sonyps4.ru

Особенности фреоновых систем охлаждения. Фреоновая система охлаждения от фирмы Kraftway

Часто для построения большого радиатора используют тепловые трубки (англ.: heat pipe ) — герметично запаянные и специальным образом устроенные металлические трубки (обычно медные). Они очень эффективно переносят тепло от одного своего конца к другому: таким образом, даже самые дальние рёбра большого радиатора эффективно работают в охлаждении. Так, например, устроен популярный кулер

Для охлаждения современных производительных графических процессоров применяют те же методы: большие радиаторы, медные сердечники систем охлаждения или полностью медные радиаторы, тепловые трубки для переноса тепла к дополнительным радиаторам:

Рекомендации по выбору здесь такие же: использовать медленные и крупноразмерные вентиляторы, максимально большие радиаторы. Так, например, выглядят популярные системы охлаждения видеокарт и Zalman VF900 :

Обычно вентиляторы систем охлаждения видеокарт лишь перемешивали воздух внутри системного блока, что не очень эффективно, с точки зрения охлаждения всего компьютера. Лишь совсем недавно для охлаждения видеокарт стали применять системы охлаждения, которые выносят горячий воздух за пределы корпуса: первыми стали и, схожая конструкция, от бренда :

Подобные системы охлаждения устанавливаются на самые мощные современные видеокарты (nVidia GeForce 8800, ATI x1800XT и старше). Такая конструкция зачастую более оправдана, с точки зрения правильной организации воздушных потоков внутри корпуса компьютера, чем традиционные схемы. Организация воздушных потоков

Современные стандарты по конструированию корпусов компьютеров среди прочего регламентируют и способ построения системы охлаждения. Начиная ещё с , выпуск которых был начат в 1997 году, внедряется технология охлаждения компьютера сквозным воздушным потоком, направленным от передней стенки корпуса к задней (дополнительно воздух для охлаждения всасывается через левую стенку):

Интересующихся подробностями отсылаю к последним версиям стандарта ATX.

Как минимум один вентилятор установлен в блоке питания компьютера (многие современные модели имеют два вентилятора, что позволяет существенно снизить скорость вращения каждого из них, а, значит, и шум при работе). В любом месте внутри корпуса компьютера можно устанавливать дополнительные вентиляторы для усиления потоков воздуха. Обязательно нужно следовать правилу: на передней и левой боковой стенке воздух нагнетается внутрь корпуса, на задней стенке горячий воздух выбрасывается наружу . Также нужно проконтролировать, чтобы поток горячего воздуха от задней стенки компьютера не попадал напрямик в воздухозабор на левой стенке компьютера (такое случается при определённых положениях системного блока относительно стен комнаты и мебели). Какие вентиляторы устанавливать, зависит в первую очередь от наличия соответствующих креплений в стенках корпуса. Шум вентилятора главным образом определяется скоростью его вращения (см. раздел ), поэтому рекомендуется использовать медленные (тихие) модели вентиляторов. При равных установочных размерах и скорости вращения, вентиляторы на задней стенке корпуса субъективно шумят несколько меньше передних: во-первых, они находятся дальше от пользователя, во-вторых, сзади корпуса расположены почти прозрачные решётки, в то время как спереди - различные декоративные элементы. Часто шум создаётся вследствие огибания элементов передней панели воздушным потоком: если переносимый объём воздушного потока превышает некий предел, на передней панели корпуса компьютера образуются вихревые турбулентные потоки, которые создают характерный шум (он напоминает шипение пылесоса, но гораздо тише).

Выбор компьютерного корпуса

Практически подавляющее большинство корпусов для компьютеров, представленных сегодня на рынке, соответствуют одной из версий стандарта ATX, в том числе и по части охлаждения. Самые дешёвые корпуса не комплектуются ни блоком питания, ни дополнительными приспособлениями. Более дорогие корпуса оснащаются вентиляторами для охлаждения корпуса, реже - переходниками для подключения вентиляторов различными способами; иногда даже специальным контроллером, оснащённым термодатчиками, который позволяет плавно регулировать скорость вращения одного или нескольких вентиляторов в зависимости от температуры основных узлов (см. напр. ). Блок питания включается в комплект не всегда: многие покупатели предпочитают выбирать БП самостоятельно. Из прочих вариантов дополнительного оснащения стоит отметить специальные крепления боковых стенок, жёстких дисков, оптических приводов, карт расширения, которые позволяют собирать компьютер без отвёртки; пылевые фильтры, препятствующие попаданию грязи внутрь компьютера через вентиляционные отверстия; различные патрубки для направления воздушных потоков внутри корпуса. Исследуем вентилятор

Для переноса воздуха в системах охлаждения используют вентиляторы (англ.: fan ).

Устройство вентилятора

Вентилятор состоит из корпуса (обычно в виде рамки), электродвигателя и крыльчатки, закреплённой при помощи подшипников на одной оси с двигателем:

От типа установленных подшипников зависит надёжность вентилятора. Производители заявляют такое типичное время наработки на отказ (количество лет получено из расчёта круглосуточной работы):

С учётом морального старения компьютерной техники (для домашнего и офисного применения это 2-3 года), вентиляторы с шарикоподшипниками можно считать «вечными»: срок их работы не меньше типового срока работы компьютера. Для более серьёзных применений, где компьютер должен работать круглосуточно много лет, стоит подобрать более надёжные вентиляторы.

Многие сталкивались со старыми вентиляторами, в которых подшипники скольжения выработали свой ресурс: вал крыльчатки дребезжит и вибрирует при работе, издавая характерный рычащий звук. В принципе, такой подшипник можно отремонтировать, смазав его твёрдой смазкой, - но многие ли согласятся ремонтировать вентилятор, цена которому всего пара долларов?

Характеристики вентиляторов

Вентиляторы различаются по своему размеру и толщине: обычно в компьютерах встречаются типоразмеры 40×40×10 мм, для охлаждения видеокарт и карманов для жёстких дисков, а также 80×80×25, 92×92×25, 120×120×25 мм для охлаждения корпуса. Также вентиляторы различаются типом и конструкцией устанавливаемых электродвигателей: они потребляют различный ток и обеспечивают разную скорость вращения крыльчатки. От размеров вентилятора и скорости вращения лопастей крыльчатки зависит производительность: создаваемое статическое давление и максимальный объём переносимого воздуха.

Объём переносимого вентилятором воздуха (расход) измеряется в кубометрах в минуту или кубических футах в минуту (CFM, cubic feet per minute). Производительность вентилятора, указанная в характеристиках, измеряется при нулевом давлении: вентилятор работает в открытом пространстве. Внутри корпуса компьютера вентилятор дует в системный блок определенного размера, потому он создаёт в обслуживаемом объёме избыточное давление. Естественно, что объёмная производительность будет приблизительно обратно пропорциональна создаваемому давлению. Конкретный вид расходной характеристики зависит от формы использованной крыльчатки и других параметров конкретной модели. Например, соответствующий график для вентилятора :

Из этого следует простой вывод: чем интенсивнее работают вентиляторы в задней части корпуса компьютера, тем больше воздуха можно будет прокачать через всю систему, и тем эффективнее будет охлаждение.

Уровень шума вентиляторов

Уровень шума, создаваемый вентилятором при работе, зависит от различных его характеристик (подробнее о причинах его возникновения можно прочесть в статье ). Несложно установить зависимость между производительностью и шумом вентилятора. На сайте крупного производителя популярных систем охлаждения , в мы видим: многие вентиляторы одного и того же размера комплектуются разными электродвигателями, которые рассчитаны на различную скорость вращения. Поскольку крыльчатка используется одна и та же, получаем интересующие нас данные: характеристики одного и того же вентилятора при разных скоростях вращения. Составляем таблицу для трёх самых распространённых типоразмеров: толщина 25 мм, и .

Жирным шрифтом выделены самые популярные типы вентиляторов.

Посчитав коэффициент пропорциональности потока воздуха и уровня шума к оборотам, видим почти полное совпадение. Для очистки совести считаем отклонения от среднего: меньше 5%. Таким образом, мы получили три линейные зависимости, по 5 точек каждая. Не Бог весть, какая статистика, но для линейной зависимости этого достаточно: гипотезу считаем подтверждённой.

Объёмная производительность вентилятора пропорциональна количеству оборотов крыльчатки, то же самое справедливо и для уровня шума .

Используя полученную гипотезу, мы можем экстраполировать полученные результаты методом наименьших квадратов (МНК): в таблице эти значения выделены наклонным шрифтом. Нужно, однако, помнить: область применения этой модели ограничена. Исследованная зависимость линейна в некотором диапазоне скоростей вращения; логично предположить, что линейный характер зависимости сохранится и в некоторой окрестности этого диапазона; но при очень больших и очень малых оборотах картина может существенно измениться.

Теперь рассмотрим линейку вентиляторов другого производителя: , и . Составим аналогичную табличку:

Наклонным шрифтом выделены расчётные данные.
Как было сказано выше, при значениях скорости вращения вентилятора, существенно отличающихся от исследованных, линейная модель может быть неверна. Полученные экстраполяцией значения следует понимать как приблизительную оценку.

