sonyps4.ru

Программирование деревообрабатывающих станков с чпу. Требования, обучение и перспективы программиста станка чпу

Способы программирования станков с ЧПУ

Существуют три способа программирования обработки для станков с ЧПУ :

1. Ручное программирование .

Все операторы станков с ЧПУ и технологи-программисты должны иметь хорошее представление о технике ручного программирования для написания управляющей программы непосредственно на стойке ЧПУ станка или исправления существующей программы.

2. Программирование на пульте УЧПУ (диалоговое программирование с помощью языков высокого уровня) .

В этом случае программы создаются и вводятся прямо на стойке ЧПУ. В настоящее время на станках с ЧПУ применяются современные системы разработки УП высокого уровня. Такие системы позволяют оператору-программисту подготавливать программу обработки детали, определяя последовательность предлагаемых системой переходов лишь с указанием их параметров. Оператор станка может произвести проверку правильности работы УП непосредственно на стойке ЧПУ станка с визуализацией обработки.

3. Программирование при помощи CAM систем .

Программирование при помощи САМ систем позволяет исключить необходимость трудоемких математических расчетов и использовать инструменты, значительно повышающие скорость разработки УП. Зачастую этот способ программирования используется для написания программ изготовления сложных деталей. Однако для адаптации разработанной УП под конкретный станок, требуется постпроцессор, преобразующий управляющие программы в фазовое пространство этого станка.

Кодирование информации независимо от применяемого способа программирования осуществляется в G -коде, имеющем альтернативное название ISO -7bit . Код ISO -7bit кадры УП задает адресным способом и основывается на двоично-десятичной системе.

Информация, представленная в любой управляющей программе, подразделяется
на 3 вида:

· геометрическую (задание перемещения по координатам);

· технологическую (задание режимов обработки, инструмента и т. д.);

· логическую (включение/отключение охлаждения, задание вращения шпинделя и т. д.).

Вопросы и задания для самоконтроля

1. Что такое числовое программное управление станком?

2. Дайте определение системы числового программного управления.

3. Что называется устройством числового программного управления станком?

4. Каково назначение и основные сферы применения позиционного и контурного управления?

5. Что такое управляющая программа?

6. Что называется дискретностью перемещения?

7. Что такое эквидистанта?


Тесты к разделу

1. Числовое программное управление станком – это:

а) управление обработкой заготовки на станке по управляющей программе;

б) совокупность функционально взаимосвязанных технических и программных методов и средств, обеспечивающих управление станком;

2. Система числового программного управления – это:

а) совокупность функционально взаимосвязанных технических и программных методов и средств, обеспечивающих числовое программное управление станком;

б) совокупность функционально взаимосвязанных программных методов и средств, обеспечивающих программное управление станком;

в) совокупность методов и средств, обеспечивающих числовое программное управление станком.

3. Устройство числового программного управления станком – это:

а) часть системы ЧПУ, выполненная как единое целое с ней и выдающая управляющие воздействия на исполнительные органы станка в соответствии с управляющей программой и информацией о состоянии управляемого объекта;

б) часть системы ЧПУ, выдающая управляющие воздействия на исполнительные органы станка в соответствии с управляющей программой и информацией о состоянии управляемого объекта;

в) часть системы ЧПУ, выполненная как единое целое с ней и выдающая управляющие воздействия на исполнительные органы станка в соответствии с управляющей программой.

4. Позиционное управление – это:

а) управление, при котором рабочие органы станка перемещаются в заданные точки без задания траектории движения;

б) управление, при котором рабочие органы станка перемещаются с заданной скоростью по заданной траектории;

5. Контурное управление – это:

а) управление, при котором рабочие органы станка перемещаются с заданной скоростью по заданной траектории;

б) управление, при котором рабочие органы станка перемещаются в заданные точки без задания траектории движения;

в) управление, при котором рабочие органы станка перемещаются с заданной скоростью по заданной траектории или без задания траектории движения.

Методы программирования систем ЧПУ

Существует три основных способа разработки управляющих программ:

· ручное программирование (manual programming techniques);

· программирование на стойке ЧПУ (shop-floor);

· программирование при помощи CAM-систем.

До настоящего момента мы использовали исключительно ручное программирование на уровне G-кодов, чтобы проще было понять основы ЧПУ. Далее мы рассмотрим другие методы создания управляющих программ и покажем на реальных примерах использование каждого метода для того, что бы вы решили – который из них является лучшим. Следует уяснить себе различия в этих трех способах программирования и помнить, что ни один из них не является панацеей для любого из производств. Каждый метод имеет свою нишу в машиностроительной отрасли.

Ручное программирование. Ручное программирование является весьма утомительным занятием. По общему признанию, слова, адреса и кадры воспринимаются большинством новичков, как "китайская грамота". Однако все программисты-технологи обязаны иметь хорошее понимание техники ручного программирования независимо от того, действительно ли они ее используют.

Можно сопоставить ручное программирование для ЧПУ с выполнением арифметических вычислений при помощи ручки и бумаги в противоположность вычислениям на электронном калькуляторе. Преподаватели математики единодушно соглашаются с тем, что школьники сначала должны научиться выполнять арифметические вычисления вручную. И только потом использовать калькулятор для того, чтобы ускорить процедуру нудных вычислений.

