sonyps4.ru

Приборы с зарядовой связью - основа современной телевизионной техники. основные характеристики пзс

о выборе видеокамеры для семьи мы писали о матрицах. Там мы коснулись этого вопроса легко, однако сегодня постараемся более детально описать обе технологии.

Что же такое матрица в видеокамере? Это микросхема, которая преобразовывает световой сигнал в электрический. На сегодняшний день существует 2 технологии, то есть 2 типа матриц – CCD (ПЗС) и CMOS (КМОП) . Они отличаются друг от друга, каждая имеет свои плюсы и минусы. Нельзя точно сказать, какая из них лучше, а какая – хуже. Они развиваются параллельно. Вдаваться с технические детали мы не будем, т.к. они будут банально непонятны, но общими словами определим их главные плюсы и минусы.

Технология CMOS (КМОП)

CMOS-матрицы в первую очередь хвастаются низким энергопотреблением, что плюс. Видеокамера с этой технологией будет работать чуть дольше (зависит от емкости аккумулятора). Но это мелочи.

Главное отличие и достоинство – это произвольное считывание ячеек (в CCD считывание осуществляется одновременно), благодаря чему исключается размазывание картинки. Возможно, вы когда-нибудь видели «вертикальные столбы света» от точечных ярких объектов? Так вот CMOS-матрицы исключают возможность их появления. И еще камеры на их основе дешевле.

Недостатки также есть. Первый из них – небольшой размер светочувствительного элемента (в соотношении к размеру пикселя). Здесь большая часть площади пикселя занята под электронику, поэтому и площадь светочувствительного элемента уменьшена. Следовательно, чувствительность матрицы уменьшается.

Т.к. электронная обработка осуществляется на пикселе, то и количество помех на картинке возрастает. Это также является недостатком, как и низкое время сканирования. Из-за этого возникает эффект «бегущего затвора»: при движении оператора возможно искажение объекта в кадре.

Технология CCD (ПЗС)

Видеокамеры с CCD-матрицами позволяют получить высококачественное изображение. Визуально легко заметить меньшее количество шумов на видео, отснятом с помощью видеокамеры на основе CCD-матрицы по сравнению с видео, отснятым на камеру CMOS. Это самое первое и важное преимущество. И еще: эффективность CCD-матриц просто потрясающая: коэффициент заполнения приближается к 100%, соотношение зарегистрированных фотонов равен 95%. Возьмите обычный человеческий глаз – здесь соотношение равно приблизительно 1%.


Высокая цена и большое энергопотребление – это недостатки данных матриц. Дело в том, что здесь процесс записи невероятно труден. Фиксация изображения осуществляется благодаря многим дополнительным механизмам, которых нет в CMOS-матрицах, поэтому технология CCD существенно дороже.

CCD-матрицы используются в устройствах, от которых требуется получение цветного и качественного изображения, и которыми, возможно, будут снимать динамические сцены. Это профессиональны видеокамеры в своем большинстве, хотя и бытовые тоже. Это также системы наблюдения, цифровые фотоаппараты и т.д.

CMOS-матрицам применяются там, где нет особо высоких требований к качестве картинки: датчики движения, недорогих смартфонах…Впрочем, так было ранее. Современные матрицы CMOS имеют разные модификации, что делает их весьма качественными и достойными с точки зрения составления конкуренции матрицам CCD.

Сейчас сложно судить о том, какая технология лучше, ведь обе демонстрируют прекрасные результаты. Поэтому ставить тип матрицы как единственный критерий выбора, как минимум, глупо. Важно учитывать многие характеристики.


Пожалуйста, оцените статью:

Твердотельные фотоэлектрические преобразователи (ТФЭП) изображений являются аналогами передающих ЭЛТ.

ТФЭП ведут начало с 1970г., с так называемых ПЗС и формируются на основе отдельных ячеек, представляющих собой конденсаторы МДП- или МОП-структуры. Одной из обкладок такого элементарного конденсатора является металлическая пленка М, второй – полупроводниковая подложка П (p - или n -проводимости), диэлектриком Д служит полупроводник, наносимый в виде тонкого слоя на подложку П. В качестве подложки П применяется кремний, легированный акцепторной (p -типа) или донорной (n -типа) примесью, а в качестве Д – окисел кремния SiO 2 (см. рис.8.8).

