sonyps4.ru

Передача данных с помощью лазера. Лазерная связь

В данной главе рассматривается технология лазерной сети связи, а так же её преимущества, такие как экономичность; низкие эксплуатационные расходы; высокая пропускная способность и качество цифровой связи, а так же быстрое развертывание и изменение конфигурации сети.

Лазерные устройства могут осуществлять передачу любого сетевого потока, который доставляется им при помощи оптоволокна или медного кабеля в прямом и обратном направлениях. Передатчик преобразует электрические сигналы в модулированное излучение лазера в инфракрасном диапазоне с длиной волны 820 нм и мощностью до 40 мВт. В качестве среды распространения лазерная связь использует атмосферу. Затем лазерный луч попадает в приемник, имеющий максимальную чувствительность в диапазоне длины волны излучения. Приемник производит преобразование излучения лазера, в сигналы используемого электрического или оптического интерфейса. Так осуществляется связь с помощью лазерных систем.

Оптический диапазон имеет много характерных особенностей и за счет малой длины волны позволяет достичь высокой направленности излучения, существенно уменьшить размеры антенных систем, сформировать чрезвычайно узкие лазерные пучки и получить высокую концентрацию электромагнитного излучения в пространстве.

При передаче информации модулированными электромагнитными колебаниями необходимо, чтобы частота модуляции была в 10…100 раз меньше несущей частоты. Кроме того, частоты модуляции занимают некоторую полосу частот, и ширина ее определяется объемом передаваемой в единицу времени информации. Например, для передачи телеграфного текста требуется полоса частот 10 Гц, а для телевизионного изображения – полоса частот 107 Гц и несущая частота не менее 108 Гц. Радиодиапазон занимает полосу частот 104…108 Гц и полностью освоен. Информационная емкость канала связи в СВЧ-диапазоне (109..1012 Гц) выше, но в силу особенностей распространения СВЧ-излучения в атмосфере связь между станциями СВЧ-диапазона возможна только на расстоянии прямой видимости. В оптическом диапазоне только видимая область занимает полосу частот от 41014 до 1015 Гц. С помощью лазерного луча теоретически можно обеспечить передачу 1015/107 = 108 телевизионных каналов, что на несколько порядков превышает современные потребности, или 1013 телефонных разговоров. Таким образом, одним из преимуществ оптических линий связи является возможность передачи больших объемов информации, обусловленная сверхширокой полосой частот. Освоение оптического диапазона: создание лазерных источников света, чувствительных полупроводниковых приемников оптического излучения и разработка волоконных светодиодов с малыми потерями, – открывает новые возможности для создания систем связи.

Оптический диапазон открывает возможности создания информационных и управляющих систем с характеристиками, которые принципиально не достижимы в радиодиапазоне. К настоящему времени разработаны разнообразные наземные, авиационные и космические системы оптической связи, лазерной локации, лазерные системы аэрокосмического мониторинга природной среды, системы воздушной разведки, системы предупреждения столкновений подвижных объектов, лазерные системы стыковки космических аппаратов, системы лазерного наведения и лазерного управления оружием.

Потенциальные возможности лазерных информационных систем, как и в целом оптических методов передачи и обработки информации, весьма велики. Во многих задачах предельно достижимые характеристики ограничиваются лишь квантовыми эффектами. Однако в действительности потенциальные возможности оптического диапазона далеко не всегда удается эффективно реализовать на практике. Существует множество тому причин.

Огромное влияние на рабочие характеристики реальных лазерных систем оказывают неизбежные флюктуации в источниках лазерного излучения, случайные изменения параметров информационных процессов, воздействия различных помех, вероятностный характер операции фото детектирования. Многие информационные системы оптического диапазона строятся с использованием открытого (чаще всего атмосферного) канала. Для лазерного излучения атмосферный канал представляет собой канал со случайно-неоднородной средой распространения. Эффекты поглощения оптического излучения атмосферными газами, молекулярное и аэрозольное рассеяние, искажения пространственно-временной структуры и нарушение когерентности лазерного излучения – все это оказывает заметное влияние на энергетический потенциал, принципы обработки информационных сигналов и дальность действия создаваемых систем. Все перечисленные особенности показывают, что анализ лазерных информационных систем, оценка их потенциальных и реально достижимых характеристик не может проводиться без вероятностного исследования структуры информационных сигналов и помех.

На сегодняшний момент накоплены многочисленные результаты по вероятностному анализу различных лазерных систем. Однако большинство таких результатов представляются весьма разрозненными, они не базируются на едином подходе и их достаточно сложно использовать в практических задачах. Необходимость дополнительных детальных исследований вероятностной структуры сигналов, помех и в целом информационных процессов в радиооптике связана с необходимостью совершенствования математических моделей, решением задач оптимизации структуры сигналов и систем, разработкой новых перспективных алгоритмов передачи, приема, преобразования и обработки информации в оптических информационных системах.

Лазерная связь является альтернативой радио, кабельной и волоконно-оптической связи. Лазерные системы позволяют создать канал связи между двумя зданиями, находящимися на расстоянии до 1,2 км друг от друга, и передавать по нему телефонный трафик (скорость от 2 до 34 Мбит/с), данные (скорость до 155 Мбит/с) или их комбинацию. В отличие от беспроводных радиосистем лазерные системы связи обеспечивают высокие помехозащищенность и секретность передачи, так как получить несанкционированный доступ к информации можно только непосредственно от приемопередатчика.

Компания, которая воспользуется лазерной связью для создания основного (резервного) канала ближней связи, избавится не только от необходимости прокладывать новые проводные коммуникации, но также и от необходимости получать разрешение на право пользования радиочастотой. Кроме того, невысокий уровень затрат на организацию высокопроизводительного канала связи, а также небольшое время его ввода в эксплуатацию обеспечат быструю окупаемость вложенных средств. Таким образом, широкий спектр возможностей и несомненные преимущества лазерного оборудования делают его использование лучшим решением проблемы организации надежного канала связи между двумя зданиями.

крепыш 4 января 2015 в 05:04

Вариации на тему космической лазерной связи

  • Космонавтика

Одна из актуальных на сегодняшний день тем в коммерческой космонавтике, и не только - это тема лазерной связи. Преимущества ее известны, тесты проводились и оказались успешны или очень успешны. Если кому плюсы и минусы неизвестны - кратко изложу.

