sonyps4.ru

Программирование avr контроллеров для начинающих. Вы еще не программируете микроконтроллеры? Тогда мы идем к вам

Теперь, когда мы уже ознакомлены с некоторыми возможностями и функциями микроконтроллеров, естественно, возникает логичный вопрос: что нужно для программирования микроконтроллеров? Какие необходимы программы и устройства, где их взять?

Для того чтобы микроконтроллер мог решать задачи и выполнять определенные функции, его нужно запрограммировать, т. е. записать в него программу или же код программы.

Структура и порядок написания программы

Первым делом, прежде чем приступить к написанию любой программы, а точнее кода программы, следует четко представлять, какие функции будет выполнять микроконтроллер. Поэтому сначала нужно определить конечную цель программы. Когда она определена и полностью понятна, тогда составляется алгоритм работы программы. Алгоритм – это последовательность выполнения команд. Применение алгоритмов позволяет более четко структурировать процесс написания кода, а при написании сложных программ часто позволяет сократить время, затрачиваемое на их разработку и отладку.

Следующим этапом после составления алгоритма является непосредственное написание кода программы. Программы для микроконтроллеров пишутся на языке Си или Ассемблере . Только Ассемблер больше относится к набору инструкций, нежели к языку программирования и является языком низкого уровня.


Мы будем писать программы на Си, который относится к языку высокого уровня. Программы на Си пишутся гораздо быстрее по сравнению с аналогичными на Ассемблере. К тому же все сложные программы пишутся преимущественно на Си.

Здесь мы не будем сравнивать преимущества и недостатки написания программ на Ассемблере и Си. Со временем, приобретя некоторый опыт в программировании МК, вы сами для себя сделаете полезные выводы.

Сам код программы можно писать в любом стандартном текстовом редакторе, например в Блокноте. Однако на практике пользуются более удобными редакторами, о которых будет сказано далее.

Компиляция программы

Написанный нами код на Си еще вовсе не понятен микроконтроллеру, поскольку МК понимает команды только в двоичной (или шестнадцатеричной) системе, которая представляет собой набор нулей и единиц. Поэтому Си-шный код нужно преобразовать в нули и единицы. Для этого применяется специальная программа, называемая компилятор , а сам процесс преобразования кода называется компиляция .

Для прошивки МК применяется устройство, называемое программатор . В зависимости от типа программатора вход его подключается к COM или USB порту, а выход к определенным выводам микроконтроллера.


Существует широкий выбор программаторов и отладочных плат, однако нас вполне устроит самый простой программатор , который в Китае стоит не более 3 $.


После того, как микроконтроллер прошит, выполняется отладка и тестирование программы на реальном устройстве или, как еще говорят, на «железе».

Теперь давайте подытожим этапы программирования микроконтроллеров.


При написании простых программ можно обойтись без второго пункта, т. е. без составления алгоритма на бумаге, его достаточно держать в голове.

Следует заметить, что отладку и тестирование программы также выполняют до прошивки МК.

Необходимый набор программ

Существует множество полезных и удобных программ для программирования МК. Они бывают как платные, так и бесплатные. Среди них можно выделить три основных:

1) Atmel Studio

2) CodeVisionAVR

3) WinAVR

Все эти программы относятся к IDE I ntegrated D evelopment E nvironment – интегрированная среда разработки . В них можно писать код, компилировать и отлаживать его.

Следует обратить внимание на Code Vision AVR. Эта IDE позволяет упростить и ускорить написание кода. Однако программа платная.

На начальном этапе программирования все программы лучше прописывать вручную, без каких-либо упрощений. Это поможет быстро приобрести необходимые навыки, а в дальнейшем хорошо понимать и редактировать под свои нужды коды, написанные кем-то другим. Поэтому я рекомендую использовать программу Atmel Studio. Во-первых, она абсолютно бесплатна и постоянно обновляется, а во-вторых она разработана компанией, изготавливающей микроконтроллеры на которых мы будем учиться программировать.

Прошивка и отладка программы

Прошивать микроконтроллеры мы будем с помощью дополнительной программы .

Если микроконтроллера в наличии нет, то его работу можно эмитировать с помощью программы . Она значительно упрощает процесс отладки программы даже при наличии МК, чтобы его часто не перепрошивать, ведь любой МК имеет конечное число перезаписей, хотя это число и достаточно большое.

При прошивке и отладке МК его удобно располагать на макетной плате, но это вовсе не обязательно. Поэтому для большего удобства пригодится и макетная плата. Существует большой выбор макетных плат, однако я вам рекомендую брать ту, которая имеет по возможности большее число отверстий. Когда мы начнем подключать семисегментные индикаторы, вы оцените преимущества «больших» макетных плат.

Микроконтроллеры являются небольшими, но одновременно очень удобными приспособлениями для тех, кто желает создавать различные удивительные роботизированные или автоматизированные вещи у себя дома. В рамках этой статьи будет рассмотрено программирование AVR для начинающих, различные аспекты и нюансы этого процесса.