Что может быть лучше, чем ручное программирование? Все еще остается немало производств, в которых применяют исключительно ручное программирование для станков с ЧПУ. Действительно, если используется несколько станков с ЧПУ, а изготавливаемые детали достаточно просты, то грамотный технолог-программист с великолепной техникой ручного программирования будет способен превзойти по производительности труда мощного программиста-технолога, использующего CAM-систему. Или используются станки для выполнения ограниченной номенклатуры изделий. Как только обработка таких изделий запрограммирована, она вряд ли будет изменена когда-либо в будущем.

В этом случае ручное программирование для ЧПУ наиболее экономически эффективно.

Наконец, даже в случае применения CAM-системы нередко возникает потребность коррекции кадров УП вследствие обнаружения ошибок на этапе отработки. Также, общепринятой является коррекция кадров УП после ряда первых пробных прогонов на станке с ЧПУ. Если для выполнения этих, часто элементарных, корректировок программист должен опять использовать CAM-систему, то это неоправданно удлинит процесс подготовки производства.

Программирование на пульте системы ЧПУ (оперативные системы). Этот метод программирования стал весьма популярен в последние годы. Программы создаются и вводятся непосредственно на стойке системы ЧПУ, используя клавиатуру, дисплей, а также систему графических пиктограмм и меню.

Программист может немедленно проверить кадры УП путем графической имитации обработки на экране стойки.

Системы диалогово-графического проектирования существенно различаются между собой. В большинстве случаев, любая из них является одноцелевой системой, предназначенной для автоматизации программирования определенного типа обработки на определенном оборудовании. Мало того, некоторые модели, особенно уже снятые с производства, были рассчитаны только на ручной ввод управляющей программы и тем самым не могли обеспечить технологию удаленного программирования при помощи CAM-системы. Однако более современные модели могут работать как в диалоговом режиме, так и имеют устройства для ввода G-кодов, которые сгенерированы другими CAM-системами. Имеются проблемы, связанные с программированием на пульте системы СПУ. Некоторые программисты используют исключительно метод программирования на стойке ЧПУ. Другие рассматривают такой метод экономически неэффективным, даже расточительным. Неудивительно, что каждая из сторон в споре имеет свои аргументы "за и против".

Предприятия, которые используют ограниченное число рабочих и выпускает широкий ассортимент деталей, склонны использовать метод программирования непосредственно у станка с ЧПУ. Здесь один работник может использоваться для выполнения разнообразных задач, связанных с обслуживанием станков с ЧПУ. Например, оператор станка с ЧПУ занимается установкой заготовки, ее закреплением, вводом УП, проверкой и оптимизацией УП и следит за обработкой. В этом случае метод программирования "у стойки с ЧПУ" весьма оправдан и более эффективен, чем оплата услуг некого "удаленного" программиста-технолога.

В условиях крупного производства основная цель состоит в максимальной загрузке станка с ЧПУ. Тогда используется уже целый штат сотрудников, поддерживающих максимальную загрузку станков и бесперебойное изготовление деталей на каждом станке. Независимо от причины, время простоя станка будет воспринято руководством как потеря времени и денег. Один человек может устанавливать инструменты для изготовления следующей детали в то время как обрабатывается текущая деталь (готовит переналадку станка заранее). Остальные работники в этот момент загружают УП и отлаживают их. В этом случае оператор станка только устанавливает заготовки и снимает готовые детали. Штат поддержки минимизирует потери времени, связанные с установкой и наладкой, а также разгрузкой станка, выполняя главную задачу – минимизировать время, в течение которого станок простаивает. Можно легко понять, что руководство не будет заинтересовано в разработке УП непосредственно у станка, поскольку это приведет к колоссальным затратам машинного времени.

Существуют два других фактора, влияющих на использование того или иного метода. Первый имеет отношение к стимулированию оператора станка с ЧПУ. Человек, выполняющий диалоговое проектирование УП, должен иметь более высокую оплату труда и мотивацию. Ведь этот сотрудник вносит существенный вклад в успех дела. Имея такие стимулы, сотрудник может превзойти "обычного" программиста-технолога, неспешно разрабатывающего УП вдалеке от цеха.

Другой фактор, влияющий на выбор метода программирования, это номенклатура изготавливаемых деталей, для которых нужно написать управляющие программы. Если номенклатура значительна, то вряд ли будет успешно программирование у стойки.

Программирование при помощи САМ-систем. САМ-системы позволяют "поднять" программирование для станков с ЧПУ на более высокий уровень по сравнению с рутинным ручным программированием. САМ-системы постоянно привлекают на свою сторону все большее число сторонников. Обобщая, можно сказать, что САМ-системы облегчают труд технолога-программиста в трех главных направлениях:

· избавляют технолога-программиста от необходимости делать математические вычисления вручную;

· позволяют создавать на одном базовом языке управляющие программы для различного оборудования с ЧПУ;

· обеспечивают технолога типовыми функциями, автоматизирующими ту или иную обработку.

Для использования САМ-системы, технолог-программист применяет персональный компьютер или рабочую станцию. Компьютерная программа автоматически генерирует управляющую программу(G-код). Затем управляющая программа передается тем или иным способом в память стойки станка с ЧПУ.

САМ-системы можно разделить на две категории – с языковым и графическим способом ввода информации. Используя первые, технолог обязан использовать язык программирования, подобный БЕЙСИКУ или С (си). Эти САМ-системы требуют программирования и некоторые из САМ-систем в силу этого весьма сложны для освоения.