Обратим внимание на два обстоятельства. Во-первых, вентиляторы GlacialTech работают медленнее, во-вторых, - эффективнее. Очевидно, это результат использования крыльчатки с более сложной формой лопастей: даже при одинаковых оборотах, вентилятор GlacialTech переносит больше воздуха, чем Titan: см. графу прирост . А уровень шума при одинаковых оборотах примерно равен : пропорция соблюдается даже для вентиляторов разных производителей с различной формой крыльчатки.

Нужно понимать, что реальные шумовые характеристики вентилятора зависят от его технической конструкции, создаваемого давления, объёма прокачиваемого воздуха, от типа и формы преград на пути воздушных потоков; то есть, от типа корпуса компьютера. Поскольку корпуса используются самые разные, невозможно напрямую применять измеренные в идеальных условиях количественные характеристики вентиляторов — их можно только сравнивать между собой для разных моделей вентиляторов.

Ценовые категории вентиляторов

Рассмотрим фактор стоимости. Для примера возьмём в одном и том же интернет-магазине и : результаты вписаны в приведённых выше таблицах (рассматривались вентиляторы с двумя шарикоподшипниками). Как видно, вентиляторы этих двух производителей принадлежат к двум разным классам: GlacialTech работают на более низких оборотах, потому меньше шумят; при одинаковых оборотах они эффективнее Titan - но они всегда дороже на доллар-другой. Если нужно собрать наименее шумную систему охлаждения (например, для домашнего компьютера), придётся раскошелиться на более дорогие вентиляторы со сложной формой лопастей. При отсутствии таких строгих требований или при ограниченном бюджете (например, для офисного компьютера), вполне подойдут и более простые вентиляторы. Различный тип подвеса крыльчатки, используемый в вентиляторах (подробнее см. раздел ), также влияет на стоимость: вентилятор тем дороже, чем более сложные подшипники используются.

Ключом разъёма служат скошенные углы с одной из сторон. Провода подключены следующим образом: два центральных - «земля», общий контакт (чёрный провод); +5 В - красный, +12 В - жёлтый. Для питания вентилятора через молекс-разъём используются только два провода, обычно чёрный («земля») и красный (напряжение питания). Подключая их к разным контактам разъёма, можно получить различную скорость вращения вентилятора. Стандартное напряжение в 12 В запустит вентилятор со штатной скоростью, напряжение в 5-7 В обеспечивает примерно половинную скорость вращения. Предпочтительно использовать более высокое напряжение, так как не каждый электромотор в состоянии надёжно запускаться при чересчур низком напряжении питания.

Как показывает опыт, скорость вращения вентилятора при подключении к +5 В, +6 В и +7 В примерно одинакова (с точностью до 10%, что сравнимо с точностью измерений: скорость вращения постоянно изменяется и зависит от множества факторов, вроде температуры воздуха, малейшего сквозняка в комнате и т. п.)

Напоминаю, что производитель гарантирует стабильную работу своих устройств только при использовании стандартного напряжения питания . Но, как показывает практика, подавляющее большинство вентиляторов отлично запускаются и при пониженном напряжении.

Контакты зафиксированы в пластмассовой части разъёма при помощи пары отгибающихся металлических «усиков». Не составляет труда извлечь контакт, придавив выступающие части тонким шилом или маленькой отвёрткой. После этого «усики» нужно опять разогнуть в стороны, и вставить контакт в соответствующее гнездо пластмассовой части разъёма:

Иногда кулеры и вентиляторы оборудуются двумя разъёмами: подключёнными параллельно молекс- и трёх- (или четырёх-) контактным. В таком случае подключать питание нужно только через один из них :

В некоторых случаях используется не один молекс-разъём, а пара «мама-папа»: так можно подключить вентилятор к тому же проводу от блока питания, который запитывает жёсткий диск или оптический привод. Если вы переставляете контакты в разъёме, чтобы получить на вентиляторе нестандартное напряжение, обратите особое внимание на то, чтобы переставить контакты во втором разъёме в точности таком же порядке . Невыполнение этого требования чревато подачей неверного напряжения питания на жёсткий диск или оптический привод, что наверняка приведёт к их мгновенному выходу из строя.

В трёхконтактных разъёмах ключом для установки служит пара выступающих направляющих с одной стороны:

Ответная часть находится на контактной площадке, при подключении она входит между направляющими, также выполняя роль фиксатора. Соответствующие разъёмы для питания вентиляторов находятся на материнской плате (как правило, несколько штук в разных местах платы) или на плате специального контроллера, управляющего вентиляторами:

Помимо «земли» (чёрный провод) и +12 В (обычно красный, реже: жёлтый), есть ещё тахометрический контакт: он используется для контроля скорости вращения вентилятора (белый, синий, жёлтый или зелёный провод). Если вам не нужна возможность контроля над оборотами вентилятора, то этот контакт можно не подключать. Если питание вентилятора подведено отдельно (например, через молекс-разъём), допустимо при помощи трёхконтактного разъёма подключить только контакт контроля за оборотами и общий провод - такая схема часто используется для мониторинга скорости вращения вентилятора блока питания, который запитывается и управляется внутренними схемами БП.

Четырёхконтактные разъёмы появились сравнительно недавно на материнских платах с процессорными разъёмами LGA 775 и socket AM2. Отличаются они наличием дополнительного четвёртого контакта, при этом полностью механически и электрически совместимы с трёхконтактными разъёмами:

Два одинаковых вентилятора с трёхконтактными разъёмами можно подключить последовательно к одному разъёму питания. Таким образом, на каждый из электромоторов будет приходится по 6 В питающего напряжения, оба вентилятора будут вращаться с половинной скоростью. Для такого соединения удобно использовать разъёмы питания вентиляторов: контакты легко извлечь из пластмассового корпуса, придавив фиксирующий «язычок» отвёрткой. Схема подключения приведена на рисунке далее. Один из разъёмов подключается к материнской плате, как обычно: он будет обеспечивать питанием оба вентилятора. Во втором разъёме при помощи кусочка проволоки нужно закоротить два контакта, после чего заизолировать его скотчем или изолентой:

Настоятельно не рекомендуется соединять таким способом два разных электромотора : из-за неравенства электрических характеристик в различных режимах работы (запуск, разгон, стабильное вращение) один из вентиляторов может не запускаться вовсе (что чревато выходом электромотора из строя) или требовать для запуска чрезмерно большой ток (чревато выходом из строя управляющих цепей).

Часто для ограничения скорости вращения вентилятора примеряются постоянные или переменные резисторы, включенные последовательно в цепи питания. Изменяя сопротивление переменного резистора, можно регулировать скорость вращения: именно так устроены многие ручные регуляторы скорости вентиляторов. Конструируя подобную схему нужно помнить, что, во-первых, резисторы греются, рассеивая часть электрической мощности в виде тепла, - это не способствует более эффективному охлаждению; во-вторых, электрические характеристики электродвигателя в различных режимах работы (запуск, разгон, стабильное вращение) не одинаковы, параметры резистора нужно подбирать с учётом всех этих режимов. Чтобы подобрать параметры резистора, достаточно знать закон Ома; использовать нужно резисторы, рассчитанные на ток, не меньший, чем потребляет электродвигатель. Однако лично я не приветствую ручное управление охлаждением, так как считаю, что компьютер - вполне подходящее устройство, чтобы управлять системой охлаждения автоматически, без вмешательства пользователя.

Контроль и управление вентиляторами

Большинство современных материнских плат позволяет контролировать скорость вращения вентиляторов, подключённых к некоторым трёх- или четырёхконтактным разъёмам. Более того, некоторые из разъёмов поддерживают программное управление скоростью вращения подключённого вентилятора. Не все размещённые на плате разъёмы предоставляют такие возможности: например, на популярной плате Asus A8N-E есть пять разъёмов для питания вентиляторов, контроль над скоростью вращения поддерживают только три из них (CPU, CHIP, CHA1), а управление скоростью вентилятора - только один (CPU); материнская плата Asus P5B имеет четыре разъёма, все четыре поддерживают контроль за скоростью вращения, управление скоростью вращения имеет два канала: CPU, CASE1/2 (скорость двух корпусных вентиляторов изменяется синхронно). Количество разъёмов с возможностями контроля или управления скоростью вращения зависит не от используемого чипсета или южного моста, а от конкретной модели материнской платы: модели разных производителей могут различаться в этом отношении. Часто разработчики плат намеренно лишают более дешёвые модели возможностей управления скоростью вентиляторов. Например, материнская плата для процессоров Intel Pentiun 4 Asus P4P800 SE способна регулировать обороты кулера процессора, а её удешевлённый вариант Asus P4P800-X - нет. В таком случае можно использовать специальные устройства, которые способны управлять скоростью нескольких вентиляторов (и, обычно, предусматривают подключение целого ряда температурных датчиков) - их появляется всё больше на современном рынке.