Лазерная связь позволяет передавать данные на гораздо большие относительно радиосвязи расстояния, скорость передачи благодаря высокой концентрации энергии и гораздо более высокой частоте несущей (на порядки) также выше. Энергоэффективность, низкий вес и компактность также в разы или на порядки лучше. Как и стоимость - в принципе, для лазерной связи в космосе вполне может подойти обыкновенная китайская лазерная указка мощностью в районе 1 Вт и выше, что я и намерен доказать ниже.

Из минусов можно упомянуть прежде всего необходимость гораздо более точного наведения приемных и передающих модулей относительно радиосвязи. Ну и известные атмосферные проблемы с облачностью и пылью. На самом деле все эти проблемы легко решаемы, если подойти к их решению с головой.

Прежде всего - рассмотрим, как работает приемный модуль. Он представляет из себя специализированный (не всегда) телескоп, который улавливает излучение лазера и превращает его в электросигналы, которые затем известными методами усиливаются и преобразуются в полезную информацию. Связь, естественно, как и везде сейчас, должна быть цифровой и, соотв., полнодуплексной. Но вот должна быть ли она при этом лазерной в обе стороны? Совершенно не обязательно! Почему это так - нам станет ясно, стоит нам только рассмотреть, как отличаются приемные и передающие устройства для лазерной связи, и как отличаются требования к массогабаритным параметрам устройств связи на орбитальных КА (или КА дальнего космоса) и наземных комплексах.

Как уже сказано ранее - приемный комплекс - это телескоп. С линзами и (или) рефлекторами, системой их крепления и наведения телескопа. А это означает - тяжелая и громоздкая конструкция - что совершенно неприемлемо для КА. Ибо для КА любое устройство должно быть как раз максимально легким и компактным. Что как раз для передатчика ЛИ вполне характерно - все, наверное, уже видели современные ПП лазеры размером и весом с авторучку. Ну правда, питание для настоящего, неигрушечного лазера будет весить поболее, ну так оно и для систем радиоцифровой связи будет весить еще поболее ввиду его гораздо меньшей энергоэффективности.

Что из этого всего следует? Это значит - совершенно не нужно передавать данные в обе стороны лазером, достаточно передавать их только со спутника в оптоканале, а на спутник (КА) - в радиоканале, как и ранее. Конечно, это значит, что придется все-таки использовать направленную параболическую антенну для приема, что для веса КА не есть хорошо. Но при этом следует учитывать, что антенна для приема, как и, собственно, сам ресивер, будет все-таки весить в разы меньше, чем она же для передачи. Ибо мощность наземного передатчика мы можем делать на порядки мощнее, чем на КА, а значит - и антенна не нужна большая. В некоторых же случаях направленная антенная вообще не нужна будет.

Т.о. мы имеем уменьшение веса КА практически в разы, так же как и энергопотребления. Что является прямой дорогой к возможности повсеместно использовать для нужд связи, исследования космоса и др. нужд микроспутников, а значит - резкого удешевления космоса. Но и это еще не все.

Для начала рассмотрим путь решения проблемы наведения луча лазера со спутника на наземный приемник. На первый взгляд - проблема серьезная, а в некоторых случаях - и вовсе нерешаемая (если спутник не на геостационаре). Но вот вопрос - а надо ли луч наводить на приемник?

Есть известная проблема - это расхождение и ослабление луча лазера при прохождении в атмосфере. Особенно проблема обостряется при прохождении луча через слои с разной плотностью. При прохождении границ раздела сред луч света, в т.ч. и лазерный луч, испытывает особенно сильные преломления, рассеивание и ослабление. В этом случае мы можем наблюдать своего рода световое пятно, получающееся как раз при прохождении такой границы раздела сред. В атмосфере Земли таких границ несколько - на высоте около 2 км (активный погодный атмосферный слой), на высоте примерно 10 км, и на высоте примерно 80-100 км, т. е. уже на границе космоса. Высоты слоев даны для средних широт для летнего периода. Для других широт и других времен года высоты и само кол-во границ раздела сред может сильно отличаться от описанного.

Т.о. при вхождении в атмосферу Земли луч лазера, до этого спокойно преодолевший миллионы километров без каких-либо потерь (на разве что небольшую расфокусировку), на каких то несчастных десятках километров теряет львиную долю своей мощности. Однако этот плохой на первый взгляд факт мы отлично можем обратить себе на пользу. Ибо этот факт позволяет нам обойтись без какого либо серьезного наведения луча на приемник. Ибо в качестве такого приемника, точнее первичного приемника, мы как раз и можем использовать саму атмосферу Земли, точнее эти самые границы раздела слоев, сред. Мы просто можем наводить телескоп на получающееся световое пятно и считывать с него информацию. Конечно, это заметно прибавит кол-во помех и снизит скорость передачи данных. И сделает ее вообще невозможной в дневное время по понятным причинам - Солнце же! Зато насколько мы можем удешевить спутник за счет экономии на системе наведения! Это особенно актуально для спутников на нестационарных орбитах, а также для КА для исследований дальнего космоса. Кроме того, учитывая, что лазеры, пусть даже с такой некачественной, не узкой частотной полосой, как китайские лазеры - вполне реально можно отсеивать от помех с помощью светофильтров или узкочастотных фотоприемников.

Не менее актуальным могло бы быть использование лазерной связи не для космоса, а для наземной дальней связи способом, подобным тропосферной связи. Имеется в виду передача данных лазером также с использованием атмосферного рассеяния на границах раздела атмосферных слоев с одной точки поверхности Земли до другой. Дальность такой связи может достигать сотен и тысяч километров, а при использовании релейного принципа - и того более.

Теги: лазерная связь, космос


Радиоволны - не единственное средство связи с внеземными цивилизациями. Есть и другие способы, например световые сигналы. Поскольку световому сигналу придется преодолеть огромное расстояние, он должен обладать необходимыми свойствами: иметь достаточную для преодоления этого пути энергию. Легко убедиться, что для посылки таких световых сигналов оптические прожекторы непригодны. Они создают расходящиеся лучи света. Поэтому чем дальше от прожектора, тем ширина такого пучка становится больше. На огромных расстояниях она также очень большая. Это значит, что энергия, приходящаяся на единицу площади, очень малая.