На другом полюсе располагаются САМ-системы, где каждый шаг обработки задается интерактивно в графическом режиме. Программист имеет зрительную обратную связь в течение каждого шага задачи программирования. Поэтому в общем случае такие системы более просты в изучении и работе.

Последовательность процедур в САМ-программировании. Несмотря на то, что возможности и "внешний вид" САМ-систем отличаются друг от друга, все же есть нечто общее, что их объединяет – это методология их использования. Сначала, программист должен ввести некую общую информацию. Во-вторых, описать параметры заготовки, а также рабочего места (зажимного приспособления и инструмента). Необходимо также определить последовательность обработки.

Общая информация (1 шаг). На этом шаге от программиста потребуется ввод информации о наименовании детали, ее шифра, даты разработки и имени управляющей программы. Нередко на этом шаге задаются габариты детали и размер экрана дисплея для того, чтобы настроить автоматическое масштабирование. Как правило, на этом этапе вводится информация о материале и параметрах заготовки.

Определение и уравновешивание геометрии (2 шаг). Используя ряд методов определения разобщенной геометрии, программист постепенно описывает форму обрабатываемой детали. В САМ-системах с графическим вводом программист к тому же увидит на экране каждый элемент геометрии. Программист имеет возможность выбора наиболее подходящего способа для построения разобщенной геометрии, служащей задаче описания формы обрабатываемой детали.

Как только геометрия определена, большинство САМ-систем предполагает проведение процедуры уравновешивания геометрии (the geometry be trimmed) для того, чтобы геометрия соответствовала фактической форме обрабатываемой детали, которую нужно получить. Например, линия, выходящая за пределы экрана, ограничивается до отрезка. Уравновешиванию подвергается и каждая дуга окружности.

Формирование строки обхода. Большинство САМ-систем допускает импортирование геометрии детали, спроектированной в CAD-системе. Это особенно полезно в случае деталей сложной формы, ведь технологу не нужно тратить усилия на повторное описание сложной геометрии. Однако имеются четыре немаловажных замечания, которые "портят" идеалистическую картину "сквозного проектирования-изготовления".

Во-первых, все элементы чертежа, созданного в САD-системе, должны быть выполнены строго в одном масштабе. Нам хорошо известна практика подгонки отдельных размеров конструктором только для того, что бы сделать качественную прорисовку чертежа или просто ускорить черчение. Например, выбран уменьшающий масштаб, при котором мелкие детали чертежа будут не видны на прорисовке. Значит надо изобразить мелкий элемент увеличенным, а размер поставить который требуется. В результате у технолога возникнет масса неприятностей и на поиск и коррекцию ошибочного элемента.

Во-вторых, из чертежа детали, сделанного конструктором, технологу нужно совсем немного информации. Если в САМ-систему импортируется полный чертеж, то технолог потратит немало времени на то, чтобы удалить лишние элементы геометрии, размеры, штриховки и т. п. До тех пор, пока CAD-системы не оснастят простыми, удобными и мощными средствами фильтрации геометрии, технолог по-прежнему будет терять драгоценное время на "чистку".

Третье замечание. Важно уже в процессе проектирования соблюсти соглашение о местонахождении нулевой точки чертежа. Начало координат чертежа желательно расположить в нижнем левом углу чертежа. В этом случае процесс импортирования чертежа в CAM-систему пройдет без запинки. В противном случае, технологу опять потребуется время для устранения проблем.

Четвертое замечание. В большинстве САМ-систем предполагается, что геометрия детали будет описана в некотором формате, наиболее подходящем для программирования обработки. Яркий пример – токарная обработка. Вам знакомы размерные цепи. В большинстве своем, конструкторы редко задумываются об этом. В результате технолог повторно рассчитывает весь контур детали вручную.

Именно поэтому, многие пользователи САМ-систем часто приходят к выводу, что проще заново переопределить чертеж в САМ-системе (для простых обрабатываемых деталей), чем импортировать рисунки из CAD-систем. Поскольку обрабатываемые детали становятся все более сложными и весьма трудно переопределить элементы чертежа, способность импортировать геометрию из CAD системы в CAM-систему становится очень важной проблемой.

Определение процедуры обработки (3-й шаг). На третьем шаге программист задает в САМ-системе способ обработки детали. Ему предоставляяется немалое количество готовых решений. Многие САМ-системы включают интерактивные меню для задания параметров конкретного вида обработки. Программисту остается только ввести параметры, а САМ-система сама рассчитает траекторию обработки. На этом шаге САМ-система визуализирует траекторию инструмента, предоставляя программисту возможность визуального анализа того, что может произойти на станке. Эта способность визуализировать УП прежде, чем она реально исполниться на станке, является одним из преимуществ САМ-систем. В конце концов, программист может ввести команду для выработки управляющей программы в виде G-кодов.

Как сохраняют управляющие программы. Независимо от того, каким образом была создана CNC-программа, заводские технологи всегда обеспокоены вопросами сохранения архивов УП и процедурами поиска в них. Даже в том случае, когда станок с ЧПУ выполняет одну и ту же программу, необходимо предварительно скопировать УП на случай возникновения сбоя при чтении в стойке станка.

Конечно, как только программа проверена на станке, пользователь захочет сохранить программу в ее эталонном виде для использования в недалеком будущем. Это может быть сделано несколькими способами.