Рис. 8.8. Конденсатор МОП-структуры

Рис. 8.9. Перемещение зарядов под действием электрического поля

Рис. 8.10. Принцип работы трехфазной системы ПЗС

Рис. 8.11. Перемещение зарядов в двухфазной системе ПЗС

При подаче на металлический электрод напряжения, под ним образуется «карман» или потенциальная яма, в которой могут «скапливаться» неосновные носители (в нашем случае электроны), а основные носители, дырки, будут отталкиваться от М. На каком-то расстоянии от поверхности, концентрирование неосновных носителей может оказаться выше концентрации основных. Вблизи диэлектрика Д в подложке П возникает инверсионный слой, в котором тип проводимости изменяется на обратный.

Зарядовый пакет в ПЗС может быть введен электрическим путем или с помощью световой генерации. При световой генерации фотоэлектрические процессы, возникающие в кремнии, приведут к накоплению неосновных носителей в потенциальных ямах. Накопленный заряд пропорционален освещенности и времени накопления . Направленная передача заряда в ПЗС обеспечивается расположением МОП-конденсаторов на столь близком расстоянии друг от друга, что их обедненные области перекрываются и потенциальные ямы соединяются. При этом подвижный заряд неосновных носителей будет накапливаться в том месте, где глубже потенциальная яма.

Пусть под воздействием света накоплен заряд под электродом U 1 (см. рис.8.9). Если теперь на соседний электрод U 2 подать напряжение U 2 > U 1 , то рядом появится другая потенциальная яма, более глубокая (U 2 > U 1). Между ними возникнет область электрического поля и неосновные носители (электроны) будут дрейфовать (перетекать) в более глубокий «карман» (см. рис.8.9). Чтобы исключить двунаправленность в передаче зарядов, используют последовательность электродов, объединенных в группы по 3 электрода (см. рис.8.10).

Если, например, накоплен заряд под электродом 4 и необходимо передать его вправо, то на правый электрод 5 подается более высокое напряжение (U 2 > U 1) и заряд перетекает к нему и т.д.


Практически вся совокупность электродов подсоединена к трем шинам:

I – 1, 4, 7, …

II – 2, 5, 8, …

III – 3, 6, 9, …

В нашем случае напряжение «приема» (U 2) будет на электродах 2 и 5, но электрод 2 отделен от электрода 4, где хранится заряд, электродом 3 (у которого

U 3 = 0), поэтому перетекания влево не будет.

Трехтактная работа ПЗС предполагает наличие трех электродов (ячеек) на один элемент ТВ-изображения, что уменьшает полезную площадь, используемую световым потоком. Для сокращения числа ячеек (электродов) ПЗС металлические электроды и слой диэлектрика формируются ступенчатой формы (см. рис.8.11). Это позволяет при подаче на электроды импульсов напряжения создавать под разными его участками потенциальные ямы разной глубины. В более глубокую яму стекает большинство зарядов из соседней ячейки.

При двухфазной системе ПЗС сокращается число электродов (ячеек) в матрице на одну треть, что благоприятно сказывается на считывании потенциального рельефа.

ПЗС вначале предлагали использовать в вычислительной технике в качестве запоминающих устройств, регистров сдвига. В начале цепочки ставили инжектирующий диод, вводящий в систему заряд, а в конце цепи – выводной диод, обычно это n-p- или p-n- переходы МОП структуры, образующие с первым и последним электродами (ячейками) цепочки ПЗС полевые транзисторы.

Но скоро выяснилось, что ПЗС очень чувствительны к свету, и поэтому их лучше и эффективнее использовать в качестве светоприемников, а не в качестве запоминающих устройств.

Если ПЗС-матрица используется в качестве фотоприемника, то накопление заряда под тем или иным электродом может быть осуществлено оптическим методом (инжекция светом). Можно говорить, что ПЗС-матрицы по сути своей являются светочувствительными аналоговыми сдвиговыми регистрами. Сегодня ПЗС не используются в качестве запоминающих устройств (ЗУ), а только в качестве фотоприемников. Они используются в факсимильных аппаратах, сканерах (линейки ПЗС), в фотокамерах и видеокамерах (матрицы ПЗС). Обычно в ТВ камерах используются так называемые ПЗС-чипы.

Мы предполагали, что все 100% зарядов передаются в соседний карман. Однако на практике приходится считаться с потерями. Одним из источников потерь является «ловушки», способные захватывать и удерживать некоторое время заряды. Эти заряды не успевают перетечь в соседний карман, если скорость передачи будет велика.

Второй причиной является сам механизм перетекания. В первый момент перенос зарядов происходит в сильном электрическом поле - дрейф в Е . Однако по мере перетекания зарядов напряженность поля падает и дрейфовый процесс затухает, поэтому последняя порция перемещается за счет диффузии, в 100 раз медленнее дрейфа. Дождаться последней порции – значит снизить быстродействие. Дрейф дает более 90% переноса. Но именно последние проценты являются основными при определении потерь.