Если использовать самый современный оптический прожектор, который создает пучок света (луч) шириной всего полградуса, то уже на расстоянии 50 километров световое пятно, создаваемое прожектором, составит 450 метров. Такой прожектор, установленный на Земле, будет создавать на Луне светлое пятно диаметром 3000 километров! Ясно, что при этом световая энергия рассеивается на большой площади и освещенность поверхности становится намного меньше, чем если бы это пятно составляло всего 10 или 100 метров. Образованное земным прожектором на поверхности Луны пятно обнаружить невозможно. Но Луна находится рядом с нами. Что же останется от плотности энергии на удалениях в сотни световых лет? Практически ничего. Поэтому рассматривать далее такой тривиальный источник световых сигналов нет смысла. Но необходимые оптические сигналы могут быть созданы с помощью лазеров, которые явились воплощением идей Алексея Толстого (гиперболоид инженера Гарина) и Г. Уэллса (тепловой луч марсиан).

Что касается лазерного излучения как средства связи с инопланетянами, то здесь важны два его свойства. Первое - возможность излучать практически не расходящийся пучок света (луч), что, как мы видели, нельзя сделать с помощью обычных прожекторов. Второе - возможность создавать мощные световые сигналы, которые способны достигнуть звезд, находящихся на удалениях в сотни и тысячи световых лет.

Важным свойством лазерного излучения является его монохроматичность (буквально «одноцветность»). Физически это означает, что излучение имеет строго неизменную длину волны, а значит, и цвет. В то же время имеются лазеры, которые излучают одну строго определенную длину волны, величина которой определяется «рабочим веществом» лазера. Такое вещество может быть газообразным, жидким или твердым. Вначале использовали главным образом синтетический рубиновый кристалл. При использовании стекла, активированного неодимом, длина волны излучения равна 1,06 мкм. В качестве рабочего вещества применяют, в частности, углекислый газ CO2 и многие другие вещества. Жидкостные лазеры позволяют излучать на разных длинах волн (в данном диапазоне). Излучение происходит попеременно, в каждый момент времени излучается одна строго определенная длина волны.

Важно и то, что лазерные установки позволяют излучать очень короткие импульсы света. Для передачи информации (последовательностями импульсов) это очень важно. Длина импульса может быть столь мала, что за время в одну секунду можно «уложить» до тысячи миллиардов импульсов. При излучении импульсы следуют друг за другом с определенной задержкой. Современные лазеры позволяют получать импульсы большой мощности. Так, даже столь короткие импульсы, как приведенные выше, могут иметь энергиюбольше 10 джо-улей! Чем больше длина импульса, тем больше содержащаяся в нем энергия. В режиме» свободной генерации», когда лазер сам регулирует длину излучаемых импульсов и она составляет порядка тысячной доли секунды, энергия каждого импульса может достигать нескольких тысяч джоулей. Лазеры позволяют излучать не только короткие импульсы света, но и непре-рывно. Например, газовые лазеры, работающие на углекислом газе, могут работать в режиме непрерывной генерации. В этом случае излучение характеризуется не энергией каждо-го импульса (т. к. отдельных импульсов нет), а энергией в единицу времени или, другими словами, мощностью. Так, мощность лазеров, работающих на углекислом газе, доходит до нескольких десятков киловатт.

Излучение лазера также рассеивается, но несравненно меньше, чем у прожекторов. Это определяется размерами рабочего вещества. Излучение с поверхности рабочего вещества происходит строго с одинаковой фазой (синфазно) по всей его поверхности. Поэтому ширина посылаемого лазером пучка зависит от размера блока «рабочего вещества», то есть чем больше поверхность, тем эже пучок излучаемого света. Зависимость ширины пучка от длины волны прямая: чем меньше длина волны, тем шире посылаемый лазером пучок. Но даже у рядовых лазеров, у которых размеры рабочего вещества составляют порядка 1 сантиметра, угол раствора светового пучка в 200 раз меньше, чем у прожектора. Он составляет 10 угловых секунд. Имеются, конечно, лазеры и со значительно меньшими углами светового излучения.

Чтобы избавиться от расхождения лучей, необходимо использовать оптическую систему типа телескопа, направляющую ход лучей. Если пучок лазерного излучения пропустить через линзу, у которой фокусное расстояние равно ее диаметру, то действительное изображение пучка в фокальной плоскости будет иметь размеры, равные длине волны. Далее, в том месте, где получено это действительное изображение пучка, поместим фокус другой линзы (или зеркала), диаметр которой намного больше, чем первой. Для второй линзы фокусное расстояние может быть больше ее диаметра, но может быть и равно ему (как и у первой линзы). Такая комбинация двух линз приводит к тому, что из второй большой линзы (зеркала) будет выходить пучок, у которого угол расхождения уменьшится (по сравнению с первоначальным, входящим в телескоп) во столько раз, во сколько раз диаметр второй линзы (зеркала) больше длины излучаемой волны. Таким образом, вполне реально сколь угодно уменьшить угол расходимости лазерного пучка.

Для связи с инопланетянами могут использоваться как связные системы, построенные на одном лазере, так и построенные на целой системе (батарее) лазеров. Если использовать непрерывно излучающий лазер мощностью 10 киловатт и дополнительное большое зеркало диаметром 5 метров, то можно сузить угол раствора пучка до 0,02 с дуги.

Можно использовать не одно большое зеркало, а определенное количество зеркал с малым диаметром (скажем, 10 сантиметров). Тогда система должна содержать столько же лазеров, сколько имеется зеркал. Вся она должна быть очень жестко ориентирована. Если взять 25 лазеров, то можно достичь угла раствора пучка, равного одной дуговой секунде.

Преимущество лазерных систем (батарей) для космической связи состоит в том, что при ее работе можно исключить влияние земной атмосферы. Если же работать с одним лазером, то из-за неспокойствия атмосферы угол раствора пучка становится значительно больше, чем при отсутствии такого влияния. Это влияние можно обойти, если лазерную систему поместить так, чтобы лазерный луч не проходил через атмосферу, то есть расположить ее на искусственном спутнике-платформе. Применять батарею лазерных установок в этом случае необходимости нет.