Запоминающие устройства для хранения УП и организации поиска, включают: устройства записи-чтения на магнитной ленте, устройство ввода-вывода на перфоленту, переносимые гибкие магнитные дискеты, устройства оперативной памяти, портативный компьютер и настольные компьютеры. Персональные компьютеры – наиболее популярный способ хранения, поиска и передачи управляющих программ. Давайте кратко обсудим, как они могут использоваться для передачи УП на станок с ЧПУ.

Все современные системы с ЧПУ типа CNC укомплектованы RS-232-C портом. Все современные персональные компьютеры также оборудованы RS-232-C портом. Подключая кабелем перечисленные выше два порта, пользователь может управлять процессом передачи данных от компьютера в ОЗУ системы с ЧПУ.

Безусловно, для этого требуется специализированная программа, которая может как загружать, так и выгружать УП из стойки ЧПУ. Большинство современных САМ-систем включают в свой состав программы для загрузки УП. Более того, имеется масса независимых поставщиков, они специализируются не только на передаче УП, но и на прямом управлении станков ЧПУ от компьютеров. В этих случаях стойка с ЧПУ уже практически не нужна. Подобные системы сокращенно именуют DNC.

2. ТИПЫ СТАНКОВ С ЧПУ

Одним из самых интересных и эффективных методов программирования обработки является параметрическое программирование. Удивительно, но большинство технологов-программистов хоть и слышали об этом методе, но совершенно не умеют его использовать. В этом разделе вы познакомитесь с теорией параметрического программирования и коснетесь основ макроязыка системы ЧПУ современного станка.

Большинство станочных систем ЧПУ имеют в своем распоряжении специальный язык для параметрического программирования (макропрограммирования). Например, в СЧПУ Fanuc этот язык называется Macro В. Если вы хоть немного знакомы с языком программирования Бейсик (Basic), то вы без труда разберетесь и с Macro В. Команды и функции именно этого языка мы рассмотрим подробно. В обычной управляющей программе вы указываете различные G-коды, а также направления и величины перемещений при помощи числовых значений. Например, G10 или Х100. Однако СЧПУ станка может делать то же самое при помощи переменных.

Символом переменной в Macro В является знак #. Например, в программе можно указать следующие выражения:


#1=100
#2=200
#3=#1+#2

Это означает, что переменной #1 присваивается значение 100, а переменной #2 – значение 200. Переменная #3 будет являться результатом суммы переменной #1 и переменной #2. С таким же успехом можно записать и G-код:


#25=1
G#25

Переменной #1 присвоено значение 1. Тогда вторая строка по своей сути будет обозначать код линейной интерполяции G1. С переменными можно производить различные арифметические и логические операции, что позволяет создавать «умные» программы обработки или различные станочные циклы.

В памяти системы ЧПУ существует область, в которой хранятся значения переменных. Вы можете заглянуть в эту область, если найдете раздел памяти СЧПУ, который обычно называется MACRO или VARIABLES. Присваивать значения переменным можно не только внутри программы, но и непосредственно – вводя значения в регистры этой памяти. Приведу несколько примеров. Можно составить такую программу:

#1=25
#2=30
#3=#2+#1

В этом случае значения присваиваются переменным внутри программы. Чтобы в будущем изменить числовые значения переменных #1 и #2, придется отредактировать программу.

Можно реализовать более удобный вариант, который позволит изменять значения переменных в любой момент, не прибегая к изменению самой программы:

Как видите, переменным #1 и #2 в программе не присвоено никаких значений. Оператор станка может войти в область переменных MACRO и ввести любое числовое значение для любой переменной.

Все переменные системы ЧПУ можно условно разделить на 4 типа:

  • нулевые;
  • локальные;
  • общие;
  • системные.

Локальные переменные могут быть использованы внутри макросов для хранения данных. При выключении электропитания локальные переменные обнуляются. У большинства станков с СЧПУ Fanuc нулевой серии локальными являются переменные с номерами от 1 до 33.

Общие переменные могут работать внутри различных параметрических программ и макросов. При выключении электропитания некоторые общие переменные обнуляются, а некоторые сохраняют свои значения. У большинства станков с СЧПУ Fanuc нулевой серии общими являются переменные с номерами от 100 до 999.

Системные переменные используются для чтения и записи различной системной информации – данных о позиции инструмента, величинах компенсации, времени и др. Номера системных переменных для Fanuc нулевой серии начинаются с 1000.

Нулевые переменные всегда равны нулю.

Для выполнения арифметических и логических операций язык Macro В предоставляет набор команд и операторов.

Таблица 10.1. Основные арифметические и логические команды

Для управления переменными и для выполнения различных логических операций служат макрокоманды. Макрокоманды языка Macro В похожи на команды Бейсика.

Команда безусловного перехода GOTO предназначена для передачи управления определенному кадру программы. Формат команды следующий:

  • GOTO N – безусловный переход к кадру N;
  • GOTO #A – безусловный переход к кадру, установленному переменной #A.

Пример:

N10 G01 X100
N20 G01 X-100
N30 GOTO 10

После выполнения кадра N30 система ЧПУ переходит к кадру N10. Затем снова работает с кадрами N20 и N30 – получается бесконечный цикл.