Пусть коэффициент передачи одного цикла переноса равен k = 0,99, полагая число циклов равным N = 100, определим суммарный коэффициент передачи:

0,99 100 = 0,366

Становится очевидным, что при большом числе элементов даже незначительные потери на одном элементе приобретают большое значение для цепочки в целом.

Поэтому вопрос о сокращении числа переносов зарядов в матрице ПЗС является особо важным. В этом отношении у матрицы двухфазной ПЗС коэффициент передачи зарядов будет несколько большим, чем в трехфазной системе.

Для преобразования светового потока в электронный сигнал, который затем переводится в цифровой код, записываемый на карту памяти фотоаппарата.
Матрица состоит из пикселей, назначение каждого - выдать на выходе электронный сигнал, соответствующий количеству света, попадаемого на него.
Различие в матрицах ПЗС и КМОП - в методике преобразования полученного от пикселя сигнала. В случае ПЗС - последовательно и с минимумом шумов, в случае КМОП - быстро и с меньшим энергопотреблением (а благодаря дополнительным схемам количество шумов существенно уменьшается).
Впрочем, обо всём по порядку...

Различают матрицы ПЗС и КМОП

ПЗС - матрица

Прибор с зарядовой связью (ПЗС, по англ. - CCD) назван так из-за способа передачи заряда между светочувствительными элементами - от пикселя к пикселю и, в конечном итоге, выводе заряда из сенсора .

Заряды сдвигаются по матрице строчками сверху вниз. Таким образом, заряд передвигается вниз по строчкам сразу множества регистров (столбцов).
Перед тем, как покинуть ПЗС - сенсор, заряд каждого пикселя усиливается, и на выходе получается аналоговый сигнал с различным напряжением (в зависимости от количества света, попавшего на пиксель). Перед обработкой этот сигнал пересылается на отдельный (вне чипа) аналого-цифровой преобразователь, и получившиеся цифровые данные преобразуются в байты, представляющие строчку изображения, полученного сенсором.

Так как ПЗС передаёт электрический заряд, который обладает низким сопротивлением и меньше подвержен помехам других электронных компонентов, результирующий сигнал, как правило, содержит меньше различных шумов по сравнению с сигналом КМОП- сенсоров.

КМОП - матрица

В КМОП - матрице (КМОП -комплементарный металл - оксидный полупроводник, по англ. - CMOS), обрабатывающее устройство находится рядом с каждым пикселем (порой монтируется на саму матрицу), благодаря чему увеличивается быстродействие системы. Также, в связи с отсутствием дополнительных устройств обработки, отметим низкий уровень энергопотребления КМОП - матриц.

Некоторое представление о процессе считывания информации с матриц можно получить из следующего ролика


Технологии постоянно усовершенствуются, и на сегодняшний день наличие в фотоаппарате либо видеокамере именно КМОП-матрицы говорит о более высоком классе модели. Производители часто акцентируют внимание на моделях с КМОП - матрицами.
В последнее время популярна разработка КМОП-матрицы с тыловым размещением проводников, показывающая лучшие результаты при съёмке в условиях низкого освещения, а также имеющая меньший уровень шумов.

Фотоэлектрические преобразователи изображения на ПЗС делятся на два класса: линейные (одномерные) и матричные (двумерные). В линейных ФЭП фоточувствительные элементы расположены вдоль одной линии, обычно строки, и формируют одномерное изображение объекта. Такие однострочные ФЭП могут быть использованы при контроле за технологическими процессами производства, при специальном анализе и анализе оптической плотности макро- и микрообъектов. Однострочные ФЭП могут быть использованы и для получения двумерного изображения. В этом случае необходимо перемещение ФЭП или объекта в направлении, перпендикулярном направлению строчной развертки.

Твердотельным аналогом передающей трубки с электронным сканированием по строке и кадру является матричный формирователь сигнала изображения. Он представляет собой двухкоординатный массив светочувствительных элементов, в котором осуществляется электронное сканирование по координатам х и y. При проектировании такой двухкоординатной матрицы решается вопрос организации ее считывания.

Для наиболее полного использования достоинств ПЗС зарядовые пакеты должны перемещаться к одному выходному устройству, а порядок считывания информации - обычно соответствовать принятому телевизионному стандарту. При выборе способа организации считывания необходимо обеспечить минимальное смазывание изображения, возникающее при переносе накопленных зарядовых пакетов через освещенные области прибора. Поэтому в современных матричных ФЭП на ПЗС области накопления заряда и его переноса разделяют.

По способу организации считывающие матрицы ПЗС делятся на матрицы с кадровым переносом заряда (КП), матрицы со строчным переносом заряда (СП) и матрицы со строчно-кадровым переносом заряда (СКП).