Общая информация

Микроконтроллеры можно встретить везде. Они есть в холодильниках, стиральных машинах, телефонах, станках на производстве, умных домах и ещё во множестве различных технических устройств. Их повсеместное применение обусловлено возможностью замены более сложных и масштабных аналоговых схем устройств. Программирование МК AVR позволяет обеспечить автономное управление над электронными устройствами. Эти микроконтроллеры можно представить как простейший компьютер, что может взаимодействовать с внешней техникой. Так, им под силу открывать/закрывать транзисторы, получать данные с датчиков и выводить их на экраны. Также микроконтроллеры могут осуществлять различную обработку входной информации подобно персональному компьютеру. Если освоить программирование AVR с нуля и дойти до уровня профессионала, то откроются практически безграничные возможности для управления различными устройствами с помощью портов ввода/вывода, а также изменения их кода.

Немного о AVR

В рамках статьи будет рассмотрено семейство микроконтроллеров, выпускаемых фирмой Atmel. Они имеют довольно неплохую производительность, что позволяет использовать их во многих любительских устройствах. Широко применяются и в промышленности. Можно встретить в такой технике:

  1. Бытовой. Стиральные машины, холодильники, микроволновые печи и прочее.
  2. Мобильной. Роботы, средства связи и так далее.
  3. Вычислительной. Системы управления периферийными устройствами, материнские платы.
  4. Развлекательной. Украшения и детские игрушки.
  5. Транспорт. Системы безопасности и управления двигателем автомобиля.
  6. Промышленное оборудование. Системы управления станками.

Это, конечно же, не все сферы. Они применяются там, где выгодно использовать не набор управляющих микросхем, а один микроконтроллер. Это возможно благодаря низкому энергопотреблению и Для написания программ используются языки С и Assembler, немного изменённые под семейство микроконтроллеров. Такие изменение необходимы из-за слабых вычислительных возможностей, которые исчисляются, как правило, в десятках килобайт. AVR-программирование без изучения этих языков не представляется возможным.

Как получить свой первый микроконтроллер?

AVR-программирование требует:

  1. Наличия необходимой среды разработки.
  2. Собственно самих микроконтроллеров.

Второй пункт рассмотрим подробнее. Существует три возможности обзавестись требуемым устройством:

  1. Купить непосредственно сам микроконтроллер.
  2. Обзавестись устройством в составе конструктора (например - Arduino).
  3. Собрать микроконтроллер самостоятельно.

В первом пункте ничего сложного нет, поэтому сразу перейдём ко второму и третьему.

Обзавестись устройством в составе конструктора

В качестве примера будет выбран известный Arduino. Это по совместительству удобная платформа для быстрой и качественной разработки различных электронных устройств. Плата Arduino включает в себя определённый набор компонентов для работы (существуют различные конфигурации). В неё обязательно входит AVR-контроллер. Этот подход позволяет быстро начать разработку устройства, не требует специальных умений и навыков, имеет значительные возможности в плане подключения дополнительных плат, а также в интернете можно найти много информации на интересующие вопросы. Но не обошлось и без минусов. Покупая Arduino, человек лишает себя возможности более глубоко окунуться в AVR-программирование, лучше узнать микроконтроллер, специфику его работы. Также негатива добавляет и относительно узкая линейка моделей, из-за чего часто приходится покупать платы под конкретные задачи. Особенностью также является и то, что программирование на "СИ" здесь отличается довольно сильно от стандартной формы. Несмотря на все свои недостатки, Arduino подходит для изучения новичкам. Но злоупотреблять не стоит.

Самостоятельная сборка

Следует отметить, что микроконтроллеры AVR отличаются достаточной дружелюбностью к новичкам. Собрать их самостоятельно можно с доступных, простых и дешевых комплектующих. Если говорить о плюсах, то такой подход позволяет лучше ознакомиться с устройством, самостоятельно выбирать необходимые комплектующие, подгоняя конечный результат под выдвигаемые требования, использование стандартных языков программирования и дешевизна. Из минусов можно отметить только сложность самостоятельной сборки, когда она осуществляется впервые, и нет нужных знаний и навыков.

Как работать?

Итак, допустим, что вопрос с микроконтроллером решился. Далее будет считаться, что он был приобретён или же куплен самостоятельно. Что ещё нужно, чтобы освоить AVR-программирование? Для этой цели нужна среда разработки (в качестве базиса подойдёт и обычный блокнот, но рекомендую остановиться на Notepad++). Хотя существуют и другие программы для программирования AVR, приведённое обеспечение сможет справиться со всеми требованиями. Также необходим программатор. Его можно приобрести в ближайшем магазине, заказать по интернету или собрать самостоятельно. Не помешает и печатная плата. Она не обязательна, но её использование позволяет сэкономить свои нервы и время. Также покупается/создаётся самостоятельно. И последнее - это источник питания. Для AVR необходимо обеспечить поступление напряжения на 5В.

Где и как учиться?

