sonyps4.ru

Понятие функции одной переменной. Функция одной переменной и её характеристики

Непрерывное вейвлет-преобразование

Свойства вейвлет преобразования

Требования к вейвлетам

Для осуществления вейвлет-преобразования вейвлет-функции должны удовлетворять следующим критериям:

1. Вейвлет должен обладать конечной энергией:

2. Если фурье-преобразование для, то есть

тогда должно выполняться следующее условие:

Это условие называется условием допустимости, и из него следует что вейвлет при нулевой частотной компоненте должен удовлетворять условию или, в другом случае, вейвлет должен иметь среднее равное нулю.

3. Дополнительный критерий предъявляется для комплексных вейвлетов, а именно, что для них Фурье-преобразование должно быть одновременно вещественным и должно убывать для отрицательных частот.

4. Локализация: вейвлет должен быть непрерывным, интегрируемым, иметь компактный носитель и быть локализованным как во времени (в пространстве), так и по частоте. Если вейвлет в пространстве сужается, то его средняя частота повышается, спектр вейвлета перемещается в область более высоких частот и расширяется. Этот процесс должен быть линейным – сужение вейвлета вдвое должно повышать его среднюю частоту и ширину спектра также вдвое.

1. Линейность

2. Инвариантность относительно сдвига

Сдвиг сигнала во времени на t0 приводит к сдвигу вейвлет-спектра также на t0.

3. Инвариантность относительно масштабирования

Растяжение (сжатие) сигнала приводит к сжатию (растяжению) вейвлет-спектра сигнала.

4. Дифференцирование

Отсюда следует, что безразлично, дифференцировать ли функцию или анализирующий вейвлет. Если анализирующий вейвлет задан формулой, то это может быть очень полезным для анализа сигналов. Это свойство особенно полезно, если сигнал задан дискретным рядом.

Вейвлет преобразование для непрерывного сигнала относительно вейвлет функции определяется следующим образом:

где означает комплексное сопряжение для, параметр соответствует временному сдвигу, и называется параметром положения, параметр задает масштабирование и называется параметром растяжения.

Весовая функция.

Мы можем определить нормированную функцию следующим образом

что означает временной сдвиг на b и масштабирование по времени на a. Тогда формула вейлет-преобразования изменится на

Исходный сигнал может быть восстановлен по формуле обратного преобразования

В дискретном случае, параметры масштабирования a и сдвига b представлены дискретными величинами:

Тогда анализирующий вейвлет имеет следующий вид:

где m и n - целые числа.

В таком случае для непрерывного сигнала дискретное вейвлет-преобразование и его обратное преобразование запишутся следующими формулами:

Величины также известны как вейвлет-коэффициенты.

есть постоянная нормировки.

Тема Вейвлет-преобразования.

Лекции 6-8

Масштабирующие функции. Ортогональное, непрерывное и дискретное вейвлет-преобразование.

Задачи оценки и аппроксимации. Двумерное и многомерное вейвлет-преобразования и обработка изображений (удаление шумов, обработка растровых изображений).

Многомасштабное представление поверхностей для вейвлет-анализа. Вейвлет-сжатие сигналов, изображений, видеоизображений.

Вейвлетное преобразование сигналов является обобщением спектрального анализа, типичный представитель которого – классическое преобразование Фурье. Термин "вейвлет" (wavelet) в переводе с английского означает "маленькая (короткая) волна". Вейвлеты - это обобщенное название семейств математических функций определенной формы, которые локальны во времени и по частоте, и в которых все функции получаются из одной базовой (порождающей) посредством ее сдвигов и растяжений по оси времени. Вейвлет-преобразования рассматривают анализируемые временные функции в терминах колебаний, локализованных по времени и частоте. Как правило, вейвлет-преобразования (WT) подразделяют на дискретное (DWT) и непрерывное (CWT).

DWT используется для преобразований и кодирования сигналов, CWT - для анализа сигналов. Вейвлет-преобразования в настоящее время принимаются на вооружение для огромного числа разнообразных применений, нередко заменяя обычное преобразование Фурье. Это наблюдается во многих областях, включая молекулярную динамику, квантовую механику, астрофизику, геофизику, оптику, компьютерную графику и обработку изображений, анализ ДНК, исследования белков, исследования климата, общую обработку сигналов и распознавание речи.

Вейвлетный анализ представляет собой особый тип линейного преобразования сигналов и физических данных. Базис собственных функций, по которому проводится вейвлетное разложение сигналов, обладает многими специфическими свойствами и возможностями. Вейвлетные функции базиса позволяют сконцентрировать внимание на тех или иных локальных особенностях анализируемых процессов, которые не могут быть выявлены с помощью традиционных преобразований Фурье и Лапласа. К таким процессам в геофизике относятся поля различных физических параметров природных сред. В первую очередь это касается полей температуры, давления, профилей сейсмических трасс и других физических величин.

Вейвлеты имеют вид коротких волновых пакетов с нулевым средним значением, локализованных по оси аргументов (независимых переменных), инвариантных к сдвигу и линейных к операции масштабирования (сжатия/растяжения). По локализации во временном и частотном представлении вейвлеты занимают промежуточное положение между гармоническими функциями, локализованными по частоте, и функцией Дирака, локализованной во времени.

Теория вейвлетов не является фундаментальной физической теорией, но она дает удобный и эффективный инструмент для решения многих практических задач. Основная область применения вейвлетных преобразований – анализ и обработка сигналов и функций, нестационарных во времени или неоднородных в пространстве, когда результаты анализа должны содержать не только частотную характеристику сигнала (распределение энергии сигнала по частотным составляющим), но и сведения о локальных координатах, на которых проявляют себя те или иные группы частотных составляющих или на которых происходят быстрые изменения частотных составляющих сигнала. По сравнению с разложением сигналов на ряды Фурье вейвлеты способны с гораздо более высокой точностью представлять локальные особенности сигналов, вплоть до разрывов 1-го рода (скачков). В отличие от преобразований Фурье, вейвлет-преобразование одномерных сигналов обеспечивает двумерную развертку, при этом частота и координата рассматриваются как независимые переменные, что дает возможность анализа сигналов сразу в двух пространствах.

Одна из главных и особенно плодотворных идей вейвлетного представления сигналов на различных уровнях декомпозиции (разложения) заключается в разделении функций приближения к сигналу на две группы: аппроксимирующую - грубую, с достаточно медленной временной динамикой изменений, и детализирующую - с локальной и быстрой динамикой изменений на фоне плавной динамики, с последующим их дроблением и детализацией на других уровнях декомпозиции сигналов. Это возможно как во временной, так и в частотной областях представления сигналов вейвлетами.

История спектрального анализа восходит к И. Бернулли, Эйлеру и Фурье, который впервые построил теорию разложения функций в тригонометрические ряды. Однако это разложение долгое время применялось как математический прием и не связывалось с какими-либо физическими понятиями. Спектральные представления применялись и развивались сравнительно узким кругом физиков–теоретиков. Однако, начиная с 20-х годов прошлого века, в связи с бурным развитием радиотехники и акустики, спектральные разложения приобрели физический смысл и практическое применение. Основным средством анализа реальных физических процессов стал гармонический анализ, а математической основой анализа - преобразование Фурье. Преобразование Фурье разлагает произвольный процесс на элементарные гармонические колебания с различными частотами, а все необходимые свойства и формулы выражаются с помощью одной базисной функции exp(jt) или двух действительных функций sin(t) и cos(t). Гармонические колебания имеют широкое распространение в природе, и поэтому смысл преобразования Фурье интуитивно понятен независимо от математической аналитики.