Матрицы ПЗС КП (см. рис. 8.12) включают в себя секцию накопления - фотоприемную секцию, секцию хранения или памяти, которая защищена от света и равна по площади секции накопления, и один или несколько параллельных выходных сдвиговых регистров.

Рис. 8.12. Способ организации покадрового считывания

Во время активной части поля происходит накопление зарядовых пакетов в фотоприемной секции. Во время кадрового гасящего импульса, накопленные заряды всех строк поля последовательно переносятся в защищенную от света секцию хранения. Далее во время накопления в фотоприемной секции следующего кадра информация из секции хранения построчно передается в секцию переноса заряда - сдвиговый регистр. Сдвиг строк в секцию переноса осуществляется во время обратного хода горизонтальной развертки. Затем зарядовые пакеты строки поэлементно выводятся сдвиговым регистром к выходному устройству, преобразующему заряды в сигнал изображения. После считывания всей видеоинформации из секции хранения начинается перенос следующего кадра.


Одним из основных достоинств покадрового считывания является уменьшение эффекта смазывания изображения, так как зарядовая информация считывается из защищенной от света секции хранения и дополнительной засветки при сканировании не происходит. При покадровой организации легко осуществляется чересстрочное разложение изображения, также проста электродная структура, что позволяет компактно расположить ячейки матрицы. Принцип покадрового переноса удобен для освещения матрицы со стороны подложек, что позволяет удвоить квантовую эффективность прибора и получить более равномерную характеристику спектральной чувствительности.

Таким образом, в матрице с покадровым считыванием перенос зарядовых пакетов к выходному устройству осуществляется в три приема: 1) перенос из секции накопления в секцию памяти; 2) перенос из секции памяти в сдвиговый регистр; 3) перенос из сдвигового регистра в выходное устройство. Нетрудно видеть, что число переносов для разных элементов кадра будет различным. Максимальным оно будет для первого элемента верхней строки и минимальным - для последнего элемента нижней. Максимальное число переносов для одного зарядового пакета нетрудно подсчитать. Для покадровой организации считывания по трехтактной схеме сдвига число переносов N max = 2 х 3z + 2n , где z - число строк; п - число элементов в строке. В приведенном равенстве первый член учитывает число переносов по кадру, а второй - число переносов вдоль строки.

Учитывая, что зарядовые пакеты переносятся не полностью, так как, во-первых, часть заряда теряется в ловушках, существующих на границе кремния с окислом, а во-вторых, при определенной скорости переноса часть заряда может отстать от пакета и появиться в следующем. Неэффективность переноса заряда ε накладывает определенные ограничения на скорость работы ПЗС и полное число переносов, которые можно совершить без существенного разрушения сигнала. Если ε - относительная величина и характеризует часть заряда, отставшую от пакета на один перенос, умножив ε на число переносов в приборе N , получим результирующую неэффективность переноса N ε всего прибора.

Недостатком матриц ПЗС КП является неполное устранение смаза изображения, которое проявляется в виде вертикальных тянущихся продолжений за очень яркими деталями. Смаз появляется из-за того, что при переносе накопленных зарядов из фотоприемной секции в секцию памяти свет продолжает попадать в фотоприемную секцию.

Для уменьшения величины смаза изображения были разработаны матрицы со строчным переносом зарядов (см. рис. 8.13), в которых область накопления образована вертикальными столбцами светочувствительных элементов, между которыми помещены защищенные от света вертикальные сдвиговые регистры. В течение времени кадра в светочувствительных элементах накапливаются зарядовые пакеты. Во время гасящего кадрового импульса они одновременно переносятся в соседние ячейки вертикальных сдвиговых регистров. Во время накопления следующего кадра, зарядовые пакеты из вертикальных регистров одновременно сдвигаются в горизонтальный (выходной) регистр. Сдвиг по вертикальным регистрам на один элемент происходит во время обратного хода строчной развертки, а вывод зарядовых пакетов из горизонтальных регистров в выходное устройство - за время прямого хода строчной развертки. Полное освобождение вертикальных сдвиговых регистров от зарядов происходит за время кадра.


Рис. 8.13. Матрица со строчным переносом зарядов

Рис. 8.14. Матрица со строчно-кадровым переносом зарядов


Для обеспечения чересстрочной развертки в матрице ПЗС СП заряды из светочувствительных ячеек в вертикальные регистры переносятся: в нечетных полях - из нечетных ячеек, а в четных полях - из четных ячеек.