Создавать шедевры с нуля не получиться. Здесь необходимы знания, опыт и практика. Но где их взять? Существует несколько путей. Первоначально можно самостоятельно выискивать нужную информацию в мировой сети. Можно записать на курсы программирования (дистанционные или очные) для получения базовых навыков работы. Каждый подход имеет свои преимущества. Так, дистанционные курсы программирования будут более дешевыми, а может и бесплатными. Но если что-то не будет получаться, то при очных занятиях опытный разработчик сможет быстрее найти причину проблемы. Также не лишним будет ознакомиться с литературой, что находится в свободном доступе. Конечно, на одних книгах выехать не получится, но получить базовые знания про устройство, программирование на "СИ", "Ассемблере" и о других рабочих моментах можно.

Порты ввода/вывода

Это чрезвычайно важная тема. Без понимания того, как работают порты ввода/вывода, не представляется возможным внутрисхемное программирование AVR вообще. Ведь взаимодействие микроконтроллера с внешними устройствами осуществляется именно при их посредничестве. На первый взгляд новичка может показаться, что порт - это довольно запутанный механизм. Чтобы избежать такого впечатления, не будем детально рассматривать схему его работы, а только получим общее представление об этом. Рассмотрим программную реализацию. В качестве примера устройства был выбран микроконтроллер AtMega8 - один из самых популярных из всего семейства AVR. Порт ввода/вывода представляет собой три регистра, которые отвечают за его работу. На физическом уровне они реализовываются как ножки. Каждой из них соответствует определённый бит в управляющем реестре. Каждая ножка может работать как для ввода информации, так и для её вывода. Например, на неё можно повесить функцию зажигания светодиода или обработку нажатия кнопки. Кстати, три регистра, о которых говорилось, это: PORTx, PINx и DDRx. Каждый из них является восьмиразрядным (не забываем, что мы рассматриваем AtMega8). То есть один бит занимается определённой ножкой.

Работа регистров

Наиболее весомым в плане ориентации является управляющий DDRx. Он также является восьмиразрядным. Значения для него могут быть записаны 0 или 1. Как меняется работа контроллера при использовании нулей и единицы? Если в определённом бите выставить 0, то соответствующая ему ножка будет переключена в режим входа. И с неё можно будет считывать данные, что идут с внешних устройств. Если установить 1, то микроконтроллер сможет управлять чем-то (например, дать приказ транзистору пропустить напряжение и зажечь светодиод). Вторым по важности является PORTx. Он занимается управлением состояния ножки. Давайте рассмотрим пример. Допустим, у нас есть порт вывода. Если мы устанавливаем логическую единицу в PORTx, то посылается сигнал от микроконтроллера управляющему устройству начать работу. Например, зажечь светодиод. При установлении нуля он будет гаситься. То есть работать с управляющим регистром DDRx постоянно, нет надобности. И напоследок давайте о PINx. Этот регистр отвечает за отображение состояния ножки контроллера, когда она настроена на состояние ввода. Следует отметить, что PINx может работать исключительно в режиме чтения. Записать в него ничего не получится. Но вот прочитать текущее состояние ножки - это без проблем.

Работа с аналогами

AVR не являются единственными микроконтроллерами. Этот рынок поделен между несколькими крупными производителями, а также между многочисленными китайскими имитирующими устройствами и самоделками. Во многом они подобны. К примеру, программирование PIC/AVR сильно не отличается. И если есть понимание чего-то одного, то понять всё остальное будет легко. Но начинать путь рекомендуем всё же с AVR благодаря его грамотной структуре, дружелюбности к разработчику и наличию большого количества вспомогательных материалов, из-за чего процесс разработки можно значительно ускорить.

Техника безопасности

Когда будет вестись программирование микроконтроллеров AVR на "СИ" или на "Ассемблере", то необходимо работать очень осторожно. Дело в том, что выставив определённую комбинацию регистров и изменив внутренние настройки, можно спокойно заблокировать микроконтроллер. Особенно это касается фьюзов. Если нет уверенности в правильности своих действий, то лучше отказаться от их использования. Это же относится и к программаторам. Если покупать заводскую аппаратуру, то она будет прошивать микроконтроллеры без проблем. При сборке своими руками может возникнуть печальная ситуация, при которой программатор заблокирует устройство. Это может произойти как из-за ошибки в программном коде, так и через неполадки в нём самом. Кстати, об ещё одном (на этот раз позитивном) моменте, который ранее вскользь упоминался, но так и не был раскрыт полностью. Сейчас практически все современные микроконтроллеры обладают функцией внутрисхемного программирования. Что это значит? Допустим, что устройство было запаяно на плате. И чтобы сменить его прошивку, сейчас не нужно его выпаивать, ведь такое вмешательство может повредить сам микроконтроллер. Достаточно подключиться к соответствующим выводам и перепрограммировать его при их посредстве.

Какую модель выбрать?