Преобразование Фурье обладает рядом замечательных свойств. Областью определения преобразования является пространство L 2 интегрируемых с квадратом функций, и многие физические процессы в природе можно считать функциями, принадлежащими этому пространству. Для применения преобразования разработаны эффективные вычислительные процедуры типа быстрого преобразования Фурье (БПФ). Эти процедуры входят в состав всех пакетов прикладных математических программ и реализованы аппаратно в процессорах обработки сигналов.

Было также установлено, что функции можно разложить не только по синусам и косинусам, но и по другим ортогональным базисным системам, например, полиномам Лежандра и Чебышева, функциям Лагерра и Эрмита. Однако практическое применение они получили только в последние десятилетия ХХ века благодаря развитию вычислительной техники и методов синтеза цифровых линейных систем обработки данных. Непосредственно для целей спектрального анализа подобные ортогональные функции не нашли широкого применения из-за трудностей интерпретации получаемых результатов. По тем же причинам не получили развития в спектральном анализе функции типа "прямоугольной волны" Уолша, Радемахера, и пр.

Теоретические исследования базисных систем привели к созданию теории обобщенного спектрального анализа, которая позволила оценить пределы практического применения спектрального анализа Фурье, создала методы и критерии синтеза ортогональных базисных систем. Иллюстрацией этому является активно развивающаяся с начала 80-х годов прошлого столетия теория базисных функций типа вейвлет. Благодаря прозрачности физической интерпретации результатов анализа, сходной с "частотным" подходом в преобразовании Фурье, ортогональный базис вейвлетов стал популярным и эффективным средством анализа сигналов и изображений в акустике, сейсмике, медицине и других областях науки и техники.

Вейвлет-анализ является разновидностью спектрального анализа, в котором роль простых колебаний играют функции особого рода, называемые вейвлетами. Базисная функция вейвлет – это некоторое "короткое" колебание, но не только. Понятие частоты спектрального анализа здесь заменено масштабом, и, чтобы перекрыть "короткими волнами" всю временную ось, введен сдвиг функций во времени. Базис вейвлетов – это функции типа ((t-b)/a), гдеb- сдвиг, а – масштаб. Функция(t) должна иметь нулевую площадь и, еще лучше, равными нулю первый, второй и прочие моменты. Фурье-преобразование таких функций равно нулю при=0 и имеет вид полосового фильтра. При различных значениях масштабного параметра "a" это будет набор полосовых фильтров. Семейства вейвлетов во временной или частотной области используются для представления сигналов и функций в виде суперпозиций вейвлетов на разных масштабных уровнях декомпозиции (разложения) сигналов.

Первое упоминание о подобных функциях (которые вейвлетами не назывались) появилось в работах Хаара (Haar) еще в начале прошлого века. Вейвлет Хаара - это короткое прямоугольное колебание на интервале , показанное на рис. 1.1.1. Однако он интересен больше теоретически, так как не является непрерывно дифференцируемой функцией и имеет длинные "хвосты" в частотной области. В 30-е годы физик Пол Леви (Paul Levy), исследуя броуновское движение, обнаружил, что базис Хаара лучше, чем базис Фурье, подходит для изучения деталей броуновского движения.

Сам термин "вейвлет", как понятие, ввели в своей статье Дж. Морле и А. Гроссман (J. Morlet, A. Grossman), опубликованной в 1984 г. Они занимались исследованиями сейсмических сигналов с помощью базиса, который и назвали вейвлетом. Весомый вклад в теорию вейвлетов внесли Гуппилауд, Гроссман и Морле, сформулировавшие основы CWT, Ингрид Добеши, разработавшая ортогональные вейвлеты (1988), Натали Делпра, создавшая время-частотную интерпретацию CWT (1991), и многие другие. Математическая формализация вейвлетов в работах этих и других авторов привела к созданию теоретических основ вейвлет-анализа, названного мультиразрешающим (кратномасштабным) анализом.

В настоящее время специальные пакеты расширений по вейвлетам присутствуют в основных системах компьютерной математики (Matlab, Mathematica, Mathcad, и др.), а вейвлет-преобразования и вейвлетный анализ используются во многих областях науки и техники для самых различных задач. Многие исследователи называют вейвлет-анализ "математическим микроскопом" для точного изучения внутреннего состава и структур неоднородных сигналов и функций.

Не следует рассматривать вейвлет-методы обработки и анализа сигналов в качестве новой универсальной технологии решения любых задач. Возможности вейвлетов еще не раскрыты полностью, однако это не означает, что их развитие приведет к полной замене традиционных средств обработки и анализа информации, хорошо отработанных и проверенных временем. Вейвлеты позволяют расширить инструментальную базу информационных технологий обработки данных.

Аналитика вейвлетных преобразований сигналов определяются математической базой разложения сигналов, которая аналогична преобразованиям Фурье. Основной отличительной особенностью вейвлет-преобразований является новый базис разложения сигналов - вейвлетные функции. Свойства вейвлетов принципиально важны как для самой возможности разложения сигналов по единичным вейвлетным функциям, так и для целенаправленных действий над вейвлетными спектрами сигналов, в том числе с последующей реконструкцией сигналов по обработанным вейвлетным спектрам.

Вейвлеты могут быть ортогональными, полуортогональными, биортогональными. Вейвлетные функции могут быть симметричными, асимметричными и несимметричными, с компактной областью определения и не имеющие таковой, а также иметь различную степень гладкости. Некоторые функции имеют аналитическое выражение, другие – быстрый алгоритм вычисления вейвлет-преобразования. Для практики желательно было бы иметь ортогональные симметричные и асимметричные вейвлеты, но таких идеальных вейвлетов не существует. Наибольшее применение находят биортогональные вейвлеты.

Базисными функциями вейвлет-преобразований могут быть самые различные функции с компактным носителем - модулированные импульсами синусоиды, функции со скачками уровня и т.п. Они обеспечивает хорошее отображение и анализ сигналов с локальными особенностями, в том числе со скачками, разрывами и перепадами значений с большой крутизной.

Было бы желательно иметь такое вейвлет-преобразование сигналов, которое обеспечивало полную информационную эквивалентность вейвлетного спектра сигналов временному представлению и однозначность декомпозиции - реконструкции сигналов. Однако это возможно только при использовании ортогональных и биортогональных вейвлетов. Для качественного анализа сигналов и локальных особенностей в сигналах может применяться более обширная номенклатура вейвлетных функций, которые хотя и не обеспечивают реконструкцию сигналов, но позволяют оценить информационное содержание сигналов и динамику изменения этой информации.

Определение вейвлета. К вейвлетам относятся локализованные функции, которые конструируются из одного материнского вейвлета (t) (или по любой другой независимой переменной) путем операций сдвига по аргументу (b) и масштабного изменения (а):

 ab (t) = (1/) ((t-b)/a), (a, b)R, (t)L 2 (R).

где множитель (1/) обеспечивает независимость нормы функций от масштабного числа "a".