В трехматричных камерах вещательного назначения необходимо дальнейшее снижение уровня смаза изображения. Для обеспечения этого требования были разработаны гибридные матрицы ПЗС со строчно-кадровым переносом заряда (СКП). Матрицы ПЗС СКП (см. рис. 8.14 и 8.15) отличаются от матриц ПЗС СП (см. рис. 8.13) наличием в них дополнительной секции хранения зарядов на длительность поля.

Рис. 8.15. Концепция строчно-кадрового переноса

Поэтому частота переноса заряда из вертикальных ПЗС регистров в секцию хранения может быть выбрана в десятки раз больше частоты строк, используемой в матрицах ПЗС СП. Это позволяет во столько же раз уменьшить уровень смаза изображения. Недостатки матриц ПЗС СКП заключаются в относительной сложности изготовления и высокой стоимости производства.

Основные недостатки матричных ПЗС СП – невозможность освещения со стороны подложки и неполное использование светового потока из-за того, что фотодиоды занимают не всю площадь кристалла фотоны, попадающие на экранированные от света вертикальные ПЗС-регистры, не создают зарядов. Вследствие этого существенно снижается чувствительность камер.

Таким образом, уменьшение размеров светочувствительной площади в матрицах со строчным переносом косвенно ухудшает световую чувствительность матрицы. Эта проблема может быть разрешена очень просто (хотя технологически это очень сложно) – поверх каждого пикселя (фотодиода) помещается микролинза. Микролинза концентрирует весь падающий свет на маленькую область, на сам пиксель (фотодиод), собирает в него весь световой поток, и этим самым эффективно увеличивает минимальную освещенность фотодиода (см. рис. 8.16).

Рис. 8.16,а. Сравнение традиционных схем с микролинзами

Рис. 8.16,б. Структура ПЗС-матрицы с микролинзами (фотография сделана электронным микроскопом)

Число фотодиодов в столбце матричного ПЗС выбирается равным числу строк в кадре. Чересстрочное разложение в матричных ПЗС со строчным переносом может быть реализовано различными способами. В простейшем случае в первом поле зарядовые пакеты из нечетных фотодиодов считываются в вертикальный ПЗС-регистр, а в четных фотодиодах накопление продолжается. Во втором поле считываются заряды, накопленные в четных фотодиодах. Размер светочувствительного элемента по вертикали оказывается равным размеру одного фотодиода. Центры соседних строк расположены на равном расстоянии друг от друга. Время накопления при таком считывании составляет в телевизионном режиме 40 мс – время кадра. Поэтому данный режим получил название режима накопления кадра. Столь большое время накопления приводит к искажениям при передаче подвижных объектов. Появляется зубчатость вертикальных границ при движении объектов по горизонтали. Для преодоления этого недостатка был разработан режим накопления поля.

Световая характеристика матрицы ПЗС в рабочем диапазоне освещенности линейна (см. рис. 8.17). Точка 1 соответствует выходному

сигналу в отсутствие освещения и определяет темновой ток, обусловленный в большой степени термогенерацией неосновных носителей. Точка 2 характеризует режим насыщения элемента матрицы, т.е. полное заполнение потенциальной ямы неосновными носителями. Глубина потенциальной ямы определяется конструктивными параметрами матрицы и потенциалом накопления, значение которого ограничено напряжением пробоя МОП-конденсатора.


Рис. 8.17. Световая характеристика матрицы ПЗС

Рис. 8.18. Спектральная характеристика матрицы ПЗС


Спектральная чувствительность матричного формирователя (рис. 8.18 и 8.19) имеет подъем в длинноволновой области спектра и спад в области длин волн 0,4...0,5 мкм (кривая 1), который обусловлен сильным поглощением на этом участке спектра нанесенными на полупроводниковую подложку поликремниевыми электродами.

Рис. 8.19. Спектральная чувствительность глаза и ПЗС-матрицы

Для повышения чувствительности в этой области спектра в поликремниевых электродах вскрыты окна. Площадь окон составляет примерно 15... 20 % от площади фоточувствительной поверхности элемента. Это подняло чувствительность матрицы на длине волны λ = 0,4 мкм до 20 % (кривая 2), что позволило использовать матрицу в цветном телевидении. Разрешающая способность определяется числом элементов накопления в матрице ПЗС. Для систем телевидения высокой четкости разработаны матрицы ПЗС с числом элементов 1035x1920.

Спектральная чувствительность ПЗС-матрицы зависит от типа кремниевой подложки, но общая характеристика является результатом фотоэффекта: более длинные волны глубже проникают в кремниевую структуру ПЗС. Имеется в виду красный и инфракрасный свет (рис. 8.19).