В рамках статьи была рассмотрена AtMega8. Это довольно посредственный за своими характеристиками микроконтроллер, которого, тем не менее, хватает для большинства поделок. Если есть желание создать что-то масштабное, то можно брать уже своеобразных монстров вроде Atmega128. Но они рассчитаны на более опытных разработчиков. Поэтому, если нет достаточного количества опыта, то лучше начинать с небольших и простых устройств. К тому же они и значительно дешевле. Согласитесь, одно дело случайно заблокировать микроконтроллер за сто рублей, а совсем иное - за полтысячи. Лучше набить себе руку и разобраться в различных аспектах функционирования, чтобы в последующем не терять значительные суммы. Первоначально можно начать с AtMega8, а потом уже ориентироваться по своим потребностям.

Заключение

Вот и была рассмотрена тема программирования AVR в самых общих чертах. Конечно, ещё о многом можно рассказывать. Так, к примеру, не было рассмотрено маркирование микроконтроллеров. А оно может о многом сказать. Так, в основном микроконтроллеры работают на напряжении в 5В. Тогда как наличие, к примеру, буквы L может сказать о том, что для работы устройства достаточно только 2,7 В. Как видите, порой знания о маркировке могут сыграть очень важную роль в плане корректной и долговечной работы устройств. Время функционирования микроконтроллеров - это тоже интересная тема. Каждое устройство рассчитано на определённый период. Так, некоторые могут отработать тысячу часов. Другие же имеют гарантийный запас в 10 000!

Эту статью (а точнее цикл статей…) я решил полностью посвятить микроконтроллерам фирмы Atmel. Конечно, тема эта избитая… НО! На собственном опыте знаю, что познать истину среди этого, извините, БАРДАКА, очень и очень сложно! Поэтому решил попытаться внести хотя бы какую-нибудь ясность в головы жаждущих познать этого страшного зверя, зовущегося «Микроконтроллер».

Итак, цель этой статьи в том, чтобы описать и по возможности показать весь процесс создания устройства на основе микроконтроллера с «нуля». То есть, от задумки (например, решили мы собрать новогоднюю мигалку, подобную описанной уважаемым alx32 в статье …) до воплощения в железе. Разумеется, минуя все промежуточные стадии: постановка задачи, выбор МК, подбор обвязки, формулировка алгоритма, написание программы, отладка, создание платы и, самое долгожданное – запуск!!!

Обновлено: добавлены файлы. Итак, задача : нам нужно создать устройство, способное зажигать в определенном порядке (пусть будет по очереди) , N-ное количество светодиодов (пускай будет 8 штук).
(это для начала……..)


Теперь можно браться за программирование. Писать можно на чем угодно, но начинающим советую отдать предпочтение языку C , т.к. программировать проще и нагляднее. Лично я пользуюсь компилятором CodeVision AVR (он есть в файловом архиве), дальнейшие листинги программ будут приводиться именно для этого компилятора.

Определимся с алгоритмом . Нам нужно по очереди через определенный промежуток времени активировать один из выходов МК.

Включать/выключать можно разными способами :
- присваивать значения каждому выводу отдельно;
- записывать значения сразу всех выводов.

Значения (последовательность) можно получить :
- набрав все команды вручную;
- из массива;
- математическим методом.

Временной интервал можно задать :
- функциями delay (задержка);
- через таймер.

Поэкспериментируем со всеми этими способами. Но сначала нужна заготовка…

Чтобы создать заготовку программы воспользуемся генератором кода, встроенным в CVAVR . Для этого запускаем программу, нажимаем File -> New , в открывшемся окне выбираем “Project” и жмем OK . На вопрос «Воспользоваться генератором кода?» отвечаем “Yes”.
Появилось окно генератора кода. В нем выбираем тип МК и его тактовую частоту, остальное оставляем как есть:


Далее переходим на вкладку “Ports” и там в “PortB” и выставляем следующее:


Так мы определили все выводы порта B как выходы, а нолики означают, что при включении питания на них будет устанавливаться логический "0 ".
Остальные функции нам пока не нужны.

Жмем “File -> Generate, Save and Exit” , выбираем куда сохранить файлы проекта и видим окно с созданным генератором кодом.

Теперь давайте введем в программу наш код .
Простейший вариант реализации (хотя и самы не красивый с точки зрения программирования) – записываем значения каждого вывода, а задержки делаем через функцию delay .

delay_ms(x ); - задержка на x миллисекунд

delay_us(x ); - задержка на x микросекунд

PORTB - порт, с которым мы работаем.

PORTB.x - обращение к выводу x порта B

Находим в конце текста такие строки


Это бесконечный цикл (т.е.выполняется всё время, пока включено питание) нашей программы. Всё, что перед ним – команды предварительной настройки микроконтроллера. Строки, начинающиеся с “//” – комментарии, их тоже полезно иногда читать.

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только


Жмем кнопочку Make the project

(в панели инструментов).

Матерится?
И правильно! Компилятор не знает функции delay_ms() , поэтому надо указать ему файл, в котором эта функция описана.
Для этого в самом начале текста программы нужно вставить строку #include (тут точка_с_запятой не нужна! )
Примерно вот так:

Снова жмем волшебную кнопочку.
Проект создан .
Теперь в папке, в которую мы сохранили сам проект, появился файл название_проекта .hex – это и есть прошивка микроконтроллера!