Впервые возможность связи с внеземными цивилизациями с помощью лазерного луча была научно проанализирована в 1961 году лауреатом Нобелевской премии Ч.Х. Таун-сом и Р.И. Шварцем. С тех пор лазерная техника в мире усовершенствовалась и условия для осуществления лазерной связи стали более благоприятными. Главное, что должна обеспечить эта техника, это достаточная мощность излучения и возможность отделить лазерное излучение, посланное нам инопланетянами, от излучения звезд. Как отделить свет лазера от света звезды? Этот вопрос отнюдь не простой, и решать его можно только благодаря особому свойству лазерного излучения - его высокой монохроматичности. Звезда (например, Солнце) излучает свет с различными длинами волн. Лазер же излучает только на строго определенной длине волны, скажем 0,5 мкм. На этой длине волны Солнце излучает наибольшую энергию. Тем не менее излучение лазера в 25 раз больше, чем у Солнца или у другой такой же звезды. Конечно, это относится только к данной конкретной длине волны. На других длинах волн (например, в ультрафиолетовой и инфракрасной областях спектра) это отношение было бы еще больше, поскольку на этих длинах волн Солнце излучает меньше, чем около зеленого света (0,5 мкм).

Таким образом, даже современная лазерная техника позволяет создать излучение, интенсивность которого на данной длине волны достаточна для того, чтобы его выделить из всего излучения звезд. Чтобы добиться еще лучшего выделения лазерного излучения, надо «работать» вблизи линий поглощения Солнца (или другой звезды), то есть в том диапазоне, где часть излучения Солнца поглощается и оно меньше мешает выделению лазерного излучения. Если лазер работает на длине волны 0,15 мкм, то его спектральная интенсивность может в десятки тысяч раз превосходить интенсивность солнечного излучения на этой длине волны, поскольку она находится в области поглощения солнечного излучения. Конечно, такая лазерная установка должна быть расположена за пределами земной атмосферы, иначе лазерное излучение будет поглощено атмосферным газом. Таким образом, регистрируя и анализируя свет от удаленных звезд, мы должны иметь в виду, что лазерное излучение, посланное внеземными цивилизациями, может быть обнаружено на фоне этого излучения. Оно проявится как узкая линия. Но для этого необходимо анализировать излучение звезд с помощью высококачественных спектрографов. Можно использовать также очень узкополосные фильтры. Конечно, указанные оптические устройства должны быть очень высококачественными: разрешающая способность спектрографа должна быть 0,03 А, для того чтобы получить 10 %-ную контрастность линии лазера над фоном. Современная оптическая техника позволяет это сделать. Поэтому уже сейчас мы можем на самых сильных телескопах начать вылавливание линий излучения, принадлежащих лазерным устройствам внеземных цивилизаций.

Мы неоднократно обсуждали различные аспекты действия эффекта Доплера на излучение движущегося источника. В данном случае этот эффект также необходимо учитывать, так как за счет движения приемников излучения в направлении самого излучения должно происходить смещение (доплеровский сдвиг) частоты излучения в ту или иную сторону. Чтобы регистрировать это излучение со смещенной частотой, надо располагать спектрографами с соответствующей разрешающей способностью.

Таким образом, даже современный уровень лазерной техники позволяет принимать лазерные сигналы от ближайших звезд и посылать их обратно. Но остается еще один, возможно самый главный, вопрос: куда посылать сигналы и откуда их принимать? В том и другом случае мы должны куда-то направлять наши телескопы, причем с очень большой точностью. То же самое требуется и от наших корреспондентов в космосе. Если они находятся на ближайших звездах (их планетах), то земную орбиту они будут наблюдать под углом в одну угловую секунду. Для того чтобы их лазерный луч попал на Землю, они должны направить его с угловым разрешением 0,02 секунды дуги. Нашим астрономам сейчас такая точность доступна. Поэтому мы полагаем, что она достижима и для внеземных цивилизаций, ищущих связи с нами.

Логично представить себе, что инопланетяне в поисках связи с нами будут «шарить» лазерным лучом в пределах Солнечной системы. Если они сделают ширину лазерного луча (пучка) больше, то при этом он будет все время освещать Землю и может относительно легко регистрироваться. Но чем шире луч, тем больше необходимо излучать энергии, чтобы ее хватило на всю освещаемую им поверхность, для того чтобы она могла быть зарегистрирована. Но можно думать, что эта трудность для инопланетян не будет неразрешимой. По крайней мере, в земных лабораториях увеличение мощности лазерного излучения происходит очень быстро.

Особенно эффективно лазерная связь может использоваться в пределах Солнечной системы. С помощью лазерного луча можно создать пятно на Марсе диаметром 5–7 километров, которое будет светиться примерно в 10 раз ярче, чем Венера при наблюдении с Земли. Лазерный луч может нести на себе любую информацию: его интенсивность можно изменять во времени по любому закону (другими словами, лазерное излучение можно модулировать соответствующим образом). Поверхность Луны была освещена лазерным лучом. На не освещенной Солнцем стороне Луны получается светящееся пятно диаметром 40 метров. Оно освещено в 100 раз меньше, чем в случае прямого падения солнечных лучей.

Преимущества лазерного канала перед радиоканалом заключаются в том, что он, во – первых, не создаёт радиопомех; во – вторых, является более конфиденциальным; в – третьих, может применяться в условиях воздействия высокого уровня электромагнитных излучений.

Принципиальная схема передатчика представлена на Рис.1. Передатчик состоит из шифратора команд, выполненного на микроконтроллере ATtiny2313 (DD1), выходного блока – на транзисторах ВС847В (VT1, VT2) и интерфейса RS-232, который, в свою очередь, состоит из разъёма DB9-F (на кабель) (ХР1) и преобразователя уровней – на MAX3232 (DD3).

Цепь сброса микроконтроллера состоит из элементов DD2 (CD4011B), R2, C7. Выходной блок представляет собой электронный ключ, выполненный на транзисторе VT1, в коллекторную цепь которого через ограничитель тока на транзисторе VT2 включена лазерная указка. Питание передатчика осуществляется постоянным стабилизированным напряжением 9 – 12 В. Микросхемы DD1, DD2, DD3 питаются от напряжения 5В, которое определяется стабилизатором 78L05 (DA1).