Непрерывное вейвлет-преобразование сигнала s(t)L 2 (R), которое применяется для качественного частотно-временного анализа, по смыслу соответствует преобразованию Фурье с заменой гармонического базиса exp(-jt) на вейвлетный ((t-b)/a):

С(a, b) = s(t),  ab (t) = (1/)s(t)((t-b)/a) dt, (a, b)R, a0.

Вейвлетный масштабно-временной спектр С(a,b) в отличие от фурье-спектра является функцией двух аргументов: масштаба вейвлета "а" (в единицах, обратных частоте), и временного смещения вейвлета по сигналу "b" (в единицах времени), при этом параметры "а" и "b" могут принимать любые значения в пределах областей их определения.

Рис. 24.1.1. Вейвлеты Mhat и Wave.

На рис. 24.1.1 приведены примеры простейших неортогональных вейвлетов четного (Mhat) и нечетного (Wave) типов.

Для количественных методов анализа в качестве вейвлетных базисов можно использовать любые локализованные функции (t), если для них существуют функции-двойники  # (t), такие, что семейства { ab (t)} и {  ab (t)} могут образовывать парные базисы функционального пространства L 2 (R). Вейвлеты, определенные таким образом, позволяют представить любую произвольную функцию в пространстве L 2 (R) в виде ряда:

s(t) = С(a,b)  ab (t), (a, b)I,

где коэффициенты С(a,b) – проекции сигнала на вейвлетный базис пространства:

С(a,b) = s(t),  ab (t) =s(t) ab (t) dt.

Если вейвлет (t) обладает свойством ортогональности, то   (t) ≡ (t) и вейвлетный базис ортогонален. Вейвлет может быть неортогональным, однако если он имеет двойника, и пара ((t),   (t)) дает возможность сформировать семейства { mk (t)} и {  zp (t)}, удовлетворяющие условию биортогональности на целых числах I:

 mk (t),   zp (t) =  mz · kp , m,k,z,p Î I,

то возможно разложение сигналов на вейвлетные ряды с обратной формулой реконструкции.

Свойства вейвлета ,

    Локализация. Вейвлет должен быть непрерывным, интегрируемым, иметь компактный носитель и быть локализованным как во времени (в пространстве), так и по частоте. Если вейвлет в пространстве сужается, то его "средняя" частота повышается, спектр вейвлета перемещается в область более высоких частот и расширяется. Этот процесс должен быть линейным – сужение вейвлета вдвое должно повышать его "среднюю" частоту и ширину спектра также вдвое.

    Нулевое среднее значение , т.е. выполнение условия для нулевого момента:

что обеспечивает нулевое усиление постоянной составляющей сигналов, нулевое значение частотного спектра вейвлета при =0, и локализацию спектра вейвлета в виде полосового фильтра с центром на определенной (доминирующей) частоте  0 .

    Ограниченность. Необходимое и достаточное условие:

||(t)|| 2 =|(t)| 2 dt < 

    Автомодельность базиса или самоподобие. Форма всех базисных вейвлетов  ab (t) должна быть подобна материнскому вейвлету (t), т.е. должна оставаться одной и той же при сдвигах и масштабировании (растяжении/сжатии), иметь одно и то же число осцилляций.

Отображение преобразования . Результатом вейвлет-преобразования одномерного числового ряда (сигнала) является двумерный массив значений коэффициентов С(a,b). Распределение этих значений в пространстве (a,b) - временной масштаб, временная локализация, дает информацию об изменении во времени относительного вклада в сигнале вейвлетных компонент разного масштаба и называется спектром коэффициентов вейвлет-преобразования, масштабно-временным (частотно-временным) спектром или просто вейвлет-спектром (wavelet spectrum).

Спектр C(a,b) одномерного сигнала представляет собой поверхность в трехмерном пространстве. Способы визуализации спектра могут быть самыми различными. Наиболее распространенный способ – проекция на плоскость ab с изолиниями (изоуровнями), что позволяет проследить изменения коэффициентов на разных масштабах во времени, а также выявить картину локальных экстремумов этих поверхностей ("холмов" и "впадин"), так называемый "скелет" (skeleton) структуры анализируемого процесса. При широком диапазоне масштабов применяются логарифмические координаты (log a , b ). Пример вейвлетного спектра простейшего сигнала при его разложении вейвлетом Mhat приведен на рис. 24.1.2.

Рис. 24.1.2. Сигнал, вейвлетный Mhat - спектр и масштабные сечения спектра.

По вертикальным сечениям (сечениям сдвига b ) вейвлет-спектр отражает компонентный состав сигнала (из данного комплекта вейвлетов) в каждый текущий момент. По смыслу преобразования, как скалярного произведения сигнала с вейвлетом, ясно, что значения коэффициентов в каждой текущей временной точке по масштабным сечениям тем больше, чем сильнее корреляция между вейвлетом данного масштаба и поведением сигнала в окрестностях этой точки. Соответственно, сечения по параметру "а" демонстрируют изменения в сигнале компоненты данного масштаба "a" со временем.

Вейвлетные составляющие сигнала в сечениях его спектра не имеют ничего общего с синусоидами, и представлены, как правило, сигналами достаточно сложной и не всегда понятной формы, что может затруднять их наглядное представление и понимание.

Вейвлетные функции . Выбор анализирующего вейвлета определяется тем, какую информацию необходимо извлечь из сигнала. С учетом характерных особенностей различных вейвлетов во временном и в частотном пространстве, можно выявлять в анализируемых сигналах те или иные свойства и особенности, которые незаметны на графиках сигналов, особенно в присутствии шумов. При этом задача реконструкции сигнала может и не ставится, что расширяет семейство используемых регулярных вейвлетных функций, в том числе неортогональных. Более того, вейвлет может конструироваться непосредственно под ту локальную особенность в сигнале, которая подлежит выделению или обнаружению, если ее форма априорно известна.

При анализе сигналов вейвлетами четного типа (симметричными или близкими к симметричным) гармоническим сигналам обычно соответствуют яркие горизонтальные полосы вейвлетных пиков и впадин на доминирующих частотах вейвлетов, совпадающих с частотой гармоник сигналов. Нарушения гладкости сигналов фиксируются вертикальными полосами, пики в сигналах выделяются максимумами, а впадины – минимумами вейвлетных коэффициентов. Напротив, вейвлеты нечетного типа более резко реагируют на скачки и быстрые изменения в сигналах, отмечая их максимумами или минимумами в зависимости от знака дифференциалов. Чем резче выражены особенности сигналов, тем сильнее они выделяются на спектрограммах.

Для конструирования таких вейвлетов часто используются производные функции Гаусса, которые имеют наилучшую локализацию как во временной, так и в частотной областях. В общей форме уравнение базового вейвлета:

 n (x) = (-1) n +1 d n /dx n , n ≥ 1, (24.1.1)

WАVE-вейвлет вычисляется по первой производной (n=1) и приведен на рис. 24.1.3 во временной и частотной области для трех значений масштабных коэффициентов "а". Форма вейвлета относится к нечетным функциям и, соответственно, спектр вейвлета является мнимым. Уравнение вейвлета по (24.1.1) с единичной нормой:

Рис. 24.1.3. Вейвлет Wave.