Но подождите, не торопитесь хвататься за паяльник… Мы ведь учимся программировать, а не паять!

Именно поэтому предлагаю проверить нашу программу в виртуальном режиме, а именно – в таком замечательном и любимом мною продукте от Labcenter Electronics - Proteus VSM Там можно моделировать абсолютно любые схемы (даже примитивы Лапласа есть!). Взять ее можно в прикрепленном архиве, вместе с файлами проекта. Правда версия не совсем крякнутая, поэтому не работает сохранение. Что с этим делать расскажу в отдельной статье.

Итак, запускаем ISIS (среда разработки принципиальных схем). В этом окне нажимам кнопочку “P”.

В строке “Keywords” вводим “attiny2313” и справа получаем:


Выбирать особо не из чего, поэтому щелкаем дважды по этой одинокой строке и видим слева в основном окне:


Это значит, что элемент добавлен.

Теперь введите в поле “Keywords” слова “LED-RED” и “RES” . Добавьте резистор и светодиод в проект и закройте окно выбора элементов.

Пробуем собрать схему (вывод RESET обязательно подключите к +5V, иначе ничего не заработает! и в жизни это тоже желательно!)

Вот небольшая подсказка :

А для редактирования свойств элементов достаточно щелкнуть по ним дважды.

Собрали? Надеюсь, не покалечили при этом себя, близких и окружающие предметы.

Простите за издевательство, просто если разберешься сам – уже не забудешь, так что, постигайте, программа очень мощная и она стоит того, чтобы ее освоить!

Когда схема собрана, можно прошить наш виртуальный МК. Для этого щелкаем по нему дважды и видим окно.


В этом учебном курсе по avr я постарался описать все самое основное для начинающих программировать микроконтроллеры avr . Все примеры построены на микроконтроллере atmega8 . Это значит, что для повторения всех уроков вам понадобится всего один МК. В качестве эмулятора электронных схем используется Proteus - на мой взгляд, - лучший вариант для начинающих. Программы во всех примерах написаны на компиляторе C для avr CodeVision AVR. Почему не на каком-нибудь ассемблере? Потому что начинающий и так загружен информацией, а программа, которая умножает два числа, на ассемблере занимает около ста строк, да и в сложных жирных проектах используют С. Компилятор CodeVision AVR заточен под микроконтроллеры atmel, имеет удобный генератор кода, неплохой интерфейс и прямо с него можно прошить микроконтроллер.

В этом учебном курсе будет рассказано и показано на простых примерах как:

  • Начать программировать микроконтроллеры, с чего начать, что для этого нужно.
  • Какие программы использовать для написания прошивки для avr, для симуляции и отладки кода на ПК,
  • Какие периферийные устройства находятся внутри МК, как ими управлять с помощью вашей программы
  • Как записать готовую прошивку в микроконтроллер и как ее отладить
  • Как сделать печатную плату для вашего устройства
Для того, чтобы сделать первые шаги на пути программирования МК, вам потребуются всего две программы:
  • Proteus - программа-эмулятор (в ней можно разработать схему, не прибегая к реальной пайке и потом на этой схеме протестировать нашу программу). Мы все проекты сначала будем запускать в протеусе, а потом уже можно и паять реальное устройство.
  • CodeVisionAVR - компилятор языка программирования С для AVR. В нем мы будем разрабатывать программы для микроконтроллера, и прямо с него же можно будет прошить реальный МК.
После установки Proteus, запускаем его
Он нам предлагает посмотреть проекты которые идут с ним, мы вежливо отказываемся. Теперь давайте создадим в ней самую простую схему. Для этого кликнем на значок визуально ничего не происходит. Теперь нужно нажать на маленькую букву Р (выбрать из библиотеки) в панели списка компонентов, откроется окно выбора компонентов
в поле маска вводим название компонента, который мы хотим найти в библиотеке. Например, нам нужно добавить микроконтроллер mega8
в списке результатов тыкаем на mega8 и нажимаем кнопку ОК . У нас в списке компонентов появляется микроконтроллер mega8
Таким образом добавляем в список компонентов еще резистор, введя в поле маска слово res и светодиод led

Чтобы разместить детали на схеме, кликаем на деталь, далее кликаем по полю схемы, выбираем место расположения компонента и еще раз кликаем. Для добавления земли или общего минуса на схему слева кликаем "Терминал" и выбираем Ground. Таким образом, добавив все компоненты и соединив их, получаем вот такую простенькую схемку
Все, теперь наша первая схема готова! Но вы, наверное, спросите, а что она может делать? А ничего. Ничего, потому что для того, чтобы микроконтроллер заработал, для него нужно написать программу. Программа - это список команд, которые будет выполнять микроконтроллер. Нам нужно, чтобы микроконтроллер устанавливал на ножке PC0 логический 0 (0 вольт) и логическую 1 (5 вольт).