Контролировать значения скорости вращения вентиляторов можно при помощи BIOS Setup. Как правило, если материнская плата поддерживает изменение скорости вращения вентиляторов, здесь же в BIOS Setup можно настроить параметры алгоритма регулирования скорости. Набор параметров различен для разных материнских плат; обычно алгоритм использует показания термодатчиков, встроенных в процессор и материнскую плату. Существует ряд программ для различных ОС, которые позволяют контролировать и регулировать скорость вентиляторов, а также следить за температурой различных компонентов внутри компьютера. Производители некоторых материнских плат комплектуют свои изделия фирменными программами для Windows: Asus PC Probe, MSI CoreCenter, Abit µGuru, Gigabyte EasyTune, Foxconn SuperStep и т.д. Распространено несколько универсальных программ, среди них: (shareware, $20-30), (распространяется бесплатно, не обновляется с 2004 года). Самая популярная программа этого класса - :

Эти программы позволяют следить за целым рядом температурных датчиков, которые устанавливаются в современные процессоры, материнские платы, видеокарты и жёсткие диски. Также программа отслеживает скорость вращения вентиляторов, которые подключены к разъёмам материнской платы с соответствующей поддержкой. Наконец, программа способна автоматически регулировать скорость вентиляторов в зависимости от температуры наблюдаемых объектов (если производитель системной платы реализовал аппаратную поддержку этой возможности). На приведённом выше рисунке программа настроена на управление только вентилятором процессора: при невысокой температуре ЦП (36°C) он вращается со скоростью около 1000 об/мин, - это 35% от максимальной скорости (2800 об/мин). Настройка таких программ сводится к трём шагам:

  1. определению, к каким из каналов контроллера материнской платы подключены вентиляторы, и какие из них могут управляться программно;
  2. указанию, какие из температур должны влиять на скорость различных вентиляторов;
  3. заданию температурных порогов для каждого датчика температуры и диапазона рабочих скоростей для вентиляторов.

Возможностями по мониторингу также обладают многие программы для тестирования и тонкой настройки компьютеров: , и т. д.

Многие современные видеокарты также позволяют регулировать обороты вентилятора системы охлаждения в зависимости от нагрева графического процессора. При помощи специальных программ можно даже изменять настройки механизма охлаждения, снижая уровень шума от видеокарты в отсутствие нагрузки. Так выглядят в программе оптимальные настройки для видеокарты HIS X800GTO IceQ II :

Пассивное охлаждение

Пассивными системами охлаждения принято называть такие, которые не содержат вентиляторов. Пассивным охлаждением могут довольствоваться отдельные компоненты компьютера, при условии, что их радиаторы помещены в достаточный поток воздуха, создаваемый «чужими» вентиляторами: например, микросхема чипсета часто охлаждается большим радиатором, расположенным вблизи места установки процессорного кулера. Популярны также пассивные системы охлаждения видеокарт, например, :

Очевидно, чем больше радиаторов приходится продувать одному вентилятору, тем большее сопротивление потоку ему нужно преодолеть; таким образом, при увеличении количества радиаторов часто приходится увеличивать скорость вращения крыльчатки. Эффективнее использовать много тихоходных вентиляторов большого диаметра, а пассивные системы охлаждения предпочтительнее избегать. Несмотря на то, что выпускаются пассивные радиаторы для процессоров, видеокарты с пассивным охлаждением, даже блоки питания без вентиляторов (FSP Zen), попытка собрать компьютер совсем без вентиляторов из всех этих компонент наверняка приведёт к постоянным перегревам. Потому, что современный высокопроизводительный компьютер рассеивает слишком много тепла, чтобы охлаждаться только лишь пассивными системами. Из-за низкой теплопроводности воздуха, сложно организовать эффективное пассивное охлаждение для всего компьютера, разве что превратить в радиатор весь корпус компьютера, как это сделано в :

Сравните корпус-радиатор на фото с корпусом обычного компьютера!

Возможно, полностью пассивного охлаждения будет достаточно для маломощных специализированных компьютеров (для доступа в интернет, для прослушивания музыки и просмотра видео, и т.п.) Охлаждение экономией

В старые времена, когда энергопотребление процессоров не достигло ещё критических величин - для их охлаждения хватало небольшого радиатора - вопрос «что будет делать компьютер, когда делать ничего не нужно?» решался просто: пока не надо выполнять команды пользователя или запущенные программы, ОС даёт процессору команду NOP (No OPeration, нет операции). Эта команда заставляет процессор выполнить бессмысленную безрезультатную операцию, результат которой игнорируется. На это тратится не только время, но и электроэнергия, которая, в свою очередь, преобразуется в тепло. Типичный домашний или офисный компьютер в отсутствие ресурсоёмких задач загружен, как правило, всего на 10% - любой может удостовериться в этом, запустив Диспетчер задач Windows и понаблюдав за Хронологией загрузки ЦП (Центрального Процессора). Таким образом, при старом подходе около 90% процессорного времени улетало на ветер: ЦП занимался выполнением никому не нужных команд. Более новые ОС (Windows 2000 и далее) в аналогичной ситуации поступают разумнее: при помощи команды HLT (Halt, останов) процессор полностью останавливается на короткое время - это, очевидно, позволяет снизить потребление энергии и температуру процессора при отсутствии ресурсоёмких задач.

Компьютерщики со стажем могут припомнить целый ряд программ для «программного охлаждения процессора»: будучи запущенными под управлением Windows 95/98/ME они останавливали процессор с помощью HLT, вместо повторения бессмысленных NOP, чем снижали температуру процессора в отсутствие вычислительных задач. Соответственно, использование таких программ под управлением Windows 2000 и более новых ОС лишено всякого смысла.

Современные процессоры потребляют настолько много энергии (а это значит: рассеивают её в виде тепла, то есть греются), что разработчики создали дополнительные технические по борьбе с возможным перегревом, а также средства, повышающие эффективность механизмов экономии при простое компьютера.

Тепловая защита процессора

Для защиты процессора от перегрева и выхода из строя, применяется так называемый thermal throttling (обычно не переводят: троттлинг). Суть этого механизма проста: если температура процессора превышает допустимую, процессор принудительно останавливается командой HLT, чтобы кристалл имел возможность остыть. В ранних реализациях этого механизма через BIOS Setup можно было настраивать, какую долю времени процессор будет простаивать (параметр CPU Throttling Duty Cycle: xx%); новые реализации «тормозят» процессор автоматически до тех пор, пока температура кристалла не опустится до допустимого уровня. Безусловно, пользователь заинтересован в том, чтобы процессор не прохлаждался (буквально!), а выполнял полезную работу — для этого нужно использовать достаточно эффективную систему охлаждения. Проверить, не включается ли механизм тепловой защиты процессора (троттлинга) можно при помощи специальных утилит, например :

Минимизация потребления энергии

Практически все современные процессоры поддерживают специальные технологии для снижения потребления энергии (и, соответственно, нагрева). Разные производители называют такие технологии по-разному, например: Enhanced Intel SpeedStep Technology (EIST), AMD Cool’n’Quiet (CnQ, C&Q) - но работают они, по сути, одинаково. Когда компьютер простаивает, и процессор не загружен вычислительными задачами, уменьшается тактовая частота и напряжение питания процессора. И то, и другое уменьшает потребление процессором электроэнергии, что, в свою очередь, сокращает тепловыделение. Как только загрузка процессора увеличивается, автоматически восстанавливается полная скорость процессора: работа такой схемы энергосбережения полностью прозрачна для пользователя и запускаемых программ. Для включения такой системы нужно:

  1. включить использование поддерживаемой технологии в BIOS Setup;
  2. установить в используемой ОС соответствующие драйверы (обычно это драйвер процессора);
  3. в Панели управления Windows (Control Panel), в разделе Электропитание (Power Management), на закладке Схемы управления питанием (Power Schemes) выбрать в списке схему Диспетчер энергосбережения (Minimal Power Management).

Например, для материнской платы Asus A8N-E с процессором нужно (подробные инструкции приведены в Руководстве пользователя):

  1. в BIOS Setup в разделе Advanced > CPU Configuration > AMD CPU Cool & Quiet Configuration параметр Cool N"Quiet переключить в Enabled; а в разделе Power параметр ACPI 2.0 Support переключить в Yes;
  2. установить ;
  3. см. выше.

Проверить, что частота процессора изменяется, можно при помощи любой программы, отображающей тактовую частоту процессора: от специализированных типа , вплоть до Панели управления Windows (Control Panel), раздел Система (System):


AMD Cool"n"Quiet в действии: текущая частота процессора (994 МГц) меньше номинальной (1,8 ГГц)

Часто производители материнских плат дополнительно комплектуют свои изделия наглядными программами, наглядно демонстрирующими работу механизма изменения частоты и напряжения процессора, например, Asus Cool&Quiet:

Частота процессора изменяется от максимальной (при наличии вычислительной нагрузки), до некоторой минимальной (при отсутствии загрузки ЦП).

Утилита RMClock

Во время разработки набора программ для комплексного тестирования процессоров , была создана (RightMark CPU Clock/Power Utility): она предназначена для наблюдения, настройки и управления энергосберегающими возможностями современных процессоров. Утилита поддерживает все современные процессоры и самые разные системы управления потреблением энергии (частотой, напряжением…) Программа позволяет наблюдать за возникновением троттлинга, за изменением частоты и напряжения питания процессора. Используя RMClock, можно настраивать и использовать всё, что позволяют стандартные средства: BIOS Setup, управление энергопотреблением со стороны ОС при помощи драйвера процессора. Но возможности этой утилиты гораздо шире: с её помощью можно настраивать целый ряд параметров, которые не доступны для настройки стандартным образом. Особенно это важно при использовании разогнанных систем, когда процессор работает быстрее штатной частоты.

