поля в базах данных не... .


  • - Пропускная способность.

    Она определяется расстоянием между соседними движущимися поездами. Чем меньше это расстояние, тем больше пропускная способность линии. На данный момент существуют два типа линий метрополитена: линии с автоблокировкой и защитными участками линии с нормально... .


  • - Пропускная способность.

    Она определяется расстоянием между соседними движущимися поездами. Чем меньше это расстояние, тем больше пропускная способность линии. На данный момент существуют два типа линий метрополитена: линии с автоблокировкой и защитными участками линии с нормально... [читать подробнее] .


  • - Пропускная способность дорог, модели и методы расчета

    Пропускная способность – кол-во, которые може6т пропустить АД, обеспечивая обходимую безопасность и удобство для движения. ПС может быть: -теоретическая; -практическая. Теоретическая ПС определяется как отношение рассматриваемого периода времени Т ко времени, которое... .


  • - Пропускная способность экспортных газопроводов на бывшей границе СССР, млрд.куб.м в год

    Газопровод Мощность Направление экспорта Через Украину: Оренбург-Западная граница (Ужгород) Словакия, Чехия, Австрия, Германия, Франция, Швейцария, Словения, Италия Уренгой-Ужгород Словакия, Чехия, Австрия,... .


  • В любой системе связи через канал передается информация. Скорость передачи информации была определена в § 2.9. Эта скорость зависит не только от самого канала, но и от свойств подаваемого на его вход сигнала и поэтому не может характеризовать канал как средство передачи информации. Попытаемся найти способ оценки способности канала передавать информацию. Рассмотрим вначале дискретный канал, через который передаются в единицу времени символов из алфавита объемом При передаче каждого символа в среднем по каналу проходит следующее количество информации [см. (2.135) и (2.140)]:

    где случайные символы на входе и выходе канала. Из четырех фигурирующих здесь энтропий -собственная информация передаваемого символа - определяется источником дискретного сигнала и не зависит от свойств канала. Остальные три энтропии в общем случае зависят как от источника сигнала, так и от канала.

    Представим себе, что на вход канала можно подавать символы от разных источников, характеризуемых различными распределениями вероятностей (но, конечно, при тех же значениях . Для каждого такого источника количество информации, переданной по каналу, принимает свое значение. Максимальное количество переданной информации, взятое по всевозможным

    источникам входного сигнала, характеризует сам канал и называется пропускной способностью канала. В расчете на один символ

    где максимизация производится по всем многомерным распределениям вероятностей Можно также определить пропускную способность С канала в расчете на единицу времени (секунду):

    Последнее равенство следует из аддитивности энтропии. В дальнейшем везде, где это особо не оговорено, будем под пропускной способностью понимать пропускную способность в расчете на секунду.

    В качестве примера вычислим пропускную способность симметричного канала без памяти, для которого переходные вероятности заданы формулой (3.36). Согласно (3.52) и (3.53)

    Величина в данном случае легко вычисляется, поскольку условная переходная вероятность принимает только два значения: , если еслн Первое из этих значений возникает с вероятностью а второе с вероятностью К тому же, поскольку рассматривается канал без памяти, результаты приема отдельных символов независимы друг от друга. Поэтому

    Следовательно, не зависит от распределения вероятности В, а определяется только переходными вероятностями канала. Это свойство сохраняется для всех моделей канала с аддитивным шумом.

    Подставив (3.56) в (3.55), получим

    Поскольку в правой части только член зависит от распределения вероятностей то максимизировать необходимо его. Максимальное значение согласно (2.123) равно и реализуется оно тогда, когда все принятые символы равновероятны и независимы друг от друга. Легко убедиться, что это условие удовлетворяется, еслн входные символы равновероятны и независимы, поскольку

    При этом и

    Отсюда пропускная способность в расчете на секунду

    Для двоичного симметричного канала пропускная способность в двоичных единицах в секунду

    Зависимость от согласно (3.59) показана на рис. 3.9.