Написание программы для микроконтроллера

Программу мы будем писать на языке С в компиляторе CodeVisionAVR. После запуска CV, он спрашивает нас, что мы хотим создать: Source или Project Мы выбираем последнее и нажимаем кнопку ОК. Далее нам будет предложено запустить мастер CVAVR CodeWizard (это бесценный инструмент для начинающего, потому как в нем можно генерировать основной скелет программы) выбираем Yes
Мастер запускается с активной вкладкой Chip, здесь мы можем выбрать модель нашего МК - это mega8, и частоту, на которой будет работать МК (по умолчанию mega8 выставлена на частоту 1 мегагерц), поэтому выставляем все, как показано на скриншоте выше. Переходим во вкладку Ports
У микроконтроллера atmega8 3 порта: Port C, Port D, Port B. У каждого порта 8 ножек. Ножки портов могут находиться в двух состояниях:
  • Выход
С помощью регистра DDRx.y мы можем устанавливать ножку входом или выходом. Если в
  • DDRx.y = 0 - вывод работает как ВХОД
  • DDRx.y = 1 вывод работает на ВЫХОД
Когда ножка сконфигурирована как выход, мы можем выставлять на ней лог 1 (+5 вольт) и логический 0 (0 вольт). Это делается записью в регистр PORTx.y. Далее будет подробно рассказано про порты ввода-вывода. А сейчас выставляем все, как показано на скриншоте, и кликаем File->Generate, Save and Exit. Дальше CodeWizard предложит нам сохранить проект, мы его сохраняем и смотрим на код:

#include //библиотека для создания временных задержек void main(void) { PORTB=0x00; DDRB=0x00; PORTC=0x00; DDRC=0x01; // делаем ножку PC0 выходом PORTD=0x00; DDRD=0x00; // Timer/Counter 0 initialization TCCR0=0x00; TCNT0=0x00; // Timer/Counter 1 initialization TCCR1A=0x00; TCCR1B=0x00; TCNT1H=0x00; TCNT1L=0x00; ICR1H=0x00; ICR1L=0x00; OCR1AH=0x00; OCR1AL=0x00; OCR1BH=0x00; OCR1BL=0x00; // Timer/Counter 2 initialization ASSR=0x00; TCCR2=0x00; TCNT2=0x00; OCR2=0x00; // External Interrupt(s) initialization MCUCR=0x00; // Timer(s)/Counter(s) Interrupt(s) initialization TIMSK=0x00; // Analog Comparator initialization ACSR=0x80; SFIOR=0x00; while (1) { }; }


Здесь вам может показаться все страшным и незнакомым, но на самом деле все не так. Код можно упростить, выкинув инициализацию неиспользуемых нами периферийных устройств МК. После упрощения он выглядит так:

#include //библиотека для работы с микроконтроллером mega8 #include //библиотека для создания временных задержек void main(void) { DDRC=0x01; /* делаем ножку PC0 выходом запись 0x01 может показаться вам незнакомой, а это всего лишь число 1 в шестнадцатиричной форме, эта строка будет эквивалентна 0b00000001 в двоичной, далее я буду писать именно так.*/ while (1) { }; }


Всё хорошо. Но для того, чтобы светодиод замигал, нам нужно менять логический уровень на ножке PC0. Для этого в главный цикл нужно добавить несколько строк:

#include //библиотека для работы с микроконтроллером mega8 #include //библиотека для создания временных задержек void main(void) { DDRC=0x01; /* делаем ножку PC0 выходом запись 0x01 может показаться вам незнакомой, а это всего лишь число 1 в шестнадцатиричной форме, эта строка будет эквивалентна 0b00000001 в двоичной, далее я буду писать именно так.*/ while (1)//главный цикл программы {// открывается операторная скобка главного цикла программы PORTC.0=1; //выставляем на ножку 0 порта С 1 delay_ms(500); //делаем задержку в 500 милисекунд PORTC.0=0; //выставляем на ножку 0 порта С 0 delay_ms(500); //делаем задержку в 500 милисекунд };// закрывается операторная скобка главного цикла программы }


Все, теперь код готов. Кликаем на пиктограму Build all Project files, чтобы скомпилировать (перевести в инструкции процессора МК) нашу программу. В папке Exe, которая находится в нашем проекте, должен появиться файл с расширением hex, это и есть наш файл прошивки для МК. Для того, чтобы нашу прошивку скормить виртуальному микроконтроллеру в Proteus, нужно два раза кликнуть на изображении микроконтроллера в протеусе. Появится вот такое окошко
кликаем на пиктограму папки в поле Program File, выбераем hex - файл нашей прошивки и нажимаем кнопку ОК. Теперь можно запустить симуляцию нашей схемы. Для этого нажимаем кнопку "Воспроизвести" в нижнем левом углу окна Протеус.

9


Современное радиолюбительство невозможно представить без микроконтроллеров, и это очевидно. В последние десятилетия микроконтроллеры различных производителей стали широко распространены в разных сферах деятельности человека. Нередко их можно встретить в самых неожиданных устройствах и конструкциях. Мы с вами являемся свидетелями компьютеризации и автоматизации окружающих нас процессов. Истина такова, что без знания основ программирования создавать современные конкурентоспособные устройства стало практически невозможно…

Если вы читаете эту статью, вероятно у вас возникло желание понять, как работают микроконтроллеры, и скорее всего появились вопросы:

4. Какую литературу изучать?