Авторазгон видеокарты

Подобный метод используют и разработчики видеокарт: полная мощность графического процессора нужна только в 3D-режиме, а с рабочим столом в 2D-режиме современный графический чип справится и при пониженной частоте. Многие современные видеокарты настроены так, чтобы графический чип обслуживал рабочий стол (2D-режим) с пониженной частотой, энергопотреблением и тепловыделением; соответственно, вентилятор охлаждения крутится медленнее и шумит меньше. Видеокарта начинает работать на полную мощность только при запуске 3D-приложений, например, компьютерных игр. Аналогичную логику можно реализовать программно, при помощи различных утилит по тонкой настройке и разгону видеокарт. Для примера, так выглядят настройки автоматического разгона в программе для видеокарты HIS X800GTO IceQ II :

Тихий компьютер: миф или реальность?

С точки зрения пользователя, достаточно тихим будет считаться такой компьютер, шум которого не превышает окружающего шумового фона. Днём, с учётом шума улицы за окном, а также шума в офисе или на производстве, компьютеру позволительно шуметь чуть больше. Домашний компьютер, который планируется использовать круглосуточно, ночью должен вести себя потише. Как показала практика, практически любой современный мощный компьютер можно заставить работать достаточно тихо. Опишу несколько примеров из моей практики.

Пример 1: платформа Intel Pentium 4

В моём офисе используется 10 компьютеров Intel Pentium 4 3,0 ГГц со стандартными процессорными кулерами. Все машины собраны в недорогих корпусах Fortex ценой до $30, установлены блоки питания Chieftec 310-102 (310 Вт, 1 вентилятор 80?80?25 мм). В каждом из корпусов на задней стенке был установлен вентилятор 80?80?25 мм (3000 об/мин, шум 33 дБА) - они были заменены вентиляторами с такой же производительностью 120?120?25 мм (950 об/мин, шум 19 дБА). В файловом сервере локальной сети для дополнительного охлаждения жёстких дисков на передней стенке установлены 2 вентилятора 80?80?25 мм , подключённые последовательно (скорость 1500 об/мин, шум 20 дБА). В большинстве компьютеров использована материнская плата Asus P4P800 SE , которая способна регулировать обороты кулера процессора. В двух компьютерах установлены более дешёвые платы Asus P4P800-X , где обороты кулера не регулируются; чтобы снизить шум от этих машин, кулеры процессоров были заменены (1900 об/мин, шум 20 дБА).
Результат : компьютеры шумят тише, чем кондиционеры; их практически не слышно.

Пример 2: платформа Intel Core 2 Duo

Домашний компьютер на новом процессоре Intel Core 2 Duo E6400 (2,13 ГГц) со стандартным процессорным кулером был собран в недорогом корпусе aigo ценой $25, установлен блок питания Chieftec 360-102DF (360 Вт, 2 вентилятора 80×80×25 мм). В передней и задней стенках корпуса установлены 2 вентилятора 80×80×25 мм , подключённые последовательно (скорость регулируется, от 750 до 1500 об/мин, шум до 20 дБА). Использована материнская плата Asus P5B , которая способна регулировать обороты кулера процессора и вентиляторов корпуса. Установлена видеокарта с пассивной системой охлаждения.
Результат : компьютер шумит так, что днём его не слышно за обычным шумом в квартире (разговоры, шаги, улица за окном и т. п.).

Пример 3: платформа AMD Athlon 64

Мой домашний компьютер на процессоре AMD Athlon 64 3000+ (1,8 ГГц) собран в недорогом корпусе Delux ценой до $30, сначала содержал блок питания CoolerMaster RS-380 (380 Вт, 1 вентилятор 80?80?25 мм) и видеокарту GlacialTech SilentBlade GT80252BDL-1 , подключенными к +5 В (около 850 об/мин, шум меньше 17 дБА). Используется материнская плата Asus A8N-E , которая способна регулировать обороты кулера процессора (до 2800 об/мин, шум до 26 дБА, в режиме простоя кулер вращается около 1000 об/мин и шумит меньше 18 дБА). Проблема этой материнской платы: охлаждение микросхемы чипсета nVidia nForce 4, Asus устанавливает небольшой вентилятор 40?40?10 мм со скоростью вращения 5800 об/мин, который достаточно громко и неприятно свистит (кроме того, вентилятор оборудован подшипником скольжения, имеющим очень небольшой ресурс). Для охлаждения чипсета был установлен кулер для видеокарт с медным радиатором , на его фоне отчётливо слышны щелчки позиционирования головок жёсткого диска. Работающий компьютер не мешает спать в той же комнате, где он установлен.
Недавно видеокарта была заменена HIS X800GTO IceQ II , для установки которой потребовалось доработать радиатор чипсета : отогнуть рёбра таким образом, чтобы они не мешали установке видеокарты с большим вентилятором охлаждения. Пятнадцать минут работы плоскогубцами - и компьютер продолжает работать тихо даже с довольно мощной видеокартой.

Пример 4: платформа AMD Athlon 64 X2

Домашний компьютер на процессоре AMD Athlon 64 X2 3800+ (2,0 ГГц) с процессорным кулером (до 1900 об/мин, шум до 20 дБА) собран в корпусе 3R System R101 (в комплекте 2 вентилятора 120×120×25 мм, до 1500 об/мин, установлены на передней и задней стенках корпуса, подключены к штатной системе мониторинга и автоматического управления вентиляторами), установлен блок питания FSP Blue Storm 350 (350 Вт, 1 вентилятор 120×120×25 мм). Использована материнская плата (пассивное охлаждение микросхем чипсета), которая способна регулировать обороты кулера процессора. Использована видеокарта GeCube Radeon X800XT , система охлаждения заменена на Zalman VF900-Cu . Для компьютера был выбран жёсткий диск , известный низким уровнем создаваемого шума.
Результат : компьютер работает так тихо, что слышен шум электродвигателя жёстких дисков. Работающий компьютер не мешает спать в той же комнате, где он установлен (соседи за стенкой разговаривают и того громче).

Думаем, никто не будет спорить с тем, что качественное охлаждение для видеокарты является одним из главных залогов ее долговечности и производительности. 3D-ускоритель - самый "горячий" компонент современного персонального компьютера. С развитием технологий появляются современные видеокарты, способные работать с самыми требовательными программами и играми. Однако с ростом производительности увеличивается и их энергопотребление, а также тепловыделение. Рассмотрим же подробно охлаждение для видеокарт.

Введение

Для видеокарты уберегает от перегрева графический процессор ускорителя. Прошли те времена, когда нагрев компонентов системного блока практически отсутствовал. Постепенно для пользователя становятся нормальными те температуры, которые не так давно считались критическими. Недавно для нормального охлаждения видеокарты хватало лишь радиатора. Сегодня, конечно, есть еще ускорители, которые выделяют мало тепла, но и производительностью они похвастаться не в силах. Все чаще производители наделяют своих детищ массивными кулерами с несколькими вентиляторами и внушительным радиатором. Пользователи, которые выжимают из своего компьютера максимум, устанавливают не только охлаждение для видеокарт, но и для других компонентов. Нередко встречаются материнские платы с кулером, да и сами кейсы производитель стал поставлять с дополнительными вентиляторами. Лишними они уж точно не будут, учитывая температуры современных компонентов. Сейчас даже популярна программа для охлаждения видеокарты, которая снижает нагрузку на графическое ядро. Правда, эффективность утилит довольно низка.

Виды систем охлаждения

Как правило, система охлаждения для видеокарты представляет собой каркас, на который крепится радиатор и один или несколько вентиляторов. Производитель при этом нередко экономит на деталях. Исключением являются дорогие решения для выполнения сложных задач. Дешевое охлаждение для видеокарт неплохо сбивает температуру, но очень шумит. Есть, конечно, системы, которые бесшумны в работе и не теряют эффективность.

Сегодня производители кейсов предлагают модель, которая выполнена из алюминия. Все компоненты системного блока становятся более холодными, в их число входит видеокарта. Пассивно охлаждение, при котором используется обычный радиатор, в чем-то схоже с этой системой.

Фреоновое охлаждение

Видеокарты с пассивным охлаждением уходят в прошлое, но не многие пользователи хотят променять работу в тишине на хорошую производительность системы с ревом кулера. Компании нашли выход - фреоновое охлаждение. Стоит сказать, что оно поставляется в составе некоторых системных блоков, а не видеокарт. Само собой, такие кейсы стоят дороже, чем обычные представители. При этом вентилятор охлаждения видеокарты и радиатор может использоваться дополнительно.

Фреоновая система охлаждения для неопытного пользователя кажется очень сложной и непонятной. На самом же деле, здесь все довольно просто. Применяется замкнутый контур, в котором находится газ (фреон). В процессе эксплуатации он переходит из одного агрегатного состояния в другое, охлаждая, таким образом, площадку, к которой подсоединен. Для любителей подобных систем весь процесс рассмотрим подробнее.

Первым делом фреон, находясь в жидком, охлажденном состоянии и низком давлении, поступает к контактной площадке. Затем он переходит в газообразное состояние, чему способствует выделяемое тепло. В составе системы есть небольшой компрессор, который поднимает давление в трубках, но фреон еще не перешел в жидкое состояние. Для этого используется вентилятор и небольшой радиатор, который понижают температуру фреона. Впоследствии происходит конденсация и превращение в жидкость. Заключением цикла становится проход фреона через клапан, где падает его давление. Подобная система служит не только, как охлаждение видеокарт Nvidia и Radeon, но и используется в холодильниках.