Однако такое проникновение является вредным. Такие волны настолько сильны, что могут генерировать электронные носители в зонах, которые не должны подвергаться воздействию света. В результате в изображении пропадают мелкие детали, потому что заряд ячеек растекается по соседним, теряя при этом компоненты высокого разрешения и вызывая «эффект заплывания». Может быть затронута также и масковая зона (рис. 8.15), предназначенная лишь для временного хранения зарядов и не предназначенная для засвечивания, в результате чего могут, в значительной степени возрасти шумы и вертикальный ореол. Поэтому в усовершенствованных ПЗС-видеокамерах применяются специальные оптические инфракрасные отсекающие фильтры. Они монтируются сверху ПЗС-матрицы и ведут себя как оптические НЧ фильтры с частотой среды порядка 700 нм, вблизи красного цвета (рис. 8.20) .

Рис. 8.20. Инфракрасный отсекающий фильтр изменяет характеристику спектральной чувствительности ПЗС-матрицы

Однако в тех случаях, когда предполагается использовать видеокамеру (черно-белую) в условиях низкой освещенности или в систему входят источники инфракрасного освещения объектов, такие фильтры не используются (чтобы не ослаблять чувствительность камер).

В цветных ПЗС-камерах, напротив, нужно использовать ИК-отсекающий фильтр. Типичная черно-белая ПЗС-матрица без инфракрасного фильтра может дать приемлемый уровень видеосигнала при освещенности мишени камеры в 0,01 лк. Та же камера с ИК-фильтром потребует освещенность в 10 раз большую. Но в этом случае верность цветопередачи является определяющим критерием.

Впервые принцип ПЗС с идеей сохранять и затем считывать электронные заряды был разработан двумя инженерами корпорации BELL в конце 60-х годов в ходе поиска новых типов памяти для ЭВМ, способных заменить память на ферритовых кольцах (да – да, была и такая память). Эта идея оказалась бесперспективной, но способность кремния реагировать на видимый спектр излучения была замечена и мысль использовать этот принцип для обработки изображений получила своё развитие.

Начнем с расшифровки термина.

Аббревиатура ПЗС означает "Приборы с Зарядовой Связью" - этот термин образовался от английского "Сharge-Сoupled Devices" (CCD).

Данный тип приборов в настоящее время имеет очень широкий круг применений в самых различных оптоэлектронных устройствах для регистрации изображения. В быту это цифровые фотоаппараты, видеокамеры, различные сканеры.

Что же отличает ПЗС-приемник от обычного полупроводникового фотодиода, имеющего светочувствительную площадку и два электрических контакта для съема электрического сигнала?

Во-первых , таких светочувствительных площадок (часто их называют пикселами - элементами, принимающими свет и преобразующими его в электрические заряды) в ПЗС-приемнике очень много, от нескольких тысяч до нескольких сотен тысяч и даже нескольких миллионов. Размеры отдельных пикселов одинаковы и могут быть от единиц до десятков микрон. Пиксели могут быть выстроены в один ряд - тогда приемник называется ПЗС-линейкой, или ровными рядами заполнять участок поверхности - тогда приемник называют ПЗС-матрицей.

Раcположение светоприемных элементов (прямоугольники синего цвета) в ПЗС-линейке и ПЗС-матрице.

Во-вторых , в ПЗС-приёмнике, внешне похожем на обычную микросхему, нет огромного числа электрических контактов для вывода электрических сигналов, которые, казалось бы, должны идти от каждого светоприемного элемента. Зато к ПЗС-приемнику подключается электронная схема, которая позволяет извлекать с каждого светочувствительного элемента электрический сигнал, пропорциональный его засветке.

Действие ПЗС можно описать следующим образом: каждый светочувствительный элемент - пиксель - работает как копилка для электронов. Электроны возникают в пикселях под действием света, пришедшего от источника. В течение заданного интервала времени каждый пиксель постепенно заполняется электронами пропорционально количеству попавшего в него света, как ведро, выставленное на улицу во время дождя. По окончании этого времени электрические заряды, накопленные каждым пикселем, по очереди передаются на "выход" прибора и измеряются. Все это возможно за счет определенной структуры кристалла, где размещаются светочувствительные элементы, и электрической схемы управления.

Практически точно так же работает и ПЗС-матрица. После экспонирования (засветки проецируемым изображением) электронная схема управления прибором подаёт на него сложный набор импульсных напряжений, которые начинают сдвигать столбцы с накопленными в пикселях электронами к краю матрицы, где находится аналогичный измерительный ПЗС-регистр, заряды в котором сдвигаются уже в перпендикулярном направлении и попадают на измерительный элемент, создавая в нем сигналы, пропорциональные отдельным зарядам. Таким образом, для каждого последующего момента времени мы можем получить значение накопленного заряда и сообразить, какому пикселю на матрице (номер строки и номер столбца) он соответствует.