    При пропускная способность двоичного канала поскольку при такой вероятности ошибки последовательность выходных двоичных символов можно получить, совсем не передавая сигналы по каналу, а выбирая их наугад (например, по результатам бросания монеты), т. е. при последовательности на выходе и входе канала независимы. Случай называют обрывом канала. То, что пропускная способность при в двоичном канале такая же, как при (канал без шумов), объясняется тем, что при достаточно все выходные символы инвертировать (т. е. заменить 0 на 1 и 1 на 0), чтобы правильно восстановить входной сигнал.

    Рис. 3.9. Зависимость пропускной способности двоичного симметричного канала без памяти от вероятности ошибочного приема символа

    Пропускная способность непрерывного канала вычисляется аналогично. Пусть, например, канал имеет ограниченную полосу пропускания шириной Тогда сигналы на входе и выходе канала по теореме Котельникова определяются своими отсчетами, взятыми через интервал и поэтому информация, проходящая по каналу за некоторое время равна сумме количеств информации, переданных за каждый такой отсчет. Пропускная способность канала на один такой отсчет

    Здесь случайные величины - сечения процессов на входе и выходе канала и максимум берется по всем допустимым входным сигналам, т. е. по всем распределениям .

    Пропускная способность С определяется как сумма значений Сотсч» взятая по всем отсчетам за секунду. При этом, разумеется, дифференциальные энтропии в (3.60) должны вычисляться с учетом вероятностных связей между отсчетами.

    Вычислим, например, пропускную способность непрерывного канала без памяти с аддитивным белым гауссовским шумом, имеющим полосу пропускания шириной если средняя мощность сигнала (дисперсия не превышает заданной величины Мощность (дисперсию) шума в полосе обозначим Отсчеты входного и выходного сигналов, а также шума связаны равенством

    н так как имеет нормальное распределение с нулевым математическим ожиданием, то и условная плотность вероятности при фиксированном и будет также нормальной - с математическим ожиданием и и дисперсией Найдем пропускную способность на один отсчет:

    Согласно (2.152) дифференциальная энтропия нормального распределения не зависит от математического ожидания и равна Поэтому для нахождения нужно найти такую плотность распределения при которой максимизируется Из (3.61), учитывая, что независимые случайные величины, имеем

    Таким образом, дисперсия фиксирована, так как заданы. Согласно (2.153), при фиксированной дисперсии максимальная дифференциальная энтропия обеспечивается нормальным распределением. Из (3.61) видно, что при нормальном одномерном распределении распределение будет также нормальным и, следовательно,

    Переходя к пропускной способности С в расчете на секунду, заметим, что информация, переданная за несколько отсчетов, максимальна в том случае, когда отсчеты сигналов независимы. Этого можно достичь, если сигнал выбрать так, чтобы его спектральная плотность была равномерной в полосе Как было показано в отсчеты, разделенные интервалами, кратными взаимно некоррелированны, а для гауссовских величин некоррелированность означает независимость.

    Поэтому пропускную способность С (за секунду) можно найти, сложив пропускные способности (3.63) для независимых отсчетов:

    Она реализуется, если гауссовский процесс с равномерной спектральной плотностью в полосе частот (квазибелый шум).

    Из формулы (3.64) видно, что если бы мощность сигнала не была ограничена, то пропускная способность была бы бесконечной. Пропускная способность равна нулю, если отношение сигнал/шум в канале равно нулю. С ростом этого отношения пропускная способность увеличивается неограниченно, однако медленно, вследствие логарифмической зависимости.

    Соотношение (3.64) часто называют формулой Шеннона. Эта формула имеет важное значение в теории информации, так как определяет зависимость пропускной способности рассматриваемого непрерывного канала от таких его технических характеристик, как ширина полосы пропускания и отношение сигна/шум. Формула Шеннона указывает на возможность обмена полосы пропускания на мощность сигнала и наоборот. Однако поскольку С зависит от линейно, а от по логарифмическому закону, компенсировать возможное сокращение полосы пропускания увеличением мощности сигнала, как правило, нецелесообразно. Более эффективным является обратный обмен мощности сигнала на полосу пропускания.



    Загрузка...