Команда условия IF позволяет выполнять различные действия с условием. После IF указывается некоторое выражение. Если это выражение оказывается справедливым, то выполняется команда (например, команда безусловного перехода), находящаяся в кадре с IF. Если выражение оказывается несправедливым, то команда, находящаяся в кадре с IF, не выполняется, а управление передается следующему кадру.

Формат команды следующий:

IF [#a GT #b] GOTO N

Пример:

#1=100
#2=80
N10 G01 X200
N20 IF [#1 GT #2] GOTO 40
N30 G01 X300
N40 M30

В начале программного примера переменным #1 и #2 присваиваются значения 100 и 80 соответственно. В кадре N20 происходит проверка условия. Если значение переменной #1 больше значения переменной #2, то выполняется команда перехода GOTO к кадру окончания программы N40. В нашем случае выражение считается справедливым, так как 100 больше, чем 80. В результате после выполнения кадра N10 происходит переход к кадру N40, то есть кадр N30 не выполняется.

В этой же программе можно изменить значения переменных:

#1=100
#2=120
N10 G01 Х200
N20 IF [#1 GT #2] GOTO 40
N30 G01 Х300
N40M30

Во втором случае условие в кадре N20 не будет справедливым, так как 100 не больше, чем 120. В результате после выполнения кадра N10 не происходит переход к кадру N40, то есть кадр N30 выполняется как обычно.

В выражении [#1 GT #2] используются операторы сравнения. В табл. 10.2 сведены операторы для сравнения переменных языка Macro В.

Таблица 10.2. Операторы сравнения

Команда WHILE позволяет повторять различные действия с условием. Пока указанное выражение считается справедливым, происходит выполнение части программы, ограниченной командами DO и END. Если выражение не справедливо, то управление передается кадру, следующему за END.

% О1000 #1=0 #2=1 WHILE [#2 LE 10] DO 1; #1=#1+#2 #2=#2+1 END 1 M30 %

Макропрограммой называется программа, которая находится в памяти СЧПУ и содержит различные макрокоманды. Макропрограмму можно вызывать из обычной программы с помощью G-кода, аналогично постоянным циклам. При вызове макропрограммы существует возможность прямой передачи значений для переменных макропрограммы.

Команда G65 предназначена для немодального вызова макропрограммы. Формат для этой команды следующий:

где G65 – команда вызова макропрограммы; Р_ – номер вызываемой макропрограммы; L_ – число повторений макропрограммы; А_ и В_ – адреса и значения локальных переменных.

G65 Р9010 L2 А121 В303 – макропрограмма 9010 вызывается 2 раза, соответствующим локальным переменным присваиваются значения 121 и 303.

Необходимо знать, какой локальной переменной присваивается значение с помощью того или иного адреса. Например, для СЧПУ Fanuc 0-MD будут справедливы следующие зависимости:

Таблица 10.3. Соответствие адресов локальным переменным

Адрес Переменная
A
B
C
D
E
F
H
I
J
K
M
Q
R
S
T
U
V
W
X
Y
Z
#1
#2
#3
#7
#8
#9
#11
#4
#5
#6
#13
#17
#18
#19
#20
#21
#22
#23
#24
#25
#26

Теперь можно приступить к созданию несложной, но очень полезной параметрической программы. Довольно часто возникает необходимость в обработке нескольких отверстий, находящихся на некотором радиусе и следующих через определенный угол (рис. 10.7). Чтобы освободить программиста от утомительного переделывания программы в случае изменения радиуса, угла или количества отверстий, создадим такую программу обработки, которая позволит оператору вводить значения радиуса и угла и выполнять операцию сверления по окружности с любыми размерами.

Для сверления отверстий будем использовать стандартный цикл G81. Угол, на котором находятся отверстия, отсчитывается от оси X против часовой стрелки (положительный угол).

Необходимо задать:

  • радиус окружности, на которой находятся отверстия;
  • начальный угол (угол, на котором находится первое отверстие);
  • относительный угол (угол, через который следуют остальные отверстия);
  • общее количество отверстий.

Все эти данные должны быть представлены в параметрическом виде, то есть при помощи переменных.

Пусть
#100= радиус окружности, на которой находятся отверстия;
#101= начальный угол;
#102= относительный угол;
#103= общее количество отверстий.

Рис. 10.7. Создадим параметрическую программу для обработки детали с неизвестными размерами

Для того чтобы создать параметрическую программу, необходимо придумать алгоритм, позволяющий изменять поведение программы обработки в зависимости от значений указанных переменных. В нашем случае основой УП является стандартный цикл сверления G81. Остается найти закон, по которому описываются координаты центров отверстий при любых первоначальных значениях радиуса, углов и произвольном количестве отверстий.

%
О2000
N10 G21 G90 G80 G54 G40 G49 G00
N20 G17

Первые кадры программы будут стандартными. Это номер программы, строка безопасности и код G17 выбора плоскости XY.

Так как координаты центров отверстий задаются с помощью радиуса и угла, то есть в полярной системе координат, то в кадре N30 укажем код G16.

N40 Т1 М6
N45 G43 HI Z100
N50 S1000 M03
#120=0

В кадр N60 поставим цикл сверления G81 и координаты центра первого отверстия. Как вы помните, в случае работы с полярными координатами X обозначает радиус, a Y определяет угол. Значения радиуса и начального угла известны, они устанавливаются переменными #100 (радиус) и #101 (начальный угол). Вводится некоторая переменная #120 с нулевым значением. Эта переменная представляет собой счетчик. Чуть позже вы поймете назначение данной переменной.