На рис. 24.1.4 приведен пример применения вейвлета для анализа двух однотипных сигналов, один из которых осложнен шумами с мощностью на уровне мощности самого сигнала. Как следует из рисунка, контурная масштабно-временная картина вейвлетных коэффициентов, а равно и ее сечения на больших значениях масштабных коэффициентов "а" очень точно и уверенно фиксирует положение вершины информационного сигнала сменой знака коэффициентов С(a,b).

МНАТ-вейвлет (Mexican hat – мексиканская шляпа) вычисляется по второй производной (n=2) и приведен на рис. 24.1.5. Вейвлет симметричен, спектр вейвлета представлен только действительной частью и хорошо локализован по частоте, нулевой и первый моменты вейвлета равны нулю. Применяется для анализа сложных сигналов. Уравнение вейвлета по (24.1.1):

Рис. 24.1.5. Вейвлет MHAT.

На рис. 24.1.6 приведен пример использования вейвлета для анализа сложного сигнала y(t). Модель сигнала образована суммой сигналов разной структуры. Сигналы у1-у2 представляют собой функции Гаусса разного масштабного уровня, сигнал у3 - прямоугольный импульс, сигнал у4 задан в виде тренда с постоянным значением дифференциала. На контурном графике вейвлет-коэффициентов можно видеть выделение всех трех основных структур сигнала при полном исключении тренда. Особенно четко выделяются границы скачков прямоугольной структуры. Справа на рисунке приведена полная трехмерная картина вейвлет-преобразования.

Вейвлет широко используется в двумерном варианте для анализа изотропных полей. На его основе возможно также построение двумерного неизотропного базиса с хорошей угловой избирательностью при добавлении к сдвигам и масштабированию вейвлета его вращения.

Рис. 24.1.7.

При повышении номера производной функции (24.1.1) временная область определения вейвлета несколько увеличивается при существенном повышении доминирующей частоты вейвлета и степени его локализации в частотной области. Вейвлеты n-го порядка позволяют анализировать более тонкие высокочастотные структуры сигналов, подавляя низкочастотные компоненты. Пример вейвлета по восьмой производной приведен на рис. 24.1.7.

Практическое следствие повышения степени локализации вейвлетов в частотной области наглядно видно на рис. 24.1.8 на примере преобразования той же функции, что и на рис. 24.1.6. Сравнение рисунков показывает существенное повышение чувствительности вейвлета к высокочастотным составляющим сигнала на малых масштабных коэффициентах.

Свойства вейвлет-преобразования

Результаты вейвлет-преобразования, как скалярного произведения вейвлета и сигнальной функции, содержат комбинированную информацию об анализируемом сигнале и самом вейвлете. Получение объективной информации о сигнале базируется на свойствах вейвлет-преобразования, общих для вейвлетов всех типов. Рассмотрим основные из этих свойств. Для обозначения операции вейвлет-преобразования произвольных функций s(t) будем применять индекс TW.

Линейность .

TW[·s 1 (t)+·s 2 (t)] = ·TW+·TW. (24.2.1)

Инвариантность относительно сдвига . Сдвиг сигнала во времени на t 0 приводит к сдвигу вейвлет-спектра также на t 0:

TW = C(a, b-t o). (24.2.2)

Инвариантность относительно масштабирования . Растяжение (сжатие) сигнала приводит к сжатию (растяжению) вейвлет-спектра сигнала:

TW = (1/а о)·C(a/а о,b/а o). (24.2.3)

Дифференцирование .

d n {TW}/dt n = TW. (24.2.4)

TW = (-1) n s(t) dt. (24.2.5)

Если анализирующий вейвлет задан формулой, то это может быть очень полезным для анализа сигналов. Проанализировать особенности высокого порядка или мелкомасштабные вариации сигнала s(t) можно дифференцированием нужного числа раз либо вейвлета, либо самого сигнала.

Аналог теоремы Парсеваля для ортогональных и биортогональных вейвлетов.

s 1 (t)·s 2 *(t) = C   a -2 С(a,b) С*(a,b) da db. (24.2.6)

Отсюда следует, что энергия сигнала может вычисляться через коэффициенты вейвлет-преобразования.

Определения и свойства одномерного непрерывного вейвлет-преобразования обобщаются на многомерный и на дискретный случаи.

24.3. Вейвлет-преобразование простых сигналов.

Вейвлет-преобразование, выполняемое при анализе сигналов для выявления в них каких-либо особенностей и места их локализации без обратной реконструкции, допускает применение любых типов вейвлетов, как ортогональных, так и неортогональных. Чаще всего для этих целей используются симметричные вейвлеты. Ниже приводятся результаты применения вейвлета Mhat для анализа сигналов простых форм. Вычисления выполнены с вейвлетом (24.1.3) по формуле:

с(a,b) =s(t)(t,a,b), (24.3.1)

где суммирование выполняется в растворе угла влияния (по области достоверности) с шагом t = b = a = 1. Так как при непрерывном разложении скейлинг-функция не используется, отсчет значений "а" начинается с 1, а ряд коэффициентов c(0,b) оставляется нулевым и определяет нулевой фон контурных графиков спектра.

Импульсы Кронекера (положительный и отрицательный), вейвлет-спектр импульсов и сечения спектра на трех значениях параметра "а" приведены на рис. 24.3.1. Цветовая гамма спектра здесь и в дальнейшем соответствует естественному цветоряду от красного (большие значения) к фиолетовому (малые значения коэффициентов).

Рис. 24.3.1. Преобразование импульсов Кронекера.

На сечениях спектра видно, что свертка единичных импульсов с разномасштабными вейвлетами повторяет форму вейвлетов, как это и положено при операции свертки. Соответственно, линии максимальных экстремумов на сечениях ("хребты" и "долины", в зависимости от полярности) определяют временное положение импульсов, а боковые экстремумы противоположной полярности образуют характерные лепестки в конусе угла влияния, который хорошо выражен.

Рис. 24.3.2. Преобразование функций Лапласа.

Аналогичный характер спектра сохраняется и для любых локальных неоднородностей на сигналах в форме пиков (рис. 24.3.2) со смещением максимумов (минимумов) коэффициентов с(a,b) со значений а=1 в область больших значений "а" (в зависимости от эффективной ширины пиков).

Рис. 24.3.3. Преобразование функций Гаусса.

На рис. 24.3.3 приведен спектр функций Гаусса. При сглаживании вершин пиковых неоднородностей форма цветовых конусов также сглаживается, но "хребтовые" ("долинные") линии достаточно точно фиксируют на временной оси положение центров локальных неоднородностей.

Рис. 24.3.4. Преобразование перепада постоянного значения функций.

На рис. 24.3.4 приведены спектры двух разных по крутизне перепадов постоянных значений функции. Центры перепадов фиксируются по переходу через нуль значений коэффициентов c(a,b), а крутизна перепадов отражается, в основном, на значениях функции c(a,b) при малых значениях параметра "а".

При изломах функций спектрограммы уверенно фиксируют место изломов максимумами (минимумами) значений коэффициентов c(a,b), как это показано на рис. 24.3.5. При наложении на такие функции шумов точное определение места изломов по масштабным сечениям на малых значениях параметра "а" становится невозможным, однако на больших значениях параметра "а" такая возможность сохраняется, естественно, с уменьшением точности локализации.

Рис. 24.3.5. Преобразование изломов функций.