Система неплоха, но работает с некоторыми оговорками, которые отталкивают многих пользователей от покупки. Функционировать фреоновое охлаждение может не с каждым процессором, а лишь с моделями, энергопотребление которых выше 75 Вт. Причиной этому то, что при слишком низком выделении тепла может образовываться конденсат, который на пользу компонентов системного блока точно не пойдет. Подойдет, как отличное охлаждение видеокарт Radeon, славящихся своим тепловыделением.

для видеокарты

Сегодня популярным способом охлаждения стали жидкостные системы. Устроена подобная система довольно просто. Используется несколько трубок, по которым циркулирует жидкость (чаще всего вода). Контактируя с компонентами системами, производит отвод излишек тепла. Водяное охлаждение более эффективно, занимает меньше места в системном блоке, а также может похвастаться бесшумной работой. Этим системам отдают предпочтения звуковые студии, которым важна тишина. Не жалеют денег и любители современных видеоигр, дабы получить максимальную производительность. Кстати, подобные системы используются не только в персональных компьютерах. Чаще всего для охлаждения ядерных реакторов используется жидкостный теплоноситель. Большая часть двигателей автомобилей используют схожую систему.

Несмотря на стоимость, пользователи все чаще отдают предпочтение именно жидкостной системе. Отлично подойдет, как охлаждение видеокарты GTX-класса и схожих моделей.

Процесс работы

Вообще, какая бы то ни была система охлаждения, используется один общий принцип - тепло от более горячего тела переносится к более холодному. Первым выступает видеокарта или процессор, вторым - радиатор. Рано или поздно происходит прогрев охлаждаемого компонента до температуры радиатора. В этом случае их температуры становятся равны, а отвод тепла прекращается, что может вызвать перегрев.

Чтобы не случилось перегрева компонента, организуется подвод охлаждающего вещества. Его принято называть хладагентом или теплоносителем. В активной системе, которая выполняет, например, охлаждение видеокарты R9 (да и многих других), хладагентом является воздух. В других системах может применяться газ или жидкость.

Понятное дело, что в обычной комнате воздуха достаточно для нормального охлаждения. Однако серверные комнаты этим похвастаться не могут. В небольшом помещении собрано огромное количество техники, которая греется, поэтому приходится осуществлять дополнительную вентиляцию.

Существует ряд механизмов отвода тепла от нагреваемого объекта.

  • Теплопроводность. Способность вещества проводить тепло внутри своего объема. Самый распространенный механизм, используемый в современных системах охлаждения. В этом случае создается контакт некого вещества с компонентом, который подвергается охлаждению. Как несложно догадаться, лучшим теплопроводником являются металлы. На основе их изготавливаются теплообменники и радиаторы кулеров. Лучше всего проводимость обеспечивается серебром, на втором месте - медь, а затем - алюминий. Чаще всего производители применяют медь. Алюминий используется в самых дешевых системах охлаждениях.
  • Конвективный теплообмен с хладагентом. Для обеспечения механизма необходимо обеспечить хорошую циркуляцию воздуха внутри кейса. Поэтому рекомендуется использовать свободные системные блоки, в которых можно на удалении друг от друга располагать компоненты. Нежелательно размещать кейс рядом с источниками тепла.
  • Механизм, показатели которого ничтожны в системах охлаждения.

Обратная сторона медали

Прочитав выше представленный материал, пользователь подумает: сложного ничего нет - достаточно взять побольше радиатор, да организовать хороший поток воздуха. Это, конечно, все так. Но есть еще два фактора: стоимость и шум. Цена на системы охлаждения растет с развитием графических ускорителей, которым требуется все больше энергии. В результате этого растет и тепловыделение. Как несложно догадаться, чтобы отводить все тепло, нужны более габаритные радиаторы и целый набор вентиляторов. Чем больше система охлаждения, тем больше необходимо материалов для ее изготовления. От этого напрямую зависит ее цена.

Как правило, имеют алюминиевые радиаторы и один вентилятор. Такие системы работают довольно эффективно, но создают много шума. Конечно, более дорогие модели получают более эффективную систему, которая может похвастаться тихой работой, а ведь именно от этого зависит комфорт пользователя.

Наиболее бесшумно работает жидкостное охлаждение. Однако оно стоит довольно дорого, поэтому его установка целесообразна лишь в дорогие системы. Со временем такие системы, конечно же, будут получать большее распространение и доступную стоимость. Возможно, даже смогут вытеснить привычные кулеры на второй план. И все же, говорить об этом пока рановато. Поэтому рассмотрим самые интересные системы охлаждения, которые заслужили популярность среди пользователей.

Aerocool VM-102

Начнем, пожалуй, с модели, которая предназначена для бюджетного сегмента видеокарт с низким потреблением и тепловыделением. Представляет он собой массивный радиатор, основой которого является алюминий. Отдельным слоем присутствует и медь для более эффективного охлаждения. Имеются две трубки. Конечно, охладить игровую видеокарту, несмотря на свою массивность, радиатор не сможет. А вот с низшим классом адаптеров неплохо справляется, обеспечивая комфортную работу в тишине. Перед приобретением следует убедиться в том, что он влезет в кейс, и не будет мешать другим компонентам.

Arctic Cooling NV Silencer 5 rev.2.0

Перейдем к более эффективным системам. Arctic Cooling NV разработан компанией из Швейцарии, которая славится тихими и качественными кулерами. Модель появилась в продаже довольно давно, и позиционировалась в качестве решения для GT. Изначально предполагалось, что будет использоваться только с продукцией "зеленых". Однако пользователи выяснили, что Arctic Cooling NV отлично крепится и на многие адаптеры от AMD.

Выполнена система довольно типично. В основании используется медь, на которой размещены ребра радиатора из алюминия. Корпус воздуховода изготовлен из пластика. Выводить теплый воздух за пределы кейса приходится довольно большому кулеру. Arctic Cooling NV обеспечивает довольно неплохое охлаждение, но, как и многие собратья, не выделяется тихой работой.

Arctic Cooling Accelero X2

Достаточно оригинальное решение для видеокарт Radeon, а именно серии X1800-X1950. В качестве основания используется тонкая медная пластинка, от которой отходит две трубки. Они обеспечивают большую эффективность при охлаждении. из алюминия. Все это спрятано под пластиковым корпусом. На лицевой стороне расположен вентилятор турбинного типа. Существенным отличием от линейки Silencer является то, что Accelero не выводит воздух за пределы корпуса, а рассеивает его внутри.

Система охлаждения работает очень тихо даже на максимальных оборотах вентилятора. Неплохо кулер справляется и с отводом тепла от платы. Наверное, поэтому продукция швейцарской компании пользуется таким спросом у именитых производителей видеокарт.

Revoltec Graphic Freezer PRO

Габаритная и мощная система охлаждения. Основание выполнено из меди. От него отходит две трубки, которые призваны выводить тепло на радиатор, изготовленный из алюминия. Кожух выполнен из пластика, а в центре располагается большой вентилятор, который призван на огромных оборотах обдувать плату. Отлично охлаждает GeForce 7900 GS, но не способен справиться с X1950 XTX. На минимальных нагрузках работает довольно тихо, что обеспечивает комфортную работу в тишине. При серьезных нагрузках звук кулера становится очень даже громким. Особенно это заметно, если использовать систему охлаждения с видеокартами, у которых высокое тепловыделение.

Thermaltake Schooner

Внешний вид модели напоминает типичную пассивную систему охлаждения. Однако Thermaltake Schooner имеет некоторые особенность. От радиатора выходят две тепловые трубки, на конце которых есть небольшая Такая конструкция обеспечивает лучший вывод тепла в плохо вентилируемом кейсе. Также, стоит отметить, сборку, которая предусматривает соединение тепловых трубок специальными пластинами. Работает система следующим образом: трубки забирают тепло, передают его на медную пластину и только после этого на главный радиатор. По всей видимости, многоступенчатая конструкция, позволяет добиться наибольшей эффективности. Само собой, отличается тихой работой.

Zalman VF700-Cu

Одна из самых известных систем охлаждения, которая получила массу копий от китайских разработчиков. Уже корпус привлекает внимание покупателя. Выполнен он в необычной форме, которая нацелена не столь на красоту, сколько на эффективность. Радиатор представлен медными ребрами, которые отходят от центра к краям. Внешне он напоминает веер. Обдувается система довольно большим вентилятором. Несмотря на год выпуска, со счетов ее списывать рано. Неплохо охлаждает даже адаптеры с высоким тепловыделением. Отличается довольно низким уровнем шума. Неплохая сборка и низкая цена делает ее главным претендентом для приобретения в бюджетном сегменте.

24.08.2016, СР, 14:42, Мск

От правильного выбора системы охлаждения ЦОДа напрямую зависит его ключевая характеристика – надежность. Существует несколько способов отвода тепла из дата-центра, но мы рассмотрим только два наиболее распространенных из них – это «фреоновые кондиционеры» (с воздушным охлаждением) и «водяные кондиционеры» (получающие холод от чиллеров). Итак, «фреон» или «вода»?