N60 G98 G81 Х#100 Y#101 Z-5 R0.5 F50

Переменная #103 отвечает за общее количество отверстий. Так как первое отверстие мы уже просверлили, то уменьшим #103 на 1. Таким образом, кадр N70 обеспечивает подсчет оставшихся отверстий. А кадр N75 увеличивает значение переменной #120 на 1.

N70 #103=#103-1
N75 #120=#120+1

Если количество отверстий, которые осталось просверлить, равно нулю, то следует отменить цикл сверления, выключить обороты шпинделя и завершить программу.

N80 IF [#103 EQ 0] GOTO 120

В кадре N80 происходит сравнение значения переменной #103 с нулем. Если переменная #103 равна нулю, то управление передается кадру N120 в конце программы. Если же переменная #103 не равна нулю, то выполняется следующий кадр.

N90 #130=#102*#120
N95#110=#101+#130

Кадр N90 предназначен для определения углового приращения. Новая переменная #110 является суммой #101 (начального угла) и #130 (углового приращения). Кадр N95 обеспечивает расчет угла последующего отверстия.

Затем указывается новый угол для сверления, и управление передается кадру N70.

N100 Y#110
N110 GOTO 70

При помощи кадра N70 образуется замкнутый цикл, который обеспечивает расчет координат центров отверстий и сверление до тех пор, пока значение переменной #103 не будет равно нулю. Если значение #103 станет равным нулю, то управление будет передано кадру N120.

N120 G80
N125 М05
N130 G15
N140 М30
%

Заключительные кадры программы предназначены для отмены постоянного цикла (G80), выключения оборотов шпинделя (М05), выключения режима полярных координат (G15) и завершения программы (М30).

% О2000 N10 G21 G90 G80 G54 G40 G49 G00 N20 G17 N30 G16 N40 T1 M6 N45 G43 H1 Z100 N50 S1000 M03 #120=0 N60 G98 G81 X#100 Y#101 Z-5 R0.5 F50 N70 #103=#103-1 N75 #120=#120+1 N80 IF [#103 EQ 0] GOTO 120 N90 #130=#102*#120 N95 #110=#101+#130 N100 Y#110 N110 GOTO 70 N120 G80 N125 M05 N130 G15 N140 M30 %

Любая параметрическая программа должна быть тщательно проверена, прежде чем она попадет на станок. Скорее всего, у вас не получится проверить такую программу при помощи редактора УП и бэкплота, так как в ней присутствуют переменные. Самая надежная проверка в данном случае – это подстановка значений для входных переменных и «раскручивание» алгоритма уже с конкретными числами.

Предположим, что оператор станка получил чертеж детали (рис. 10.8) для обработки отверстий. Он должен установить нулевую точку G54 в центр детали, замерить длину сверла и установить его в шпиндель. Затем следует войти в область переменных MACRO и ввести следующие числовые значения:

№ переменной Значение

100
101
102
103
104
105

12.5
45
20
4
0
0

Рис. 10.8. Вместо переменных на чертеже стоят конкретные размеры и известно количество отверстий

Для проверки созданной параметрической программы достаточно подставить конкретные значения переменных и, «прокручивая» алгоритм, получить обычную программу.

Эту же программу можно записать и в привычном виде:

% О2000 N10 G21 G90 G80 G54 G40 G49 G00 N20 G17 N30 G16 N40 T1 M6 N45 G43 H1 Z100 N50 S1000 M03 N60 G98 G81 X12.5 Y45 Z-5 R0.5 F50 N100 Y65 N100 Y85 N100 Y105 N120 G80 N125 M05 N130 G15 N140 M30 %

Теперь попробуем создать макропрограмму, которая будет функционировать аналогично постоянному циклу. Для обработки детали, показанной на рис. 10.8, оператор станка должен ввести и отработать следующую команду:

G65 P9010 I12.5 A45 B20 H4

При этом наша параметрическая программа (с новым номером О9010) уже должна находиться в памяти СЧПУ. Как правило, макропрограммы имеют номера с 9000 и выше, недоступны для свободного редактирования. Команда G65 предназначена для немодального вызова макропрограммы. При этом адреса I, А, В, Н в кадре с G65 передают свои числовые значения определенным локальным переменным. Для нахождения соответствия адресов локальным переменным можно воспользоваться табл. 10.3.

Можно подстроить переменные в нашей программе, вставив следующие строки в программу:

#100=#4
#101=#1
#102=#2
#103=#11

В результате получаем макропрограмму:

% О9010 #100=#4 #101=#1 #102=#2 #103=#11 N10 G21 G90 G80 G54 G40 G49 G00 N20 G17 N30 G16 N40 T1 M6 N45 G43 H1 Z100 N50 S1000 M03 #120=0 N60 G98 G81 X#100 Y#101 Z-5 R0.5 F50 N70 #103=#103-1 N75 #120=#120+1 N80 IF [#103 EQ 0] GOTO 120 N90 #130=#102*#120 N95 #110=#101+#130 N100 Y#110 N110 GOTO 70 N120 G80 N125 M05 N130 G15 N140 M30 %

Хотя созданная нами параметрическая программа и не является оптимальной, однако она наглядно демонстрирует широкие возможности этого метода по созданию эффективных УП и различных станочных циклов.