Аналогичный характер имеет влияние шумов и на другие локальные сигналы (рис. 24.3.1-24.3.4). Если спектральные особенности сигналов распространяются на диапазон значений параметра "а", то имеется возможность идентификации этих сигналов и их места на временной оси.

Рис. 24.3.6. Преобразование гармонических функций.

Разделение гармонических функций на масштабной оси спектров, в том числе при наложении сильных шумовых процессов, приведено в примерах на рис. 24.3.6. Приведенный пример имеет чисто иллюстративный характер, так как для выделения гармонических процессов с постоянной частотой во времени целесообразно использовать спектральный анализ и частотные полосовые фильтры. Тем не менее, для локальных сигналов, типа модулированных гармоник, вейвлет-спектры достаточно хорошо показывают место их локализации на временной оси.

Рис. 24.3.7. Изменение фазы гармонического сигнала.

На рис. 24.3.7 приведен пример еще одной характерной особенности гармонического сигнала – изменение его фазы на 180 о, которое хорошо фиксируется на всех масштабах вейвлета, а, следовательно, достаточно легко определяется даже в присутствии сильных шумовых сигналов.

При наложении синусоидальных сигналов на тренд вейвлет-преобразование на больших масштабах позволяет достаточно уверенно выделять характерные особенности тренда. Пример выделения изломов тренда приведен на рис. 24.3.8.

Рис. 24.3.8. Преобразование суммы трех сигналов.

Форма вейвлета (четность или нечетность), доминирующая частота и степень ее локализации существенно влияют на вейвлет-спектры анализируемых сигналов и на возможности выделения его локальных особенностей. На нижеследующих рисунках приведены сравнительные спектры простых сигналов при использовании вейвлетов Wave (нечетный, рис. 24.1.3), Mhat (четный, рис. 24.1.5) и вейвлета по 8-й производной Гаусса (рис. 24.3.9-24.3.16), который также является четным, и имеет в 4 раза более высокую доминирующую частоту, чем вейвлет Mhat.

Рис. 24.3.9. Импульсы Кронекера.

Рис. 24.3.10. Пики Лапласа.

Рис. 24.3.11. Функции Гаусса.

Рис. 24.3.12. Крутые скачки.

Рис. 24.3.13. Сглаженные скачки.

Рис. 24.3.14. Изломы функций

Рис. 24.3.15. Фазовые скачки гармоник.

Рис. 24.3.16. Сумма двух модулированных синусоид.

При анализе произвольных сигналов использование разнотипных вейвлетов позволяет повысить достоверность выделения локальных особенностей сигналов.

Принцип вейвлет-преобразования. Гармонические базисные функции преобразования Фурье предельно локализованы в частотной области (до импульсных функций Дирака при Т) и не локализованы во временной (определены во всем временном интервале от -до). Их противоположностью являются импульсные базисные функции типа импульсов Кронекера, которые предельно локализованы во временной области и "размыты" по всему частотному диапазону. Вейвлеты по локализации в этих двух представлениях можно рассматривать как функции, занимающие промежуточное положение между гармоническими и импульсными функциями. Они должны быть локализованными как во временной, так и в частотной области представления. Однако при проектировании таких функций мы неминуемо столкнемся с принципом неопределенности, связывающим эффективные значения длительности функций и ширины их спектра. Чем точнее мы будем осуществлять локализацию временного положения функции, тем шире будет становиться ее спектр, и наоборот, что наглядно видно на рис. 1.1.5.

Отличительной особенностью вейвлет-анализа является то, что в нем можно использовать семейства функций, реализующих различные варианты соотношения неопределенности. Соответственно, исследователь имеет возможность гибкого выбора между ними и применения тех вейвлетных функций, которые наиболее эффективно решают поставленные задачи.

Вейвлетный базис пространства L 2 (R), R(-,), целесообразно конструировать из финитных функций, принадлежащих этому же пространству, которые должны стремиться к нулю на бесконечности. Чем быстрее эти функции стремятся к нулю, тем удобнее использовать их в качестве базиса преобразования при анализе реальных сигналов. Допустим, что такой функцией является psi - функцияt, равная нулю за пределами некоторого конечного интервала и имеющая нулевое среднее значение по интервалу задания. Последнее необходимо для задания локализации спектра вейвлета в частотной области. На основе этой функции сконструируем базис в пространстве L 2 (R) с помощью масштабных преобразований независимой переменной.

Функция изменения частотной независимой переменной в спектральном представлении сигналов отображается во временном представлении растяжением/сжатием сигнала. Для вейвлетного базиса это можно выполнить функцией типа (t) =>(a m t), a = const, m = 0, 1, … , M, т.е. путем линейной операции растяжения/сжатия, обеспечивающей самоподобие функции на разных масштабах представления. Однако локальность функции(t) на временной оси требует дополнительной независимой переменной последовательных сдвигов функции(t) вдоль оси, типа(t) =>(t+k), для перекрытия всей числовой оси пространства R(-,). C учетом обеих условий одновременно структура базисной функции может быть принята следующей:

(t) => (a m t+k). (1.1.10)

Для упрощения дальнейших выкладок значения переменных m и kпримем целочисленными. При приведении функции (1.1.10) к единичной норме, получаем:

 mk (t) = a m/2 (a m t+k). (1.1.11)

Если для семейства функций  mk (t) выполняется условие ортогональности:

 nk (t), lm (t)= nk (t)·* lm (t) dt = nl · km , (1.1.12)

то семейство  mk (t) можно использовать в качестве ортонормированного базиса пространства L 2 (R). Произвольную функцию этого пространства можно разложить в ряд по базису mk (t):

s(t) =S mk  mk (t), (1.1.13)

где коэффициенты S m k – проекции сигнала на новый ортогональный базис функций, как и в преобразовании Фурье, определяются скалярным произведением

S mk = s(t),  mk (t) =s(t) mk (t) dt, (1.1.14)

при этом ряд равномерно сходиться:

||s(t) –S mk  mk (t),|| = 0.

При выполнении этих условий базисная функция преобразования (t) называется ортогональным вейвлетом.

Простейшим примером ортогональной системы функций такого типа являются функции Хаара. Базисная функция Хаара определяется соотношением

(t) =(1.1.15)

Легко проверить, что при а = 2, m = 0, 1, 2, ..., k = 0, 1,2, … две любые функции, полученные с помощью этого базисного вейвлета путем масштабных преобразований и переносов, имеют единичную норму и ортогональны. На рис. 1.1.6 приведены примеры функций для первых трех значений m и b при различных их комбинациях, где ортогональность функций видна наглядно.

Рис. 1.1.6. Функции Хаара

Вейвлетный спектр , в отличие от преобразования Фурье, является двумерным и определяет двумерную поверхность в пространстве переменныхmиk. При графическом представлении параметр растяжения/сжатия спектра m откладывается по оси абсцисс, параметр локализации k по оси ординат – оси независимой переменной сигнала. Математику процесса вейвлетного разложения сигнала в упрощенной форме рассмотрим на примере разложения сигнала s(t) вейвлетом Хаара с тремя последовательными по масштабу m вейвлетными функциями с параметром а=2, при этом сам сигнал s(t) образуем суммированием этих же вейвлетных функций с одинаковой амплитудой с разным сдвигом от нуля, как это показано на рис. 1.1.7.

Рис. 1.1.7. Скалярные произведения сигнала с вейвлетами.