Контроллер DD1 запрограммирован в среде BASCOM, что позволяет подавать ему команды с персонального компьютера (ПК) через интерфейс RS-232, с терминала Bascom, используя функцию «эхо».

Микроконтроллер имеет тактовую частоту 4Мгц от внутреннего генератора. Пачки импульсов частотой около 1,3 Кгц с вывода ОС0А (РВ2) поступают на выходной блок. Количество импульсов в пачке определяется номером команды, поступившей с ПК.
Для ввода команды необходимо нажать на клавиатуре ПК любую клавишу, затем при появлении надписей «Write command» и «Enter №1…8» ввести цифру от 1 до 8 и нажать клавишу «Enter».

Программа для микроконтроллера передатчика «TXlaser» состоит из основного цикла (DO…LOOP) и двух подпрограмм обработки прерываний: по приёму (Urxc) и по переполнению таймера 0 (Timer0).

Для получения выходной частоты 1,3 КГц таймер сконфигурирован с коэффициентом деления частоты (Prescale) = 1024. Кроме того, счёт начинается с нижнего значения Z = 253 (при высоком уровне на РВ2) и доходит до 255. Происходит прерывание по переполнению таймера, при обработке которого осуществляется переключение вывода РВ2, а таймеру вновь задаётся значение Z = 253. Таким образом, на выходе РВ2 появляется сигнал частотой 1,3 КГц (см. Рис.2). В этой же подпрограмме количество импульсов на РВ2 сравнивается с заданным, и в случае их равенства таймер останавливается.

В подпрограмме обработки прерывания по приёму задаётся количество импульсов, которое необходимо передать (1 – 8). В случае, если это количество будет больше 8, в терминал выдаётся сообщение «ERROR».

Во время работы подпрограммы на выводе PD6 присутствует низкий уровень (светодиод HL1 выключен), а работа таймера остановлена.
В основном цикле на выводе PD6 – высокий уровень, и светодиод HL1 включён.
Текст программы «TXlaser»:

$regfile = "attiny2313a.dat"
$crystal = 1000000
$hwstack = 40
$swstack = 16
$framesize = 32

Config Pind.0 = Input "UART - RxD
Config Portd.1 = Output "UART - TxD
Config Portd.6 = Output "светодиод HL1
Config Portb.2 = Output "выход OC0A

"конфигурац.таймера0-коэфф.деления=1024:
Config Timer0 = Timer , Prescale = 1024
Stop Timer0 "останов таймера

Dim N As Byte "определение переменных "
Dim N0 As Byte

Const Z = 253 "нижниий предел счёта таймера для вых.частоты=1,3КГц
Timer0 = Z

On Urxc Rxd "подпрограмма обраб.прерывания по приёму
On Timer0 Pulse "подпрограмма обраб.прерывания по переполнению


Enable Urxc
Enable Timer0

Do "основной цикл
Set Portd.6 "включение светодиода HL1
Loop

Rxd: "подпрограмма обработки прер. по приёму
Stop Timer0
M1:
Print "Write commad"
Input "Enter № 1...8:" , N0 "ввод команды
If N0 > 8 Then "ограничение номера команд
Print "Error"
Goto M1
End If
N0 = N0 * 2
N0 = N0 - 1 "заданное значение кол-ва импульсов в пачке
Toggle Portb.2
Start Timer0 "запуск таймера
Return

Pulse: "подпрограмма обработки прерыв.по переполнению
Stop Timer0
Toggle Portb.2
Reset Portd.6 "выключение светодиода
Timer0 = Z
N = N + 1 "приращение кол-ва импульсов
If N = N0 Then "если число импульсов = заданному
N = 0
N0 = 0
Waitms 500 "задержка 0,5с
Else
Start Timer0 "иначе, продолжить счёт
End If
Return
End "end program

Передатчик выполнен на печатной плате размерами 46х62 мм (см. Рис.3). Все элементы, кроме микроконтроллера, SMD – типа. Микроконтроллер ATtiny2313 применён в корпусе типа DIP. Его рекомендуется располагать в панели для DIP микросхем TRS (SCS) – 20, чтобы иметь возможность «безболезненно» перепрограммировать.

Печатная плата передатчика TXD.PCB находится в папке «FILE PCAD» .
Принципиальная схема приёмника лазерного канала представлена на рис.4. На входе первого усилителя DA3.1 (LM358N) фильтр низкой частоты, образованный элементами СЕ3, R8, R9 и имеющий частоту среза 1КГц, ослабляет фоновые помехи 50 -100 КГц от осветительных приборов. Усилители DA3.2 и DA4.2 усиливают и увеличивают длительность принятых импульсов полезного сигнала. Компаратор на DA4.1 формирует выходной сигнал (единица), который поступает через инверторы микросхемы CD4011D (DD2) - DD2.1, DD2. Cигнал синхронно приходит на контакты микроконтроллера ATtiny2313 (DD1) – T0 (PB4) и РВ3. Таким образом, Timer0, работающий в режиме счёта внешних импульсов и Timer1, отмеряющий время этого счёта, запускаются синхронно. Контроллер DD1, выполняющий функцию дешифратора, отображает принятые команды 1…8 установкой лог.1 на выводах PORTB соответственно РВ0…РВ7, при этом приход последующей команды сбрасывает предыдущую. При приходе команды «8» на РВ7 появляется лог.1, которая с помощью электронного ключа на транзисторе VT1, включает реле К1.

Питание приёмника осуществляется постоянным напряжением 9 -12В. Аналоговая и цифровая части питаются от напряжений 5В, которые определяются стабилизаторами типа 78L05 DA5 и DA2.

В программе «RXlaser» Timer0 сконфигурирован, как счётчик внешних импульсов, а Timer1, как таймер, считающий период прохождения максимально возможного количества импульсов (команда 8).