Появившись в середине минувшего столетия, станки с ЧПУ стали надежными помощниками людей в производстве. Они обрабатывают быстро, точно и качественно, при низкой себестоимости. Отдельные единицы оборудования объединяются в производственные роботизированные комплексы.

За непосредственную работу каждого станка отвечает два специалиста – и . Но, прежде чем они приступят к своим функциональным обязанностям, надлежит много потрудиться программисту.

В ведении инженера-программиста станков с ЧПУ – решение многих задач. Они занимаются:

  • разработкой техдокументации, внедряют и настраивают УП, их сохраняют и систематизируют;
  • закупкой и отладкой оборудования, введением в действие новых программируемых станков, контролируют их исправность;
  • обучением кадров (операторов), обслуживающих станки с ЧПУ, техническими консультациями.

Кого примут в штат

Занимать вакансию инженера-программиста станков с ЧПУ (правда, по низкой категории) сможет и выпускник колледжа без стажа по специальности. Он должен иметь отличную подготовку: теоретические знания о технологических процессах на данном оборудовании; владеть азами составления программ и настройки УП, опытом работы в AutoCAD. Конечно, стартовые зарплаты не столь высокие, но впереди – профессиональный рост.

Немного выше зарплатный диапазон ожидает соискателей, имеющих опыт инженера-программиста свыше одного года. Ещё одно требование: знание технических терминов английского и умение работать в САМ/CAD.

Солидный оклад будет предложен работодателем кандидату на вакансию, имеющему высшее образование по специальности и стаж, превышающий 2 года.

На максимально высокую зарплату могут рассчитывать инженеры-программисты станков с ЧПУ (со стажем свыше 3-х лет), способные решать сложные задачи на производстве. Большинство претендентов – мужчины, женщин на уровне 2-3 %, но они с задачами по программированию справляются не хуже мужчин. Что касается знания английского, то языком в совершенстве владеет каждый десятый среди инженеров-программистов.

Круг умений специалиста

Каждый работодатель желает принять в штат готового специалиста, который многое знает и умеет. Поэтому, от инженера-программиста станков с ЧПУ ожидают выполнения типичного функционала:

  • разработки и внедрения УП для станков;
  • создания 3D моделей по чертежам для их производства;
  • обеспечения работоспособности оборудования с ЧПУ;
  • плодотворного обучения на программируемых станках;
  • систематизации техдокументации и архивизации;
  • умения подбирать оборудование.

Приходится слышать такие фразы, формирующие уровень притязания: «Есть такая специальность ЧПУ (CNC – в английской аббревиатуре), где совсем ничего не надо делать – станок работает сам! Вот бы пройти обучение!» С одной стороны, ни за что никто платить не будет. А с другой, – в этом есть и доля правды. Когда инженер ЧПУ написал правильную программу, грамотно настроил станок, то его присутствие у станка – необязательно. Он действительно четко работает самостоятельно, но добиться такого положения дел сможет специалист, имеющий комплекс знаний и умений. Именно поэтому программист-наладчик с опытом востребован во всех странах.

Специализация – технолог-программист

Суть технологической подготовки производства (ТПП) состоит в том, чтобы выполнить в совокупности все мероприятия, способствующие готовности к выпуску определенного вида продукции. В порядке призвана быть вся документация, оснащение оборудованием, инструментом, заготовками, УП, необходимыми для производства нужного объема продукции на уровне заданных показателей.

К инженеру технологу-программисту ЧПУ круг требований – не меньше. Более того, на многих предприятиях грамотный инженер с высшим образованием совмещает функции технолога и программиста, обладая необходимыми профессиональными навыками.

Хотя для начинающих и не имеющих рабочего опыта, порой планку занижают, принимая на должность и со средним специальным техническим образованием, убедившись, что претендента можно отнести к уверенным пользователям AutoCAD, знающим специфику оборудования и технологии.

Технолог программист станков с ЧПУ со стажем уже обязан владеть английским на уровне, который достаточен для чтения техдокументации. Вопрос внедрения изделий новой номенклатуры в производство также решается технологом-программистом, который разработает технологические карты, а на их основе и УП.

Проектируется технологический процесс

Для этого используются различные специальные знания, без которых не составишь УП. Это повышает требования к уровню квалификации технолога, который должен в процессе расчета данных, которые станут основой программы, грамотно применять технические средства. Он призван быть не только программистом, но и математиком, и электронщиком, и хорошим организатором производства.

Технолог-программист станков ЧПУ прорабатывает рабочие чертежи на предмет их технологичности, выбирает инструмент и оснастку, разрабатывает требования к качеству заготовки.

Таким образом, выделяются все операции обработки в виде отдельных программ. Затем, учитывая конфигурацию поверхностей деталей, которые обрабатываются, уточняется траектория движений инструмента, его скорость в различных режимах. Установленную последовательность процесса обработки кодируют и записывают на программоноситель.

Что получается в итоге? УП – совокупность указаний в адрес каждого рабочего органа станка, где предписывается выполнять действия строгой последовательности.

Путь становления программиста

Инженеры, прошедшие обучение с профилем металлообработка, способны на основе своей квалификации и техзаданий заказчика, приготовить базу для создания УП. Но если у них есть задатки и навыки программирования, это будет универсальный специалист – технолог-программист ЧПУ. Таковые – на вес золота.