Как и любая сложная техническая область, тема теплоотвода в ЦОДах обросла большим количеством мифов и предубеждений.

Первая группа мифов говорит о том, что «вода представляет опасность для ИТ-оборудования».

Миф 1: водяное охлаждение – это когда вода внутри сервера

Это не совсем верно: существуют серверные платформы с прямым охлаждением при помощи воды, но это пока экзотика. Наиболее распространенный способ отвода тепла от ИТ-оборудования – при помощи принудительно прогоняемого через его радиаторы воздуха. Описанные выше способы отвода тепла описывают процесс на уровне ЦОДа в целом, а не на уровне единиц ИТ-оборудования.

Миф 2: вода в серверном помещении – это недопустимый риск

Существует множество технических решений по недопущению попадания воды в ИТ-оборудование при протечке. Для этого надо проработать возможные сценарии аварий и принять соответствующие проектные решения.

Вторая группа мифов: водяная система очень дорогая и сложная в эксплуатации, а фреоновая привычнее и эффективнее.

Миф 3: водяная система – это слишком сложно и дорого

Необходимо рассматривать конкретные случаи. Возможна ситуация, когда наоборот – фреоновая система будет слишком сложной и дорогой, особенно если рассматривать не только строительство ЦОД, но и его обслуживание.

Миф 4: водяное охлаждение – это для больших ЦОДов

Да, у вас может быть обычная серверная комната на 20 стоек. Но необходимо произвести оценку, ведь может оказаться, что для этой серверной потребуются 20 отдельных фреоновых кондиционеров, поэтому водяная система будет выгоднее при эксплуатации.

Третья группа мифов порождена незнанием устройства систем охлаждения.

Миф 5: водяная система питается от магистрали водоснабжения

Нет, водяные системы питаются от чиллера специально подготовленной очищенной охлажденной водой или водно-гликолевой смесью с добавлением ингибиторов коррозии.

Миф 6: можно использовать бытовой фреоновый кондиционер

Идея «дуть на оборудование холодом» от бытового кондиционера – следствие неправильного понимания задачи. Необходимо не просто подавать охлажденный воздух на оборудование, а отводить избыточное тепло, чтобы обеспечить соответствующие температурные условия эксплуатации. При этом охлажденный воздух выступает всего лишь в роли теплоносителя для перемещения определенного количества теплоты из помещения ЦОДа на улицу. Как известно из школьного курса физики, количество теплоты равняется удельной теплоемкости, помноженной на массу вещества и на разницу температур до нагрева и после нагрева. Если масса вещества (объем подаваемого из кондиционера воздуха) будет значительно меньше необходимого, то не спасет даже понижение температуры воздуха. Бытовые кондиционеры имеют в несколько раз меньшую производительность подачи воздуха, чем прецизионные. К этому можно добавить, что часть их мощности тратится на осушение воздуха (для создания комфортных условий для человека) и что они имеют малый ресурс (не предназначены для постоянной работы круглые сутки во все времена года).

Нам, людям третьего тысячелетия, ни к чему прозябать среди мифов и заблуждений. Мы можем оценить ситуацию в свете знаний. Ограничимся основными свойствами обоих вариантов, и рассмотрим их более внимательно.

Преимущества фреоновых систем

Относительная простота системы

По сути, фреоновый кондиционер, как и домашняя сплит-система, состоит из двух половинок: собственно кондиционера, устанавливаемого в охлаждаемом помещении, и внешнего блока, который размещается на улице. Обычно в самом кондиционере расположены вентиляторы, охлаждающий воздух теплообменник (испаритель), компрессор и управляющая электроника. Дополнительно в кондиционере могут быть пароувлажнитель, поднимающий влажность воздуха до требуемой, воздушные фильтры, и т. д. Внешний блок прецизионного кондиционера устроен совсем просто: только теплообменник, отдающий тепло в окружающий его воздух, вентилятор, и автоматика, этим вентилятором управляющая.

Соединяются кондиционер и его внешний блок парой медных трубок небольшого диаметра (обычно 15-20 миллиметров, редко больше), которые могут быть проложены даже в стесненных условиях.

Длительность монтажа одного кондиционера обычно не превышает двух-трех дней. Вне зависимости от мощности кондиционера принцип его действия не изменяется: и маленький потолочный аппарат на 7 кВт, и огромная 200-киловаттная машина устроены, в принципе, одинаково.

Полная независимость кондиционеров друг от друга

Если нужны несколько кондиционеров, они устанавливаются как независимые друг от друга агрегаты. Каждому кондиционеру – свой внешний блок с отдельными трубопроводами. Из этого свойства вытекают следующие дополнительные преимущества. Первое – высокая надежность резервированной системы: у нескольких кондиционеров, работающих в одном помещении, нет общих узлов и блоков, они полностью независимы, и, значит, нет единой точки отказа. Выход из строя одного кондиционера никак не влияет на работу остальных. Второе преимущество – простота расширения системы: во многих случаях для увеличения производительности системы в целом можно просто установить в этом же помещении еще один кондиционер.

Меньше начальные капитальные вложения

Как справедливый итог вышеперечисленных (и многих других) объективных свойств, фреоновая система оказывается и в закупке, и в монтаже, и в пуско-наладочных работах значительно (иногда – в два-три раза) дешевле, чем водяная с аналогичной производительностью. Простота прокладки медных труб и установки внешнего блока, полная независимость кондиционеров друг от друга и несложная процедура пусконаладки позволяют разворачивать системы охлаждения достаточно оперативно и сравнительно недорого.

Недостатки фреоновых систем

Сравнительно малая допустимая энергетическая плотность ЦОД

К сожалению, «удельная мощность одного кондиционера» получается не очень большой. Особенно, если рассматривать самый эффективный и популярный в настоящее время конструктив: компактные внутрирядные кондиционеры, устанавливаемые в рядах с серверными шкафами. Мощность в 15-20 кВт для корпуса шириной 600 мм (размером как обычный серверный шкаф) и не более 10-12 кВт для компактного 300-миллиметрового корпуса – практически предел для фреоновых машин. Есть отдельные экземпляры, мощность которых немного выше «средней по рынку», но это достигается уплотнением внутренней компоновки, как следствие – снижением ремонтопригодности аппарата.

В итоге высокая мощность системы может быть достигнута только установкой большого количества кондиционеров: каждый со своим внешним блоком, со своими трубопроводами… В следствие этого использование фреоновых кондиционеров в ЦОД средней плотности, с удельной нагрузкой на стойку от 7 до 10 кВт, представляется затруднительным, а при удельной нагрузке в 15 кВт и более – почти невозможным.

Каждому внутреннему блоку должен соответствовать отдельный внешний блок

Классический случай, когда достоинство оборачивается недостатком, переходя из количества в новое, но уже негативное, качество. Попробуйте представить, как будет выглядеть фасад вашего здания, если на нем повесить десять-пятнадцать внешних блоков (размер каждого, например, полтора на два метра). А шахта с тремя десятками труб? Комментарии к этой картине, пожалуй, излишни. Попытками «оптимизации» можно только усугубить проблему: существуют довольно жесткие ограничения по расстоянию от кондиционера до его внешнего блока. Типичное ограничение по длине трубок составляет 30-40 метров, редко больше, причем считается не настоящая длина, а «эквивалентная»: с учетом всех изгибов и поворотов. Поэтому равномерно распределить внешние блоки по большой площади не получится: они все равно будут создавать «толпу» около машинного зала ЦОДа.

Малая гибкость системы

В варианте охлаждения с подачей воздуха через фальшпол мощность одного кондиционера может достигать величин в 200 и более кВт, это уже довольно крупный агрегат, размером в несколько метров и весом в пару-тройку тонн. С мощностью порядок, но как ее регулировать? У фреоновой холодильной машины есть такой параметр, как минимальная нагрузка: если 100-киловаттный кондиционер заставить удалять из ЦОД всего 5 кВт тепла, то он просто не справится с этой задачей. Слишком маленькая тепловая нагрузка не сможет испарять то количество фреона, которое достаточно для нормальной работы цикла работы холодильной машины. Производители идут на разные ухищрения, чтобы побороть эту проблему, например, оснащают кондиционеры встроенными нагревателями, которые «донагружают» кондиционер дополнительным теплом. Получается абсурдная ситуация: чтобы охладить воздух – надо сначала нагреть воздух, потратив электричество не только на охлаждение, но и на нагрев. Что подводит нас к следующему недостатку фреоновых систем.

Низкая энергоэффективность

Грубо говоря – КПД любого кондиционера составляет 200 и более процентов: для того чтобы «сдуть» с оборудования, например, 100 кВт тепла, кондиционер потребляет от сети не более 50 кВт электричества, а зачастую и еще меньше. Однако на практике все не так хорошо: с учетом проблем регулирования мощности и некоторых «накладных расходов» на охлаждение оборудования фреоновыми кондиционерами вы потратите почти столько же электроэнергии, сколько потребляет само охлаждаемое оборудование. Но, как говорят в «магазине на диване», и это еще не все. Если мы попробуем построить график потребляемого тока во времени, то мы увидим, что электричество потребляется непостоянно, и неравномерно. На графике будут периоды времени, когда потребление мало (в эти моменты времени работают только вентиляторы, а фреоновый компрессор простаивает). Также на графике мы увидим периоды с «нормальным» энергопотреблением (работают и вентиляторы, и компрессор).