В основном цикле (DO…LOOP) Timer1 включается при принятии первого импульса команды (К=0), происходит сброс условия разрешения включения таймера Z=1.
В подпрограмме обработки прерывания по совпадению cчёта Timer1 со значением максимально возможного счёта считывается и устанавливается в PORTB номер команды. Устанавливается так же условие разрешения включения Timer1- Z=0.
Текст программы «RXlaser»:

$regfile = "attiny2313a.dat"
$crystal = 4000000
$hwstack = 40
$swstack = 16
$framesize = 32

Ddrb = 255 "PORTB-все выхода
Portb = 0
Ddrd = 0 "PORTD-входа
Portd = 255 "подтяжка PORTD
Config Timer0 = Counter , Prescale = 1 , Edge = Falling "как счётчик импульсов
Config Timer1 = Timer , Prescale = 1024 , Clear Timer = 1 "как таймер
Stop Timer1
Timer1 = 0
Counter0 = 0

"определение переменных:
Dim X As Byte
Dim Comm As Byte
Dim Z As Bit
Dim K As Bit

X =80
Compare1a = X "кол-во имп. в регистре совпадения
Z = 0

On Compare1a Pulse "подпрограмма прерывания по совпадению

Enable Interrupts "разрешение прерываний
Enable Compare1a

Do "основной цикл
If Z = 0 Then "первое условие включения таймера
K = Portd.3
If K = 0 Then "второе условие включения таймера
Start Timer1
Z = 1
End If
End If
Loop

Pulse: "подпрограмма обраб.прерыв.по совпадению
Stop Timer1
Comm = Counter0 "считывание из счётчика внешних импульсов
Comm = Comm - 1 "определение номера бита в порту
Portb = 0 "обнуление порта
Set Portb.comm "установка бита,соответ.номеру команды
Z = 0
Counter0 = 0
Timer1 = 0
Return
End "end program

Программы «TXlaser» и «RXlaser» находятся в папке Lazer_prog .

Приёмник расположен на плате размерами 46х62 мм (см. Рис 5). Все компоненты – SMD типа, за исключением микроконтроллера, который необходимо разместить в панели для микросхем DIP типа TRS(SCS) – 20.

Настройка приёмника сводится к установке сквозного коэффициента передачи и порога срабатывания компаратора. Для решения первой задачи необходимо подключить осциллограф к выводу 7 DA4.2 и подбором величины R18 установить такой сквозной коэффициент передачи, при котором максимальная амплитуда шумовых выбросов, наблюдаемых на экране, не будет превышать 100 мВ. Затем осциллограф переключается на вывод 1 DA4.1 и подбором резистора (R21) устанавливается нулевой уровень компаратора. Включив передатчик и направив луч лазера на фотодиод, необходимо убедиться в появлении прямоугольных импульсов на выходе компаратора.
Печатная плата приёмника RXD.PCB находится также в папке FILE PCAD .

Повысить помехозащищённость лазерного канала возможно с помощью модуляции сигнала поднесущей частотой 30 – 36 КГц. Модуляция пачек импульсов происходит в передатчике, приёмник же содержит полосовой фильтр и амплитудный детектор.

Схема такого передатчика (передатчик 2) изображена на Рис.6. В отличии от рассмотренного выше передатчика 1 передатчик 2 имеет генератор поднесущей, настроенный на частоту 30 КГц и собранный на слотах DD2.1, DD2.4.. Генератор обеспечивает модулирование пачек положительных импульсов.

Приёмник лазерного канала с поднесущей частотой (приёмник 2) собран на отечественной микросхеме К1056УП1 (DA1). Схема приёмника изображена на Рис.7. Для выделения командных импульсов к выходу микросхемы DA1 10 подключены амплитудный детектор с фильтром низкой частоты и нормализатор импульсов, собранные на логических элементах DD3.1, DD3.2, диодной сборке DA3 и C9, R24. В остальном схема приёмника 2 совпадает со схемой приёмника 1.

Лазерные системы передачи данных предназначены для организации односторонней и дуплексной связи между объектами, находящимися в пределах прямой видимости.
Free Space Optics - Технология FSO, в которую входит - атмосферная оптическая связь, (АОЛС) и беспроводный оптический канал связи (БОКС) – это способ беспроводной передачи информации в коротковолновой части электромагнитного спектра. В ее основе лежит принцип передачи цифрового сигнала через атмосферу (или космическое пространство) путем модуляции излучения (инфракрасном или видимом) и его последующим детектированием оптическим фотоприемным устройством.
Современное состояние беспроводной оптической связи позволяет создавать надежные каналы связи на расстояниях от 100 до 1500-2000 м в условиях атмосферы и до 100 000 км в открытом космосе, например для связи между спутниками. Являясь альтернативным решением по отношению к оптоволокну, атмосферные оптические линии передачи данных (АОЛП) позволяют сверхоперативно сформировать беспроводный оптический канал связи.