Для начального значения масштабного коэффициента сжатия m определяется функция вейвлета (1(t) на рис. 1.1.7), и вычисляется скалярное произведение сигнала с вейвлетом1(t), s(t+k)с аргументом по сдвигу k. Для наглядности результаты вычисления скалярных произведений на рис. 1.1.7 построены по центрам вейвлетных функций (т.е. по аргументу k от нуля со сдвигом на половину длины вейвлетной функции). Как и следовало ожидать, максимальные значения скалярного произведения отмечаются там, где локализована эта же вейвлетная функция.

После построения первой масштабной строки разложения, меняется масштаб вейвлетной функции (2 на рис. 1.1.7) и выполняется вычисление второй масштабной строки спектра, и т.д.

Как видно на рис. 1.1.7, чем точнее локальная особенность сигнала совпадает с соответствующей функцией вейвлета, тем эффективнее выделение этой особенности на соответствующей масштабной строке вейвлетного спектра. Можно видеть, что для сильно сжатого вейвлета Хаара характерной хорошо выделяемой локальной особенностью является скачок сигнала, причем выделяется не только скачок функции, но и направление скачка.

На рис. 1.1.8 приведен пример графического отображения вейвлетной поверхности реального физического процесса /4/. Вид поверхности определяет изменения во времени спектральных компонент различного масштаба и называется частотно-временным спектром. Поверхность изображается на рисунках, как правило, в виде изолиний или условными цветами. Для расширения диапазона масштабов может применяться логарифмическая шкала.

Рассмотрим сначала понятие переменной величины, или просто переменной.

Переменная величина х определяется множеством тех значений, которые она может принять в рассматриваемом случае. Это множество X назовем областью изменения значений переменной x .

Главным предметом изучения в математике является, однако, не изменение одной переменной самой по себе, а зависимость между двумя или несколькими переменными при их совместном изменении. Во многих случаях переменные не могут принимать любую пару значений из своих областей изменения; если одной из них придано конкретное значение, то этим уже определяется и значение другой. Тогда первая из них называется независимой , а вторая – зависимой переменной.

Пусть даны две переменные x и y с областями изменения X и Y . Если при этом каждому элементу x X по определенному правилу f поставлен в соответствие единственный элемент y Y , то говорят, что на множестве X задана функция y = f (x ).

Ясно, что при этом переменная x является независимой переменной. Ее часто называют аргументом функции.

Переменная y является зависимой переменной и называется значением функции, или просто функцией .

Множество X называется областью определения функции, а множество Y - областью ее значений .

Существует ряд способов задания функции:

а) наиболее простой - аналитический способ, т. е. задание функции в виде формулы. Если область определения функции X при этом не указана, то под X подразумевается множество значений x , при которых формула имеет смысл;

б) графический способ. Этот способ особенно нагляден. Для функции одной переменной y = f (x ) используется координатная плоскость (xy ).

Совокупность точек y , соответствующих заданным значениям x , определяет график функции на плоскости (xy );

в) табличный способ. Он часто используется, когда независимая переменная x принимает лишь конечное число значений.


5.2. Основные свойства функций

Рассмотрим основные свойства функций, которые упрощают проведение их исследования:

Четность. Функция y = f (x ) называется четной , если для любого значения x , принадлежащего области определения функции X , значение (–x ) тоже принадлежит X и при этом выполняется

f (–x ) = f (x ).

График четной функции симметричен относительно оси ординат.

Функция y = f (x ) называется нечетной , если для любого x X следует (–x ) X и при этом

f (–x ) = –f (x ).

График нечетной функции симметричен относительно начала координат.

Если функция y = f (x ) не является ни четной, ни нечетной, то ее часто называют функцией общего вида .

Монотонность. Функция y = f (x ) называется возрастающей на некотором интервале (a , b ), если для любых x 1 , x 2 (a , b ), таких,

что x 1 < x 2 , следует, что f (x 1) < f (x 2), и убывающей , если f (x 1) > f (x 2).

Возрастающую и убывающую на интервале (a,b ) функции называют монотонными на этом интервале, а сам интервал (a,b ) - интервалом монотонности этих функций.

В некоторых учебниках такие функции называют строго монотонными , а монотонными называют неубывающую и невозрастающую на рассматриваемом интервале функции (вместо строгих неравенств для функций пишутся нестрогие).

Ограниченность. Функция y = f (x ) называется ограниченной на интервале (a , b ), если существует такое число С > 0, что для любого x (a , b ) следует |f (x )| < C , и неограниченной в противном случае, т. е. если для любого числа C > 0 существует такой x (a , b ), что |f (x )| > C. На рис. 5.1 показан график функции, ограниченной на интервале (a , b ).

Аналогичное определение ограниченности можно дать для любого вида промежутка.

Периодичность. Функция y = f (x ) называется периодической , если существует такое число t , что для любого x X выполняется

f (x + t ) = f (x ).

Наименьшее из таких чисел t называется периодом функции и обозначается Т .

Характерным признаком периодичности функций является наличие в их составе тригонометрических функций.

5.3. Элементарные функции и их графики

К элементарным функциям относятся:

а) простейшие элементарные функции

1. Константа y = c , где с - постоянное для данной функции действительное число, одно и то же для всех значений x .


2. Степенная функция , где - любое постоянное действительное число, кроме нуля. Вид графиков функций при некоторых целых положительных ( = n ), целых отрицательных ( = –n ) и дробных ( = 1/n ) значениях представлен ниже.


4. Логарифмическая функция y = log a x (a > 0; a 1).


5. Тригонометрические функции : y = sin x , y = cos x , y = tg x , y = ctg x .


6. Обратные тригонометрические функции .

y = arcsin x y = arccos x


y = arctg x y = arcctg x


б) сложные функции

Кроме перечисленных простейших элементарных функций аргумента x к элементарным функциям также относятся функции, аргументами которых являются тоже элементарные функции, а также функции, полученные путем выполнения конечного числа арифметических действий над элементарными функциями. Например, функция

тоже является элементарной функцией.

Функции, аргументами которых являются не независимые переменные, а другие функции, называются сложными функциями или суперпозициями функций. Пусть даны две функции: y = sinx и z = log 2 y . Тогда сложная функция (суперпозиция функций) может иметь вид

z = log 2 (sin x ).

Также можно ввести понятиеобратной функции .Пусть y = f (x ) задана в области определения X , а Y - множество ее значений. Выберем какое-нибудь значение y = y 0 и по нему найдем x 0 так, чтобы y 0 было равно f (x 0).Подобных значений x 0 может оказаться и несколько.

Таким образом, каждому значению y из Y ставится в соответствие одно или несколько значений x . Если такое значение x только одно, то в области Y может быть определена функция x = g (y ), которая называется обратной для функции y = f (x ).

Найдем, например, обратную функцию для показательной функции y = a x . Из определения логарифма следует, что если задано значение y , то значение x , удовлетворяющее условию y = a x , находится по формуле x = log a y . То есть каждому y из Y можно поставить в соответствие одно определенное значение x = log a y .

Следовательно, функция x = log a y является обратной для функции y = a x на множествах X и Y . Так как принято у любой функции независимую переменную обозначать x , то в этом случае говорят, что y = f (x ) и y = g (x ) - обратные функции.