Попробуем ответить на эти вопросы.

1. Какой микроконтроллер выбрать для работы?

Большой популярностью у радиолюбителей пользуются 8-битные микроконтроллеры PIC фирмы Microchip Technology и AVR фирмы Atmel, 16-битные MSP430 фирмы TI, а также 32-битные микроконтроллеры, архитектуры ARM .

В промышленности, несколько иначе, первое место с большим отрывом занимает Renesas Electronics на втором Freescale , на третьем Samsung , затем идут Microchip и TI , далее все остальные.
Популярность определяется ценой и доступностью, немалую роль играют наличие технической информации и стоимость программного сопровождения.

Мы будем изучать 8-битные микроконтроллеры AVR, семейства ATMEGA 8 и 16 серии . Выбор определился, опять же доступностью, наличием множества любительских разработок, огромным количеством учебного материала. Наличием разнообразных встроенных компонентов и функциональностью этого семейства.

2. Какую среду разработки использовать для программирования выбранного микроконтроллера?

Для AVR созданы разные интегрированные среды разработки (IDE, Integrated development environment).
IDE – это система программных средств, используемая программистами для разработки программного обеспечения (ПО), в состав которой входят:
текстовый редактор,
компилятор и/или интерпретатор,
средства автоматизации сборки,
отладчик.

Наиболее распространенные из них AVRStudio, ATmelStudio, WINAVR, CodeVision, IAR Embedded Workbench .
Для того, чтобы писать программы, мы воспользуемся бесплатной IDE ATmelStudio версии 6 и выше.
Скачать Atmel Studio можно с официального сайта после регистрации (регистрация абсолютно бесплатная и ни к чему не обязывает!)

ATmelStudio позволяет создавать проекты, и писать программы как в ассемблере, так и на СИ.

Изначально всегда стоит вопрос: какой язык программирования выбрать, чтобы писать эффективные программы?

Отвечу просто: нужно уметь писать как минимум на двух языках ассемблере и СИ. Ассемблер просто необходим, когда нужно написать быстрые и компактные подпрограммы и макросы, различные драйверы устройств. Но, когда требуется создать объемный проект, построенный на сложных алгоритмах, без знания СИ может быть потрачено очень много времени, особенно в процессе отладки, а если возникнет желание перенести на другую платформу, например PIC18, или STM, может стать неразрешимой проблемой.
Кроме этого, сейчас появились аппаратные вычислительные платформы Arduino , работа с которыми требует знаний языка СИ++.
Поэтому будем писать программы как в ассемблере, так и на СИ.

Чтобы наглядно видеть результат своей работы, не используя паяльник или макетную плату достаточно установить программу Proteus .

3. Как прошивать контроллер, и какие дополнительные приборы и акссесуары нужны для удобной работы с ними?

Используем датагорский . Кроме этого, нужно будет приобрести макетные платы, блок питания с выходным напряжением 5 Вольт. Можно в качестве БП с малыми пульсациями использовать , применив стабилитрон на 5 Вольт.
Возможно, со временем мы с Игорем предложим проект для сборки отладочной платы.

4. Какую литературу изучать?

А вот, например:
Практическое программирование AVR на ассемблере. Ревич, 2011
1000 и одна микроконтроллерная схема Вып. 1-2. Рюмик, 2010-2011
10 практических устройств на МК AVR Книга 1-2. Кравченко, 2008-2009
Самоучитель разработчика устройств на МК AVR. Белов, 2008
МК AVR семейств Tiny и Atmega. Ефстифеев, 2008
CodeVisionAVR. Пособие для начинающих. Лебедев, 2008
Микропроцессорное управление устройствами, тиристоры, реле. Белов, 2008
Аналоговые интерфейсы МК. Стюард, Болл, 2007
Создаем устройства на МК AVR. Белов, 2007
МК AVR в радиолюбительской практике. Полный разбор ATTINY2313. Белов, 2007
Сетевой и межсетевой обмен данными с МК. Иди, 2007
МК AVR. практикум для начинающих. Хартов, 2007
Применение AVR Схемы, алгоритмы, программы. Баранов, 2006
Микроконтроллеры AVR. Вводный курс. Мортон, 2006
Измерение, управление и регулирование с помощью AVR. Трамперт, 2006
Программирование на языке С для AVR и PIC МК. Шпак, 2006
Конструирование устройств на МК. Белов, 2005
МK - это же просто, тома 1-3. Фрунзе, 2002-2003
Язык программирования Си, 2-е издание. Керниган, Ритчи, 2009
Программирование микроконтроллеров ATMEL на языке С. Прокопенко, 2012

5. Где в интернете можно задавать вопросы и получать конкретные ответы?

Задавать вопросы вы можете на нашем или любом другом форуме, где так или иначе затронуты темы по микроконтроллерам. Главное на форумах правильно формулировать вопросы, чтобы четко получать ответы. Абстрактные вопросы не приветствуются, и скорее всего вместо ответа вы получите жесткую критику, или ваш вопрос останется без внимания!