Кратко о физике процесса.

Для начала отметим, что ПЗС относятся к изделиям так называемой функциональной электроники, Их нельзя представить как совокупность отдельных радиоэлементов - транзисторов, сопротивлений и конденсаторов. В основе работы лежит принцип зарядовой связи. Принцип зарядовой связи использует два известных из электростатики положения:

  1. одноимённые заряды отталкиваются,
  2. заряды стремятся расположиться там, где их потенциальная энергия минимальна. Т.е. грубо – «рыба ищет там, где глубже».

Для начала представим себе МОП-конденсатор (МОП - сокращение от слов металл-окисел- полупроводник). Это то, что остаётся от МОП-транзистора, если убрать из него сток и исток, то есть просто электрод, отделённый от кремния слоем диэлектрика. Для определённости будем считать, что полупроводник - p-типа, т. е. концентрация дырок в равновесных условиях много (на несколько порядков) больше, чем электронов. В электрофизике «дыркой» называют заряд, обратный заряду электрона, т.е. положительный заряд.

Что будет, если на такой электрод (его называют затвором) подать положительный потенциал? Электрическое поле, создаваемое затвором, проникая в кремний сквозь диэлектрик, отталкивает подвижные дырки; возникает обеднённая область - некоторый объём кремния, свободный от основных носителей. При параметрах полупроводниковых подложек, типичных для ПЗС, глубина этой области составляет около 5 мкм. Напротив, электроны, возникшие здесь под действием света, притянутся к затвору и будут накапливаться на границе раздела окисел-кремний непосредственно под затвором, т. е. сваливаются в потенциальную яму (рис. 1).


Рис. 1
Образование потенциальной ямы при приложении напряжения к затвору

При этом электроны по мере накопления в яме частично нейтрализуют электрическое поле, создаваемое в полупроводнике затвором, и в конце концов могут полностью его скомпенсировать, так что всё электрическое поле будет падать только на диэлектрике, и всё вернётся в исходное состояние - за тем исключением, что на границе раздела образуется тонкий слой электронов.

Пусть теперь рядом с затвором расположен ещё один затвор, и на него тоже подан положительный потенциал, причём больший, чем на первый (рис. 2). Если только затворы расположены достаточно близко, их потенциальные ямы объединяются, и электроны, находящиеся в одной потенциальной яме, перемещаются в соседнюю, если она «глубже».
Рис. 2
Перекрытие потенциальных ям двух близко расположенных затворов. Заряд перетекает в то место, где потенциальная яма глубже.

Теперь уже должно быть ясно, что если мы имеем цепочку затворов, то можно, подавая на них соответствующие управляющие напряжения, передавать локализованный зарядовый пакет вдоль такой структуры. Замечательное свойство ПЗС - свойство самосканирования - состоит в том, что для управления цепочкой затворов любой длины достаточно всего трёх тактовых шин. (Термин шина в электронике - проводник электрического тока, соединящиий однотипные элементы, тактовая шина - проводники по которым передается смещенное по фазе напряжение.) Действительно, для передачи зарядовых пакетов необходимо и достаточно трёх электродов: одного передающего, одного принимающего и одного изолирующего, разделяющего пары принимающих и передающих друг от друга, причём одноимённые электроды таких троек могут быть соединены друг с другом в единую тактовую шину, требующую лишь одного внешнего вывода (рис. 3).


Рис. 3
Простейший трёхфазный ПЗС-регистр.
Заряд в каждой потенциальной яме разный.

Это и есть простейший трёхфазный регистр сдвига на ПЗС. Тактовые диаграммы работы такого регистра показаны на рис. 4.




Рис. 4
Тактовые диаграммы управления трёхфазным регистром -- это три меандра, сдвинутые на 120 градусов.
При смене потенциалов происходит передвижение зарядов.

Видно, что для его нормальной работы в каждый момент времени, по крайней мере, на одной тактовой шине должен присутствовать высокий потенциал, и, по крайней мере, на одной - низкий потенциал (потенциал барьера). При повышении потенциала на одной шине и понижении его на другой (предыдущей) происходит одновременная передача всех зарядовых пакетов под соседние затворы, и за полный цикл (один такт на каждой фазной шине) происходит передача (сдвиг) зарядовых пакетов на один элемент регистра.

Для локализации зарядовых пакетов в поперечном направлении формируются так называемые стоп-каналы - узкие полоски с повышенной концентрацией основной легирующей примеси, идущие вдоль канала переноса (рис. 5).


Рис. 5.
Вид на регистр "сверху".
Канал переноса в боковом направлении ограничивается стоп-каналами.