Кроме того, на графике будут кратковременные, но очень неприятные моменты с резкими и значительными бросками потребляемого тока. Это моменты включения компрессора после простоя, и броски эти называются «пусковой ток». Величина пускового тока обычно очень ощутима, и превышает номинальное значение в 10-15 раз. Это означает, что все составляющие в системе электропитания кондиционера должны выдерживать кратковременную, но значительную перегрузку. Например, если кондиционер питается от источника бесперебойного питания – этот ИБП должен выдержать перегрузку в 1000% в течение 5-15 секунд. Таких ИБП, к сожалению, не бывает, и для обеспечения работоспособности всей системы приходится использовать заведомо более мощный (переразмеренный) ИБП, который стоит «переразмеренных» денег. То есть фреоновая система предъявляет особые требования к смежной системе, значительно удорожая ее.

Отсутствие фрикулинга

Кроме того, что фреоновый кондиционер потребляет много электроэнергии – следует отметить тот факт, что он потребляет ее постоянно. Круглый год. А если на улице зима и кругом полным-полно «бесплатного» холодного воздуха – фреоновый кондиционер может потреблять еще больше электричества, потому что он вынужден подогревать свой внешний блок, «чтобы не замерз». Увы, нет никаких возможностей для экономии за счет природы.

Сложности ремонта

И о ремонте. Если из трубы капает вода, то труба обычно мокрая, а под трубой лужа. Это очень упрощает поиск места протечки: где лужа – там и течет. Фреон же течет только при давлении в десятки атмосфер, поэтому при малейшем повреждении трубы он просто незримо улетучивается. Поиск места протечки – занятие нетривиальное и занимает много времени. Для восстановления работы системы во многих случаях требуются остановка кондиционера, удаление хладагента и полная перезаправка после ремонта.

Преимущества водяных систем

Рассмотрев фреоновые кондиционеры, обратим свой взгляд на более сложный и дорогой вариант: водяную систему. Здесь уже трудно говорить об отдельных кондиционерах (представить себе одинокий водяной кондиционер можно, но сложно), будем рассматривать систему из нескольких аппаратов, работающих сообща. Начнем опять с преимуществ.

Фрикулинг и энергоэффективность

Основная причина существования водяных кондиционеров в ЦОДе – это, конечно же, высокая экономическая эффективность, обусловленная как высокой эффективностью системы в целом, так и возможностью «бесплатного» использования «уличного холода» в течение нескольких месяцев в году. В условиях средней полосы России даже типовая система с водяными кондиционерами, работающая в «обычном» температурном режиме и не «заточенная» специально под высокую энергоэффективность, позволяет «бесплатно» охлаждать ИТ-оборудование в течение 4-5 месяцев (когда температура воздуха на улице отрицательная). С применением некоторых технологических хитростей период работы фрикулинга можно увеличить до 7-8 месяцев. Потребление электроэнергии системой кондиционирования в режиме фрикулинга крайне невелико. Например, 100-киловаттная система будет потреблять около 1 кВт на насосы, перекачивающие теплоноситель, приблизительно 3 кВт на вентиляторы, обдувающие теплообменник на улице, и около 12 кВт съедят вентиляторы в кондиционерах. Итого, «условный КПД» составляет приблизительно 600%, а не 200, как у фреоновых систем.

Большая допустимая энергетическая плотность ЦОДа

В отличие от фреонового кондиционера, водяной устроен очень просто: у него внутри нет ни компрессора, ни сложной системы регулирования давления рабочего вещества, ни множества трубок и клапанов… По сути своей, водяной кондиционер – это просто теплообменник с вентиляторами, прокачивающими через него воздух. Освободившееся от сложной начинки место не пропадает даром: его занимает теплообменник, который заметно больше, чем во фреоновом аппарате. А чем больше теплообменник, тем мощнее кондиционер, при прочих равных. То есть в том же размере. Современный внутрирядный водяной кондиционер мощностью 60 кВт может быть собран в корпусе размером в половину серверного шкафа: шириной 300 мм. Благодаря такой компактности и высокой «удельной мощности» водяные кондиционеры позволяют строить «энергетически высокоплотные» ЦОДы с удельной нагрузкой на серверный шкаф в 15-20 кВт и выше, не занимая кондиционерами места больше, чем ИТ-оборудованием.

Возможность выбора

Вспомним, что является источником холода для водяного кондиционера: очень обобщенно говоря – это «труба с холодной водой» (кстати, хоть мы и говорим «вода», в нашем климате под этим словом обычно подразумевается незамерзающая смесь, антифриз). Если система построена правильно, от потребления воды одним аппаратом работа всех остальных кондиционеров никак не зависит. Следствием этого является принципиальная возможность организовать систему таким образом, чтобы «на одной трубе сидели» и мощные кондиционеры для машинного зала ЦОД, и менее производительные кондиционеры для зоны ИБП, и совсем небольшие аппараты для вспомогательных помещений – таких, как электрощитовая, коммутационная, и т. п.

Небольшое количество «внешних блоков»

А откуда в этой трубе, собственно, появляется холодная вода? Воду охлаждает холодильная машина, «чиллер». По принципу действия чиллер очень похож на фреоновый кондиционер, только охлаждает он не воздух, а жидкий теплоноситель. А сколько должно быть в системе чиллеров? Сколько угодно, начиная от одного. Да-да, если мощность холодильной машины достаточна для работы всех кондиционеров, то машина может быть всего одна на любое число кондиционеров. Правда, обычно чиллеров все-таки несколько. Это делается для повышения гибкости, надежности и обеспечения поэтапного развития системы. Но два, три, пять чиллеров – это не десяток, два, или более внешних блоков. ЦОД не похож на елку, увешанную игрушками – и это хорошо.

Нет ограничений по удалению чиллеров от кондиционеров

Одна из проблем фреонового кондиционера – это небольшое расстояние от кондиционера до его внешнего блока. А как далеко можно установить чиллер? Все определяется только производительностью насоса, перекачивающего теплоноситель, и «потерями холода» (нагревом воды «по дороге» от чиллера к кондиционерам) из-за неидеальной теплоизоляции. Но это преодолеваемые сложности, поэтому вполне возможна установка холодильных машин на кровле многоэтажного здания, в дальнем углу территории, и в любом другом удобном месте. Встречаются здания, в которых фреоновые кондиционеры установить в принципе нельзя, а водяные системы в таких условиях вполне работоспособны.

Простое обнаружение протечек и оперативный ремонт магистралей

Как можно обнаружить, что вода уходит из трубы? По падению давления в системе. А как найти место утечки? Визуально! В большинстве случаев не нужны приборы – течеискатели, нет необходимости отключать систему и проводить длительный поиск места утечки. Более того, при наличии оборудования аварийной подпитки водяная система кондиционирования при незначительных утечках может функционировать достаточно долго, чтобы ремонт из экстренного превратился в плановый. Методика ремонта, кстати, зависит от выбранного материала трубопроводов, и в некоторых случаях он возможен без отключения системы. А если предусмотреть резервные трубопроводы, то никакая протечка не станет губительной и не приведет к остановке ЦОДа. Да, в чиллере есть фреон, и он тоже может улетучиться. Но чиллер является комплектным устройством, которое приходит с завода заправленным фреоном и маслом, поэтому вероятность утечки не очень велика.

Недостатки водяных систем

Конечно же, ничего нельзя получить бесплатно. Даже если не упоминать такой недостаток водяной системы, как значительные капитальные затраты на первоначальном этапе (увы, стоимость оборудования и монтажных работ могут превышать аналогичные показатели для фреоновых систем в два и более раза), есть и другие проблемы. О которых конечно, нельзя не упомянуть.

Наличие воды в машинном зале ЦОД

На самом деле – вода в том или ином количестве присутствует в любом ЦОДе. Это и дренаж конденсата из кондиционеров, и отопление в смежных помещениях, есть также риск протечки крыши или водопровода, и т. д. Но в системе кондиционирования вода находится под давлением, которое хоть и невелико (обычно 2-3 атмосферы), но все-таки увеличивает риск протечки и ускоряет вытекание воды через поврежденный трубопровод. В ЦОДе с водяным кондиционированием обязательно нужно предусматривать дренаж воды из-под фальшпола и принимать усиленные меры по гидроизоляции перекрытий и даже стен.

Проблемы с работой на малой нагрузке

Чиллер является фреоновой холодильной машиной, и он, к сожалению, не избавлен от такого недостатка, как неспособность работать со слишком низкой нагрузкой. А поскольку чиллеры обычно довольно мощные – величина минимально допустимой тепловой нагрузки может быть весьма значительной. Поэтому новый ЦОД придется сразу нагружать хотя бы на 30% от мощности единичного чиллера… или запускать в работу осенью: в режиме фрикулинга проблем с минимальной мощностью нет.

Место для установки чиллеров

Обратной стороной малого числа чиллеров и их высокой мощности являются размер и вес. Фреоновый компрессор и вся его обвязка находятся не в кондиционере, а в чиллере, теплообменник для фрикулинга тоже частенько интегрирован в общий конструктив, в итоге даже 50-киловаттный агрегат весит почти полторы тонны. На стену такой агрегат не повесить – нужна площадка на земле либо на крыше. На условный 100-киловаттный ЦОД таких чиллеров нужно три (третий – резервный), в итоге площадка будет размером как автостоянка на три машины и нагружена она будет тоже «на три машины» - почти на пять тонн.