Теперь рассмотрим поближе нашего фаворита, микроконтроллер ATMEGA 8

8-разрядный высокопроизводительный AVR микроконтроллер с малым потреблением
Прогрессивная RISC архитектура
130 высокопроизводительных команд, большинство команд выполняется за один тактовый цикл
32 8-разрядных рабочих регистра общего назначения
Полностью статическая работа
Приближающаяся к 16 MIPS (при тактовой частоте 16 МГц) производительность
Встроенный 2-цикловый перемножитель

Энергонезависимая память программ и данных
8 Кбайт внутрисистемно программируемой Flash памяти (In-System Self-Programmable Flash)
Обеспечивает 1000 циклов стирания/записи
Дополнительный сектор загрузочных кодов с независимыми битами блокировки
Обеспечен режим одновременного чтения/записи (Read-While-Write)
512 байт EEPROM
Обеспечивает 100000 циклов стирания/записи
1 Кбайт встроенной SRAM
Программируемая блокировка, обеспечивающая защиту программных средств пользователя

Встроенная периферия
Два 8-разрядных таймера/счетчика с отдельным предварительным делителем, один с режимом сравнения
Один 16-разрядный таймер/счетчик с отдельным предварительным делителем и режимами захвата и сравнения
Счетчик реального времени с отдельным генератором
Три канала PWM
8-канальный аналого-цифровой преобразователь (в корпусах TQFP и MLF)
6 каналов с 10-разрядной точностью
6-канальный аналого-цифровой преобразователь (в корпусе PDIP)
4 канала с 10-разрядной точностью
2 канала с 8-разрядной точностью
Байт-ориентированный 2-проводный последовательный интерфейс
Программируемый последовательный USART
Последовательный интерфейс SPI (ведущий/ведомый)
Программируемый сторожевой таймер с отдельным встроенным генератором
Встроенный аналоговый компаратор

Специальные микроконтроллерные функции
Сброс по подаче питания и программируемый детектор кратковременного снижения напряжения питания
Встроенный калиброванный RC-генератор
Внутренние и внешние источники прерываний
Пять режимов пониженного потребления: Idle, Power-save, Power-down, Standby и снижения шумов ADC

Выводы I/O и корпуса
23 программируемые линии ввода/вывода
28-выводной корпус PDIP, 32-выводной корпус TQFP и 32-выводной корпус MLF

Рабочие напряжения
2,7 - 5,5 В (ATmega8L)
4,5 - 5,5 В (ATmega8)

Рабочая частота
0 - 8 МГц (ATmega8L)
0 - 16 МГц (ATmega8)

отличия ATMEGA16 от 8
16 Кбайт внутрисистемно программируемой Flash памяти (In-System Self-Programmable Flash)

Интерфейс JTAG (совместимый с IEEE 1149.1)
Возможность сканирования периферии, соответствующая стандарту JTAG
Расширенная поддержка встроенной отладки
Программирование через JTAG интерфейс: Flash, EEPROM памяти, перемычек и битов блокировки

Четыре канала PWM / ШИМ

8-канальный 10-разрядный аналого-цифровой преобразователь
8 несимметричных каналов
7 дифференциальных каналов (только в корпусе TQFP)
2 дифференциальных канала с программируемым усилением в 1, 10 или 200 крат (только в корпусе TQFP)

Шесть режимов пониженного потребления: Idle, Power-save, Power-down, Standby, Extended Standby и снижения шумов ADC

32 программируемые линии ввода/вывода

40-выводной корпус PDIP и 44-выводной корпус TQFP

AtmelStudio

Если Вы только начинаете, то нужно скачать и установить программу AtmelStudio с официальной страницы atmel.com
После установки программы AtmelStudio можно приступить к созданию проекта.
Проект – это ваша программа, которую вы будете писать, отлаживать и прошивать, после компиляции, в память микроконтроллера.

Чтобы создать проект, надо открыть программу, появиться такая заставка,

и откроется страница создания проекта

Чтобы создать новый проект, нужно кликнуть по «New Project…»
В этом случае откроется новое окно, где можно выбрать язык программирования, название проекта, его месторасположение, название пакета с файлами проекта и возможность создания каталога для дальнейшего использования в других перекрестных проектах. Чтобы создать проект, где мы будем программировать в ассемблере, нужно выбрать - Assembler , после этого поменяем название проекта, его расположение, и выбираем ОК.

Появится следующее окно

Выбираем “megaAVR, 8-bit” и находим нужный нам микроконтроллер, мы выбрали ATmega8. В правой части заставки появляется список устройств, работающих с этим микроконтроллером, один из которых мы можем подключить. Выбираем ОК.

Появляется страница редактора текста, которая позволяет редактировать и отлаживать программу. Пока страница чистая, указано время и дата создания и название файла проекта, имя пользователя. Есть дополнительные окно устройств ввода-вывода, окно отчетов компиляции программы. Теперь мы


можем программировать в ассемблере.
Аналогично создается проект для программирования на языке СИ.

Загрузка...