Дело в том, что от концентрации легирующей примеси зависит, при каком конкретно напряжении на затворе под ним образуется обеднённая область (этот параметр есть не что иное, как пороговое напряжение МОП-структуры). Из интуитивных соображений понятно, что чем больше концентрация примеси, т. е. чем больше дырок в полупроводнике, тем труднее их отогнать вглубь, т. е. тем выше пороговое напряжение или же, при одном напряжении, тем ниже потенциал в потенциальной яме.

Проблемы

Если при производстве цифровых приборов разброс параметров по пластине может достигать нескольких крат без заметного влияния на параметры получаемых приборов (поскольку работа идёт с дискретными уровнями напряжения), то в ПЗС изменение, скажем, концентрации легирующей примеси на 10% уже заметно на изображении. Свои проблемы добавляет и размер кристалла, и невозможность резервирования, как в БИС памяти, так что дефектные участки приводят к негодности всего кристалла.

Итог

Разные пикселы ПЗС матрицы технологически имеют разную чувствительность к свету и эту разницу необходимо корректировать.

В цифровых КМА эта коррекция называется системой Auto Gain Control (AGC)

Как работает система AGC

Для простоты рассмотрения не будем брать что-то конкретное. Предположим, что на выходе АЦП узла ПЗС есть некие потенциальные уровни. Предположим, что 60 - средний уровень белого.



  1. Для каждого пикселя линейки ПЗС считывается значение при освещении его эталонным белым светом (а в более серьезных аппаратах – и считывание «уровня черного»).
  2. Значение сравнивается с опорным уровнем (например, средним).
  3. Разница между выходным значением и опорным уровнем запоминается для каждого пиксела.
  4. В дальнейшем, при сканировании эта разница компенсируется для каждого пиксела.

Инициализация системы AGC производится каждый раз при инициализации системы сканера. Наверное, вы замечали, что при включении машины через какое-то время каретка сканера начинает совершать поступательно-возвратные движения (елозить у ч/б полоски). Это и есть процесс инициализации системы AGC. Система так же учитывает и состояние лампы (старение).

Так же Вы наверняка обращали внимание, что малые МФУ, снабженные цветным сканером, «зажигают лампу» тремя цветами по очереди: красным, синим и зеленым. Затем только подсветка оригинала зажигается белым. Это сделано для лучшей коррекции чувствительности матрицы раздельно по каналам RGB.

Тест полутонов (SHADING TEST) позволяет инициировать эту процедуру по желанию инженера и привести значения корректировки к реальным условиям.

Попробуем рассмотреть все это на реальной, «боевой» машине. За основу возьмем широкоизвестный и популярный аппарат SAMSUNG SCX-4521 (Xerox Pe 220).

Необходимо отметить, что в нашем случае CCD становится CIS (Contact Image Sensor), но суть происходящего в корне от этого не меняется. Просто в качестве источника света используются линейки светодиодов.

Итак:

Сигнал изображения от CIS имеет уровень около 1,2 В и поступает на АЦП-секцию (САЦП) контроллера аппарата (САЦП). После САЦП аналоговый сигнал CIS будет преобразован в 8-битовый цифровой сигнал.

Процессор обработки изображения в САЦП прежде всего использует функцию коррекции тона, а затем функцию гамма-коррекции. После этого данные подаются на различные модули в соответствии с режимом работы. В режиме Text данные изображения поступают на модуль LAT, в режиме Photo данные изображения поступают на модуль "Error Diffusion", в режиме PC-Scan данные изображения поступают прямо на персональный компьютер через доступ DMA.

Перед осуществлением тестирования положите на стекло экспонирования несколько чистых листов белой бумаги. Само собой разумеется, что оптика, ч/б полоса и вообще узел сканера изнутри должны быть предварительно «вылизаны»

  1. Выберите в TECH MODE
  2. Нажмите кнопку ENTER (Ввод) для сканирования изображения.
  3. После сканирования будет распечатан "CIS SHADING PROFILE" (профиль полутонов CIS). Пример такого листа приведен ниже. Не обязательно, что он должен быть копией Вашего результата, но близок по изображению.
  4. Если распечатанное изображение сильно отличается от изображения, показанного на рисунке, значит CIS неисправен. Обратите внимание – внизу листа отчета написано “Results: OK”. Это означает, что система серьезных претензий к модулю CIS не имеет. В противном случае будут даны результаты ошибок.

Пример распечатки профиля:

Удачи Вам!!

За основу взяты материалы статей и лекций преподавателей СПбГУ (ЛГУ), СПбЭТУ (ЛЭТИ) и Axl. Спасибо им.

Материал подготовлен В. Шеленбергом



Загрузка...