1. Атмосферная оптическая линия связи

Бурное развитие телекоммуникационного рынка требует высокоскоростных линий передачи данных. Однако прокладка оптического волокна подразумевает солидные инвестиции, да и в принципе не всегда возможна.
Естественной альтернативой в этом случае являются беспроводные линии связи СВЧ-диапазона, но проблема оперативного получения частотных разрешений резко ограничивает перспективы их применения, особенно в крупных городах.
Другим способом беспроводной связи являются оптические линии связи (лазерная или оптическая связь), использующие топологию «точка–точка» (point-to-point) или в режиме многоточечного доступа (point-to-multipoint). Оптическая связь осуществляется путем передачи информации с помощью электромагнитных волн оптического диапазона. В качестве примера оптической связи можно привести применявшуюся в прошлом передачу сообщений с помощью костров или семафорной азбуки. В 60-е годы XX века были созданы лазеры и появилась возможность построения широкополосных систем оптической связи. Первая атмосферная линии связи (АЛС) в Москве появилась в конце 60-х годов: была пущена телефонная линия между зданием МГУ на Ленинских горах и Зубовской площадью протяженностью более 5 км. Качество передаваемого сигнала полностью соответствовало нормам. В те же годы опыты с АЛС проводились в Ленинграде, Горьком, Тбилиси и Ереване. В целом, испытания были успешными, но на тот момент специалисты посчитали, что плохие погодные условия делают лазерную связь ненадёжной, и она была признана неперспективной.
Использование сигналов с непрерывной (аналоговой) модуляцией, применявшейся в те годы, приводило к ненормированному затуханию оптического сигнала из-за влияния атмосферы.
Современное широкое распространение АЛС во многих странах мира началось в 1998 году, когда были созданы недорогие полупроводниковые лазеры мощностью в 100 мВт и более, а применение цифровой обработки сигнала позволило избежать ненормированного затухания сигнала и выполнять повторную передачу пакета информации при обнаружении ошибки.
В это же время возникла потребность в лазерной связи, так как стали стремительно развиваться информационные технологии. Резко увеличивается число абонентов, требующих предоставления таких телекоммуникационных услуг, как Интернет, IP-телефония, кабельное телевидение с большим числом каналов, компьютерные сети и т. д. В результате возникла проблема "последней мили" (подключение широкополосного канала связи к конечному пользователю). Прокладка новых кабельных сетей требует крупных капиталовложений, а в ряде случаев, особенно в условиях плотной городской застройки, очень трудна или даже невозможна.
Оптимальным решением проблемы последнего участка является использование беспроводных линий передачи.
Преимущества беспроводных линий связи очевидны: это экономичность (не требуется рыть траншеи для укладки кабеля и арендовать землю); низкие эксплуатационные расходы; высокая пропускная способность и качество цифровой связи; быстрое развертывание и изменение конфигурации сети; легкое преодоление препятствий - железных дорог, рек, гор и т.д.
Беспроводная связь в радиодиапазоне ограничена перегруженностью и дефицитом частотного диапазона, недостаточной скрытностью, подверженностью помехам, в том числе и преднамеренным, и с соседних каналов, повышенным энергопотреблением. Кроме того, для радиосвязи необходимо длительное согласование и регистрация с назначением частот органами Госсвязьнадзора РФ, арендная плата за канал, обязательная сертификация радиооборудования Государственной комиссией по радиочастотам. Применение лазерных средств снимает этот сложный вопрос. Это обусловлено тем, что, во-первых, частота излучения лазерных систем связи выходит за пределы диапазона, в котором необходимо согласование (в России), во-вторых, отсутствием практических возможностей их обнаружения и идентификации как средств информационного обмена.
Основные свойства лазерных систем:
практически абсолютная защищенность канала от несанкционированного доступа и, как следствие, высокий уровень помехоустойчивости и помехозащищенности за счет возможности концентрации всей энергии сигнала в углах от долей угловых минут (в лазерных космических системах связи) до десятков градусов (полнодоступные системы связи в помещениях);
высокие информационные емкости каналов (до десятков Гбит/с)
отсутствуют задержки при передаче информации (ping<1ms) как у радиолиний
отсутствие ярко выраженных демаскирующих признаков (в основном, побочных электромагнитных излучений) и возможность дополнительной маскировки, позволяющей скрыть не только передаваемую информацию, но и сам факт информационного обмена.
Кроме того, многие специалисты отмечают биологическую безопасность этих систем, так как средняя плотность мощности излучения в лазерных системах различного назначения примерно в 3 - 6 раз меньше облученности, создаваемой Солнцем, а также простоту принципов их построения и функционирования, относительно малую стоимость по сравнению с традиционными средствами передачи информации аналогичного назначения.
Конструкция:
Лазерная линия связи состоит из двух идентичных станций, устанавливаемых напротив друг друга в пределах прямой видимости (рис. 1).

Рис. 1. Конструкция АЛС

Построение всех станций АЛС практически одинаково: интерфейсный модуль, модулятор, лазер, оптическая система передатчика, оптическая система приемника, демодулятор и интерфейсный модуль приемника. Передатчик представляет собой излучатель на основе импульсного полупроводникового лазерного диода (иногда обычного светодиода). Приемник в большинстве случаев имеет в своей основе скоростной pin фотодиод или лавинный фотодиод.
Передаваемый поток данных от аппаратуры пользователя поступает на интерфейсный модуль и затем на модулятор излучателя. Затем сигнал преобразуется высокоэффективным инжекционным лазером в оптическое излучение ИК-диапазона, оптикой коллимируется в узкий пучок и передается через атмосферу к приемнику. На противоположном пункте принимаемое оптическое излучение фокусируется приемным объективом на площадку высокочувствительного быстродействующего фотоприемника (лавинные или pin-фотодиоды), где детектируется. После дальнейшего усиления и обработки сигнал поступает на интерфейс приемника, а оттуда на аппаратуру пользователя. Аналогичным образом в дуплексном режиме одновременно и независимо идет встречный поток данных.
Так как лазерный луч передается между пунктами связи в атмосфере, то его распространение сильно зависит от метеоусловий, от наличия дыма, пыли и других загрязнений воздуха. Однако, несмотря на указанные проблемы, атмосферная лазерная связь оказалась вполне надежной на расстояниях нескольких километров и особенно перспективной для решения проблемы "последней мили".
Рассмотрим влияние атмосферы на качество беспроводной инфракрасной связи. Распространение лазерного излучения в атмосфере сопровождается целым рядом явлений линейного и нелинейного взаимодействия света со средой. По чисто качественным признакам указанные явления можно разделить на три основные группы:
1. поглощение (непосредственное взаимодействием луча фотонов с молекулами атмосферы);
2. рассеяние на аэрозолях (пыль, дождь, снег, туман);
3. флуктуации излучения на турбулентностях атмосферы.

Связь по лазерному лучу через атмосферу в настоящее время стала реальной. Она обеспечивает передачу большого количества информации с высокой надежностью на расстояниях до 5 км и решает многие труднопоставимые задачи. Поэтому в последнее время возрастает интерес к этому виду связи.