Графики функции y = f (x ) и обратной ей функции y = g (x ) симметричны относительно биссектрисы 1-го и 3-го координатных углов.

функция - это соответствие между элементами двух множеств, установленное по такому правилу, что каждому элементу одного множества ставится в соответствие некоторый элемент из другого множества.

график функции - это геометрическое место точек плоскости, абсциссы (x) и ординаты (y) которых связаны указанной функцией:

точка располагается (или находится) на графике функции тогда и только тогда, когда .

Таким образом, функция может быть адекватно описана своим графиком.

Табличный способ. Довольно распространенный, заключается в задании таблицы отдельных значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.

При табличном способе задания функции можно приближенно вычислить не содержащиеся в таблице значения функции, соответствующие промежуточным значениям аргумента. Для этого используют способ интерполяции.

Преимущества табличного способа задания функции состоят в том, что он дает возможность определить те или другие конкретные значения сразу, без дополнительных измерений или вычислений. Однако, в некоторых случаях таблица определяет функцию не полностью, а лишь для некоторых значений аргумента и не дает наглядного изображения характера изменения функции в зависимости от изменения аргумента.

Графический способ. Графиком функции y = f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению.

Графический способ задания функции не всегда дает возможность точно определить численные значения аргумента. Однако он имеет большое преимущество перед другими способами - наглядность. В технике и физике часто пользуются графическим способом задания функции, причем график бывает единственно доступным для этого способом.

Чтобы графическое задание функции было вполне корректным с математической точки зрения, необходимо указывать точную геометрическую конструкцию графика, которая, чаще всего, задается уравнением. Это приводит к следующему способу задания функции.



Аналитический способ. Чаще всего закон, устанавливающий связь между аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим.

Этот способ дает возможность по каждому численному значению аргумента x найти соответствующее ему численное значение функции y точно или с некоторой точностью.

Если зависимость между x и y задана формулой, разрешенной относительно y, т.е. имеет вид y = f(x), то говорят, что функция от x задана в явном виде.

Если же значения x и y связаны некоторым уравнением вида F(x,y) = 0, т.е. формула не разрешена относительно y, что говорят, что функция y = f(x) задана неявно.

Функция может быть определена разными формулами на разных участках области своего задания.

Аналитический способ является самым распространенным способом задания функций. Компактность, лаконичность, возможность вычисления значения функции при произвольном значении аргумента из области определения, возможность применения к данной функции аппарата математического анализа - основные преимущества аналитического способа задания функции. К недостаткам можно отнести отсутствие наглядности, которое компенсируется возможностью построения графика и необходимость выполнения иногда очень громоздких вычислений.

Словесный способ. Этот способ состоит в том, что функциональная зависимость выражается словами.

Пример 1: функция E(x) - целая часть числа x. Вообще через E(x) = [x] обозначают наибольшее из целых чисел, которое не превышает x. Иными словами, если x = r + q, где r - целое число (может быть и отрицательным) и qпринадлежит интервалу = r. Функция E(x) = [x] постоянна на промежутке = r.

Пример 2: функция y = {x} - дробная часть числа. Точнее y ={x} = x - [x], где [x] - целая часть числа x. Эта функция определена для всех x. Если x - произвольное число, то представив его в виде x = r + q (r = [x]), где r - целое число и q лежит в интервале .
Мы видим,что добавление n к аргументу x, не меняет значение функции.
Наименьшее отличное от нуля число из n есть , таким образом, это период sin 2x .

Значение аргумента, при котором функция равна 0, называется нулём (корнем ) функции.

Функция может иметь несколько нулей.

Например, функция y = x (x + 1)(x-3) имеет три нуля: x = 0, x = - 1, x =3 .

Геометрически нуль функции – это абсцисса точки пересечения графика функции с осью Х .

На рис.7 представлен график функции с нулями: x = a, x = b и x = c .

Если график функции неограниченно приближается к некоторой прямой при своём удалении от начала координат, то эта прямая называется асимптотой .

Обратная функция

Пусть задана функция у=ƒ(х) с областью определения D и множеством значений Е. Если каждому значению уєЕ соответствует единственное значение хєD, то определена функция х=φ(у) с областью определения Е и множеством значений D (см. рис. 102).

Такая функция φ(у) называется обратной к функции ƒ(х) и записывается в следующем виде: х=j(y)=f -1 (y).Про функции у=ƒ(х) и х=φ(у) говорят, что они являются взаимно обратными. Чтобы найти функцию х=φ(у), обратную к функции у=ƒ (х), достаточно решить уравнение ƒ(х)=у относительно х (если это возможно).

1. Для функции у=2х обратной функцией является функция х=у/2;

2.Для функции у=х2 хє обратной функцией является х=√у; заметим, что для функции у=х 2 , заданной на отрезке [-1; 1], обратной не существует, т. к. одному значению у соответствует два значения х (так, если у=1/4, то х1=1/2, х2=-1/2).

Из определения обратной функции вытекает, что функция у=ƒ(х) имеет обратную тогда и только тогда, когда функция ƒ(х) задает взаимно однозначное соответствие между множествами D и Е. Отсюда следует, что любая строго монотонная функция имеет обратную. При этом если функция возрастает (убывает), то обратная функция также возрастает (убывает).

Заметим, что функция у=ƒ(х) и обратная ей х=φ(у) изображаются одной и той же кривой, т. е. графики их совпадают. Если же условиться, что, как обычно, независимую переменную (т. е. аргумент) обозначить через х, а зависимую переменную через у, то функция обратная функции у=ƒ(х) запишется в виде у=φ(х).

Это означает, что точка M 1 (x o ;y o) кривой у=ƒ(х) становится точкой М 2 (у о;х о) кривой у=φ(х). Но точки M 1 и М 2 симметричны относительно прямой у=х (см. рис. 103). Поэтому графики взаимно обратных функции у=ƒ(х) и у=φ(х) симметричны относительно биссектрисы первого и третьего координатных углов.

Сложная функция

Пусть функция у=ƒ(u) определена на множестве D, а функция u= φ(х) на множестве D 1 , причем для  x D 1 соответствующее значение u=φ(х) є D. Тогда на множестве D 1 определена функция u=ƒ(φ(х)), которая называется сложной функцией от х (или суперпозицией заданных функций, или функцией от функции).

Переменную u=φ(х) называют промежуточным аргументом сложной функции.

Например, функция у=sin2x есть суперпозиция двух функций у=sinu и u=2х. Сложная функция может иметь несколько промежуточных аргументов.

4. Основные элементарный функции и их графики.

Основными элементарными функциями называют следующие функции.

1) Показательная функция у=a х,a>0, а ≠ 1. На рис. 104 показаны графики показательных функций, соответствующие различным основаниям степени.

2) Степенная функция у=х α , αєR. Примеры графиков степенных функций, соответствующих различным показателям степени, предоставлены на рисунках

3)Логарифмическая функция y=log a x, a>0,a≠1;Графики логарифмических функций, соответствующие различным основаниям, показаны на рис. 106.

4) Тригонометрические функции у=sinx, у=cosx, у=tgх, у=ctgx; Графики тригонометрических функций имеют вид, показанный на рис. 107.

5) Обратные тригонометрические функции у=arcsinx, у=arccosх, у=arctgx, у=arcctgx. На рис. 108 показаны графики обратных тригонометрических функций.