Именно поэтому многие инженеры-программисты имеют желание пройти обучение и по профессии технолога, чтобы расширить свою квалификацию. Или, наоборот, технолог осваивает азы новой профессии, в стремлении стать программистом.

И хорошо, когда в приобретении специалистом второй смежной профессии весьма заинтересована администрация предприятия и готова содействовать этому. Например, оплатить все затраты на его обучение.

Но, увы, желание получить дополнительную квалификацию не всегда находит отклик у руководства. Зачем им обучать, тратя на это средства, если можно принять на работу уже готового специалиста. Поэтому многие россияне принимают решение: научиться программированию самостоятельно.

Вновь учиться, но уже на практике

С чего же начать обучение? Иногда хорошей школой становится практика, когда человек осваивает новое, преодолевая трудности, шаг за шагом поднимается на вершину профессии. Иногда приобретение практического опыта длится не один год, но при наличии мудрых наставников, в совершенстве владеющих программированием, реально и самому стать хорошим специалистом.

Одному из операторов станка удалось овладеть профессией программист ЧПУ со второй специальностью – наладчик станков – посредством интернет-версии курса «PRACTICA». Там взвешенные порции теоретического материала (в сжатом виде) и серия практических видеоуроков, некоторые справочные материалы. Кстати, на первом видеоуроке знакомят с устройством и .

Понятно, что сразу после изучения курса никто не предоставит должность высококвалифицированного программиста. Нужно, продолжая работать оператором, осваивать программирование на практике. И уже через полгода продемонстрировать руководству свои знания и умения, предложив услуги работника в новом качестве.

С ЧПУ сегодня работают токарные, фрезерные, сверлильные и гибочные станки, и если «станут в позу» на родном предприятии, новоиспеченного специалиста с практическим опытом оценят на других, предложив хорошие условия оплаты труда.

Разнообразие форм обучения

Чтобы стать программистом, можно пойти и другим путем – обучению готовы послужить создатели «LAUFER CNC» – дистанционных курсов. Для этого нужен планшетный компьютер, нетбук, смартфон или телефон (мобильный интернет от 1 мб/сек), при помощи которого будет возможность участвовать в занятиях группы, проводимых преподавателем в режиме онлайн.

За полгода обучения, прослушавшие на вебинарах программу по полному курсу, изучат 8 предметов, будут выполнять домашние задания и интерактивные упражнения, напишут ряд контрольных работ по созданию УП. Их также научат строить чертежи в САПР. Предстоит им пройти тест в спецсервисе.

Тот, кто выберет форму самостоятельного обучения (тренинг), сможет стартовать в любой момент, не ожидания формирования группы. Возможен и вариант индивидуальных занятий с преподавателем (дистанционно) во время, устраивающее обоих. Темы занятий и их длительность обсуждаются предварительно.

«Высший пилотаж» для специалиста

Иногда перед инженером технологом-программистом стоят очень сложные задачи: выполнять работы высокой квалификации, уметь разбираться в чертежах, знать в совершенстве токарно-фрезерную, фрезерную обработку на станках с ЧПУ. Имея высшее образование (специальность – обработка материалов, а ведущий профиль – машиностроение).

Специалист такого уровня обязан досконально знать cad/cam; систему, которая предназначена для того, чтобы автоматизировать процесс проектирования (САПР); а также ей подобную версию NX (Unigraphics). Эта система, которая построена на лучших технологиях, в России широко применяется в различных промышленных сферах. Она предназначена для обработки заготовок станками любого уровня сложности.

Еще одно требование к специалисту такой квалификации – иметь опыт работы (свыше 3 лет) на пятикоординатных обрабатывающих центрах. Благодаря им можно выполнять обработку одновременно в пяти координатах. Именно поэтому станки приобретают многие предприятия машиностроительной отрасли, аэрокосмическая – не исключение.

Высокая точность и скорость резания обеспечивается за счет системы двойного привода по оси Y. Большим плюсом является наличие наклонно-поворотного стола и 60-ти инструментальных позиций.

Системы ЧПУ для станков

По мере совершенствования электронных и вычислительных устройств, в новом поколении станков появились управляющие модули на микропроцессорной основе с микроконтроллерами, способные гибко управлять процессами обработки материалов.

Системы управления классифицируются по нескольким признакам:

  1. Способами управления (позиционные, контурные, универсальные).
  2. Подходами к позиционированию (абсолютный и относительный отсчет).
  3. Типом обратной связи (открытая и закрытая, самонастраивающаяся).
  4. Техническим уровнем, различаются системы 1-го, 2-го и 3-го поколений.
  5. Числом осей координат (от 2 до 5).
  6. Способом подготовки и ввода УП.

Эксплуатируя оборудование с ЧПУ, используют системные (служебные) и управляющие (внешние) программы. Было время, когда компании применяли специально разработанные ними команды при программировании станков. Для того, чтобы была обеспечена совместимость оборудования разных брендов, был создан G-код – унифицированный язык программ. Среди признанных в мире систем ЧПУ – SINUMERIK, FANUC и FAGOR.

Заключение

Программируемый станок – предельно точный и, работая в различных режимах, может выполнять много всевозможных технологических операций. Главное, – наличие качественных заготовок, грамотных УП, исправного и хорошо наточенного инструмента. Одна из главных фигур в работе на этом оборудовании – программист, без участия которого станки ЧПУ просто не смогут работать.



Загрузка...