¹Флуктуации (от лат. fluctuatio - колебание), случайные отклонения физических величин от их средних значений.
²Интернет-источник: http://laseritc.ru/?id=93

2. Беспроводной оптический канал связи

Беспроводной оптический канал связи (БОКС) – устройство, осуществляющее передачу данных через атмосферу. Оно предназначено для создания канала передачи данных стандарта Ethernet. БОКС состоит из двух одинаковых приемопередатчиков (оптических труб), устанавливаемых на обеих сторонах канала связи. Каждый блок состоит из приемопередающего модуля, козырька, интерфейсного кабеля (длиной 5 м), системы наведения, кронштейна, блока питания и блока доступа.
Приемопередающий модуль включает передатчик остронаправленного оптического излучения ИК-диапазона (состоящий из инфракрасного полупроводникового светодиода) и приемник - высокочувствительный светодиод. Светодиоды работают на длине волны 0,87 мкм. Несколько примеров отечественных производителей систем БОКС и их характеристики описаны в таблице 1.
Таблица 1. Устройства для создания оптических каналов связи

Название устройства Производитель Стандарты сигналов Дистанция Тип излучателя Цена, долл.
ЛАЛ2+ ИТЦ, Новосибирск G.703, IEEE802.3 от 1000 м до 5000 м Лазер 7030 9230
МОСТ 100/500 Рязанский приборостроительный завод G.703, IEEE802.3, IEEE802.3u 1200-1400 м Лазер 4890
БОКС-10М "Катарсис" IEEE802.3 500 м Светодиод 2450
БОКС-10МПД "Катарсис" G.703, IEEE802.3 1000 м Светодиод 4344

На рисунке 2 наглядно показан БОКС-10М.

Рис. 2. БОКС-10М

Принцип работы:
Рассмотрим процесс передачи данных с использованием оптического канала (рис. 3). Электрический сигнал с порта Ethernet поступает по интерфейсному кабелю на передатчик, где светодиод преобразует его в ИК-излучение, которое проходит через светоделительное устройство и фокусируется объективом в узконаправленный луч. Пройдя через атмосферу, часть излучения попадает на объектив другого приемопередатчика, фокусируется и светоделительным устройством подается на приемник. Приемник преобразует ИК-излучение в электрический сигнал, который по интерфейсному кабелю поступает на порт Ethernet. Источник питания обеспечивает работу передатчика, приемника, блока индикации и системы предотвращения запотевания/обледенения объектива.

Рис. 3. Общий принцип работы устройства семейства БОКС.

Надежность передачи достигается в первую очередь за счет правильного наведения и энергетического запаса. При правильном наведении энергетический запас системы должен быть четырехкратным для моделей БОКС-10МЛ и БОКС-10М (иными словами, закрывая 4/5 линзы объектива, мы имеем надежный 100%-ный канал при хорошей погоде). Модель БОКС-10МПД имеет 16-кратный энергетический запас. В этом случае доступность канала в течение года будет составлять 99,7-99,9%. Чем выше энергетический запас системы, тем выше надежность канала, которая в идеальном случае достигает 99,99%.
Кроме того, надежная работа системы обусловлена методом доступа к среде передачи CSMA/CD, используемым в сетях Ethernet. Любая коллизия - ухудшение погодных условий или появление кратковременной преграды приводит к повторной передаче пакета на физическом уровне, но даже если случится так, что коллизия не будет услышана (это возможно, например, в моделях БОКС-10МЛ и БОКС-10М из-за того, что время переключения с приема на передачу, конечно, и равно 4 мкс) и пакет будет потерян, то протоколы более высокого уровня, работающие с гарантией доставки, отследят это происшествие, и запрос будет повторен.
Соединение через атмосферу никогда не дает 100%-ной гарантии наличия связи, поэтому возможно, что, например, в плохих погодных условиях (сильный снегопад, очень плотный туман, мощный ливень и т.д.) канал не будет работать. Но в этом случае прекращение связи будет временным, и после улучшения условий связь сама восстановится. Чтобы уменьшить вероятность потери связи по метеоусловиям, необходимо ставить модели с большей рабочей дистанцией, что повышает энергетику светового потока и, как следствие, надежность системы в целом.
Еще одно условие надежной и стабильной работы системы - совпадение центра геометрического пятна освещенности передатчика с центром объектива приемника. Ветровые нагрузки, а также механические и сезонные колебания опоры могут вывести систему из зоны пятна освещенности, в результате чего связь исчезнет. Вся конструкция систем и размер пятна освещенности от передатчика согласованы таким образом, чтобы вероятность потери связи из-за вышеперечисленных причин была сведена к минимуму. При наведении решается следующая геометрическая задача: из точки, полученной при грубом наведении, требуется переместить систему в геометрический центр пятна освещенности от светового потока излучателя, окончательно зафиксировав систему наведения в этом положении. С помощью стандартной системы наведения эта задача решается за 35 итераций.
Монтаж:
Приемопередатчики можно устанавливать на поверхности крыш или стен. БОКС монтируется на металлической опоре, которая позволяет регулировать угол наклона по горизонтали и вертикали (рис. 4). Приемопередатчик подключается через специальный блок доступа, в качестве соединительных кабелей обычно используют витую пару категории 5 (UTP). Со стороны оптического канала блок доступа соединяется с приемопередатчиком интерфейсным кабелем, в качестве которого используется обычная витая пара, снабженная специальными разъемами. С другой стороны блок доступа соединяется с компьютером или сетевым устройством (маршрутизатором или коммутатором).
Блок доступа и блок питания приемопередатчика всегда устанавливают внутри помещения рядом друг с другом. Их можно крепить на стене или размещать в таких же стойках, какие используются для оборудования ЛВС.
Для надежной работы необходимо учесть следующие рекомендации:
здания должны находиться в пределах прямой видимости (на всем пути луч не должен встречать непрозрачных препятствий);
лучше, если устройство будет находиться как можно выше над землей и в труднодоступном месте;
при установке системы следует избегать ориентации приемопередатчиков в направлении восток - запад (такое специфическое требование объясняется достаточно просто: солнечные лучи на восходе или закате могут на несколько минут перекрыть излучение, и передача прекратится);
вблизи от места крепления не должно быть моторов, компрессоров и т.д., поскольку вибрация может привести к сдвигу трубы и разрыву соединения.

Рис. 4. Схема системы наведения

Типы соединений:
На рисунке 5 показаны возможные типы соединений БОКС.

Рис. 5. Типы соединений БОКС

В разных источниках встречается большое количество названий оборудования беспроводной передачи данных в инфракрасном диапазоне длин волн. За рубежом данный класс систем принято называть FSO – Free Space Optics, на постсоветском пространстве существует целый ряд обозначений систем беспроводной оптической связи. За основу следует принять аббревиатуру БОКС – беспроводной оптический канал связи, как отраженную в сертификате системы «Связь» (ССС).



Загрузка...