Функция, задаваемая одной формулой, составленной из основных элементарных функций и постоянных с помощью конечного числа арифметических операций (сложения, вычитания, умножения, деления) и операций взятия функции от функции, называется элементарной функцией.

Примерами элементарных функций могут служить функции

Примерами неэлементарных функций могут служить функции

5. Понятия предела последовательности и функции. Свойства пределов.

Преде́л фу́нкции (предельное значение функции ) в заданной точке,предельной для области определения функции, - такая величина, к которой стремится значение рассматриваемой функции при стремлении её аргумента к данной точке.

В математике пределом последовательности элементов метрического пространства или топологического пространства называют элемент того же пространства, который обладает свойством «притягивать» элементы заданной последовательности. Пределом последовательности элементовтопологического пространства является такая точка, каждая окрестность которой содержит все элементы последовательности, начиная с некоторого номера. В метрическом пространстве окрестности определяются через функцию расстояния, поэтому понятие предела формулируется на языке расстояний. Исторически первым было понятиепредела числовой последовательности, возникающее в математическом анализе, где оно служит основанием для системы приближений и широко используется при построении дифференциального и интегральногоисчислений.

Обозначение:

(читается: предел последовательности икс-энное при эн, стремящемся к бесконечности, равен a )

Свойство последовательности иметь предел называют сходимостью : если у последовательности есть предел, то говорят, что данная последовательность сходится ; в противном случае (если у последовательности нет предела) говорят, что последовательность расходится . В хаусдорфовом пространстве и, в частности, метрическом пространстве , каждая подпоследовательность сходящейся последовательности сходится, и её предел совпадает с пределом исходной последовательности. Другими словами, у последовательности элементов хаусдорфово пространства не может быть двух различных пределов. Может, однако, оказаться, что у последовательности нет предела, но существует подпоследовательность (данной последовательности), которая предел имеет. Если из любой последовательности точек пространства можно выделить сходящуюся подпоследовательность, то, говорят, что данное пространство обладает свойством секвенциальной компактности (или, просто, компактности, если компактность определяется исключительно в терминах последовательностей).

Понятие предела последовательности непосредственно связано с понятием предельной точки (множества): если у множества есть предельная точка, то существует последовательность элементов данного множества, сходящаяся к данной точке.

Определение

Пусть дано топологическое пространство и последовательность Тогда, если существует элемент такой, что

где - открытое множество, содержащее , то он называется пределом последовательности . Если пространство является метрическим, то предел можно определить с помощью метрики: если существует элемент такой, что

где - метрика, то называется пределом .

· Если пространство снабжено антидискретной топологией, то пределом любой последовательности будет любой элемент пространства.

6. Предел функции в точке. Односторонние пределы.

Функция одной переменной. Определение предела функции в точке по Коши. Число b называется пределом функции у = f (x ) при х , стремящемся к а (или в точке а ), если для любого положительного числа  существует такое положительное число , что при всех х ≠ а, таких, что |x a | < , выполняется неравенство
| f (x ) – a | <  .

Определение предела функции в точке по Гейне. Число b называется пределом функции у = f (x ) при х , стремящемся к а (или в точке а ), если для любой последовательности {x n }, сходящейся к а (стремящейся к а , имеющей пределом число а ), причем ни при каком значении n х n ≠ а , последовательность {y n = f (x n)} сходится к b .

Данные определения предполагают, что функция у = f (x ) определена в некоторой окрестноститочки а , кроме, быть может, самой точки а .

Определения предела функции в точке по Коши и по Гейне эквивалентны: если число b служит пределом по одному из них, то это верно и по второму.

Указанный предел обозначается так:

Геометрически существование предела функции в точке по Коши означает, что для любого числа > 0 можно указать на координатной плоскости такой прямоугольник с основанием 2 > 0, высотой 2 и центром в точке (а; b ), что все точки графика данной функции на интервале (а – ; а + ), за исключением, быть может, точки М (а ; f (а )), лежат в этом прямоугольнике

Односторо́нний преде́л в математическом анализе - предел числовой функции, подразумевающий «приближение» к предельной точке с одной стороны. Такие пределы называют соответственно левосторо́нним преде́лом (или преде́лом сле́ва ) и правосторо́нним преде́лом (преде́лом спра́ва ). Пусть на некотором числовом множестве задана числовая функция и число - предельная точка области определения . Существуют различные определения для односторонних пределов функции в точке , но все они эквивалентны.

Если каждому элементу х множ-ва Х (х є Х) ставится в соответствие вполне определённый элемент у множ-ва У (у є У), то говорят, что на множ-ве Х задана функция у = f(x). При этом х назыв. независимой переменной (или аргументом), у – зависимой переменной, а буква f обозначает закон соответсвия. Множ-во Х назыв. областью определения, а множ-во У – областью значений функции.

Способы задания фун-ий.

а)аналитический, если фун-ия задана формулой у = f(x)

б)табличный способ. Состоит в том, что фун-ия задаётся таблицей, содержащей значения аргумента х и соответствующие значения фун-ии f(x).

в)графический. Состоит в изображении графика фун-ии – множества точек (х,у) плоскости, абсциссы которых есть значения аргумента х, а ординаты – соответствующие им значения фун-ии f(x).

г)логический

3 . Односторонний предел. Существование предела в точке.

Число назыв. односторонним пределом слева фун-ии f(x) в точке сгущения x 0, если для ∀ε>0 ∃δ>0, такое, что x∈(x 0 -δ, x 0 ] => f(x)

Число назыв. односторонним пределом справа фун-ии f(x) в точке сгущения х 0 , если если ∀ε>0

∃δ>0, такое, что x∈(x 0 -δ, x 0 ] => f(x)

Число назыв. односторонним пределом справа фун-ии f(x) в точке сгущения х 0 , если если ∀ε>0 ∃δ>0, такое,что х ∈[ x 0, x 0 + δ) =>

Сущ-ие предела в точке. Число А назыв. пределом фун-ии f(x) при х, стремящемся к х 0 (или точке х 0), если для любого, даже сколь угодно малого положительного числа ε>0, найдётся такое положительное число δ>0 (зависящее от ε, δ=δ(ε)), что для всех х, не равных х 0 и удовлетворяющее условию , выполняется неравенство

Обозначается или

2. Предел функции и его свойства.

Предельной точной сгущения множества A называется точка x 0 , если в любой окрестности этой точки найдутся такие множества, отличные от x 0 .

Определение предела по Коши. Функция y=f(x), определенная в A, имеет предел С в точке сгущения x 0 , если ∀ε>0 ∃δ>0, такое, что x∈(x 0 -δ, x 0) ∪(x 0 , x 0 +δ) ⇒ f(x)∈(C-ε, С+ε). Существование предела записывают в виде lim x → x 0 f(x)=C или |x-x 0 |<δ⇒|f(x)-C|< ε.

Определение предела по Гейне. Если для различных последовательностей {x n }, стремящихся к x 0 , последовательность значений функции {f(x n)} сходится к некоторому числу C, то это число называется пределом функции f(x).

Определение Коши используется для обоснования существования предела, а опред-ие Гейна – для обоснования отсутствия предела.

Свойства предела: предел единственен и фун-ия в некоторой окрестности предельной точки ограничена.

1)Предел постоянной величины

Предел постоянной величины равен самой постоянной величине.



Загрузка...