Расширение ассортимента эксплуатируемого оборудования

Ну и, конечно, гидравлика. Насосы, теплообменники, запорная арматура – все это приведет к тому, что в штате ЦОД кроме электрика, дизелиста, и холодильщика придется завести еще и сантеника-гидравлика. Кстати, все трубы придется делать сразу, и на полную мощность, каким бы ни был первый пусковой комплекс.

Как выбирать

Что же в итоге выбрать, «воду» или «фреон»? Поскольку это инженерная задача, ее следует решать, учитывая все параметры строящегося объекта. Вот экспертное мнение: для каждого из реальных случаев существует оптимальное решение, и нет единого рецепта для всех, поэтому выбору архитектуры системы охлаждения необходимо уделять особое внимание, проводя вариантную проработку с обязательным привлечением специалистов. Предварительную оценку «за» и «против» можно сделать при помощи таблицы, приведенной в таблице.

Чеклист для определения вектора выбора технологии

Условия Ответ
Расчетная энергетическая плотность ниже чем 10 кВт на каждый ИТ-шкаф. Да / нет
Количество ИТ-шкафов в серверной или ЦОДе не превышает 10 шт. Да / нет
На расстоянии не более 25 м (по трассе) и на уровне ЦОДа (серверной), есть место для размещения внешних блоков (конденсаторов) кондиционеров. Да / нет
Нет режима жесткой экономии электроэнергии. Да / нет
В помещении машинного зала отсутствует возможность монтажа фальшпола. Да / нет
Тепловая нагрузка в первые месяцы эксплуатации ЦОД будет менее 10% от полной мощности. Да / нет
Существуют проблемы с правильной эксплуатацией систем отопления и водоснабжения. Да / нет
Легче купить мощный ИБП, чем усложнять систему охлаждения? Да / нет
Фрагментарное отключение системы кондиционирования не повлияет на работу основных систем ЦОД. Да / нет
Нет четкого понимания, какими темпами будет развиваться ЦОД и как долго он будет эксплуатироваться до первого расширения? Да / нет
Стоит задача уменьшения капиталовложений именно на первом этапе? Да / нет

Если ответов «да» получилось значительно больше, чем «нет», то вашему ЦОД вполне подойдет фреоновая система. Если ответов «нет» получилось больше, чем «да», рекомендуем присмотреться к водяной системе. Однако точный рецепт все-таки подскажет специалист, когда увидит ваш ЦОД «вживую», его помощью ни в коем случае пренебрегать не стоит.

Олег Сорокин,
эксперт по направлению ЦОД компании ICL-КПО ВС

Оверклокинг - в одном этом слове заключено очень многое. Под ним можно подразумевать увеличение производительности для повседневного использования, кратковременное максимально возможное увеличение быстродействия, бенчмаркинг, улучшение температурных показателей комплектующих и многое другое. Тенденция такова, что производители (имеются в виду производители аксессуаров для оверклокеров) стараются выпускать для каждого из направлений узкоспециализированные комплектующие. Разница наиболее заметна в системах охлаждения: воздушные, водяные, с элементами Пельтье. При этом истинно универсальных продуктов, которые могли бы использоваться одновременно, например, как для повседневного использования, так и для бенчмаркинга, очень мало. Впрочем, о причинах апгрейда компьютерного охлаждения я еще скажу пару слов чуть позже.

Почему фреонка?

Для примера возьмем один из наиболее универсальных продуктов на сегодня - Scythe Infinity . Это огромных размеров суперкулер, совмещающий в себе как достаточную производительность в пассивном режиме, так и рекордные показатели при должном обдуве всей конструкции с помощью нескольких 120-мм вентиляторов. Но из-за их использования неизбежно возникает шум и в кулере накапливается много пыли. Допустим, мы приобрели систему водяного охлаждения. При грамотном подходе к выбору комплектующих от СВО можно получить намного большую эффективность с минимальным уровнем шума. Пыль на радиаторе не так остро сказывается на тепловых показателях процессоров и не оседает непосредственно на печатных платах компонентов, оказывая влияние на стабильность. Обычный пользователь годами может довольствоваться СВО, но так как в последнее время бенчмаркинг набирает популярность, наверняка среднестатистический оверклокер тоже попадет под это влияние.

Но проблема в том, что при экстремальном разгоне на водяном охлаждении получить более-менее приличные результаты невозможно. Конечно, выходы для уменьшения температуры на теплообменниках есть - можно добавить в расширительный бачок сухого льда или включить компоненты СВО в состав ватерчиллера, установить модуль Пельтье. Но практически все современные ватерблоки не приспособлены для использования с температурой хладагента ниже нуля. В силу популярности моддинга в них повсеместно используется резина, оргстекло и пластмасса. Эти материалы после нескольких бенч-сессий дают течь, трескаются. Допустим, вы заменили их более простыми и надежными (SilentChill, Waterworker - примеров много), с трудом достали силиконовые шланги, которые, в отличие от популярных пищевых трубок, не становятся полностью "деревянными". Преодолена еще одна ступень усовершенствования системы охлаждения ПК, но и у нее есть свои очевидные минусы, самый значительный из которых - относительно большие теплопритоки. В отличие от DirectDie-фреонок, хладагент в ватерчиллерах преодолевает долгий путь, неизбежно теряя холод. Из-за этого обладатель такого охлаждения вполне может осознать "нерациаонльность" его использования. Рассчитывая получить максимальную производительность, он получает лишь множество мелких, неприятных в повседневном использовании проблем. После этого остается только пользоваться системой, именуемой в простонародье фреонкой.

Принцип ее работы - очень объемный материал, достойный отдельной статьи. Если вкратце - она работает так же, как холодильник. Холод образуется вследствие того, что компрессор гоняет фреон по контуру. Из компрессора хладагент в газообразном состоянии попадает в конденсатор. Там он превращается в жидкость, после чего проходит через фильтр-осушитель в капилляр, который ведет к испарителю. На этом пути, из-за низкого давления, фреон начинает кипеть при минусовой температуре и по обратной линии попадает в компрессор уже в газообразном состоянии. Вот почему такое название - система фреонового охлаждения на основе фазового перехода. Она является полностью закрытой и не требует обслуживания или какой-либо подстройки. Об остальных плюсах и минусах такой системы и непосредственно об Asetek VapoChill LightSpeed поговорим в процессе обзора.

Цены

Отдельно о неприятном - о ценах. К сожалению, официальный дистрибьютор в Украине только один, а именно компания Nebesa . Используя свое эксклюзивное положение, он доводит цены до 1000 долларов за версию с панелями из полированного алюминия и 1050 долларов за черный цвет корпуса. Теоретически мы должны говорить "спасибо" Asetek за то, что в стандартной комплектации нет покраски, якобы пользователю предоставляется возможность не переплачивать, а приобрести в последующем панели нужного цвета (выбор невелик: черный, красный и синий) в официальном интернет-магазине компании за 140 долларов.

Там же можно купить эти же VapoChill LS по цене 906 и 977 долларов. Но в стоимость не входит доставка. А это 49 долларов и максимум 11 дней ожидания посылки. Непонятным является факт существования отдельных моделей для рынка США. На сайте указано только одно отличие, а именно - рабочее напряжение 115 вольт. При этом они дороже на 229 (198 с черным корпусом) долларов. Неужели за эти немалые деньги разработчики просто переключили тумблер внутри корпуса?!

Изделия от ECT будем считать неконкурентоспособными. Эти модели все еще можно найти в продаже (в основном на барахолках форумов), однако даже флагман Prometeia Mach II GT похвастаться достойными показателями производительности не может.

Нельзя упускать из внимания перспективную бюджетную фреонку OCZ Cryo-Z . Но, судя по заявленной цене в 500 долларов, результаты разгона будут на столь же низком уровне.

Кроме этого существуют отдельные частные изготовители. Продукты, равные по эффективности VapoChill LS, обойдутся в среднем на треть дешевле, но последующее гарантийное обслуживание на протяжении 12 месяцев при этом отсутствует. Если хочется большего - есть шанс найти у энтузиастов каскадные фреонки. На них можно получить около -100 градусов при нагрузке. Но цена самых простых вариантов может достигать 1000 евро и выше.

Осмотр

Заказывая VapoChill LS, мы должны получить относительно большую, красивую коробку белого цвета с логотипом модели. Ее размеры 60x31x40 см, вес около 18 килограмм. Но это не всегда так.

При получении посылки постарайтесь распаковать коробку и проверить боковые панели фреонки на наличие вмятин, особенно с левой стороны, где компрессор установлен практически вплотную. Если видимых повреждений нет - любые другие "поломки" можно будет списать на производителя и включать агрегат для проверки нет особого смысла.

В моем случае в магазине не удосужились закрепить компрессор крепежными винтами после тестовой проверки на работоспособность. Если до пункта назначения далеко и у вас нет машины - лучше сразу позаботиться о такси. Не советую класть коробку в багажник - только на руки, в салон. Наши дороги даже при минимальной скорости приводят к встряхиванию внутренностей компрессора, что может вывести его из строя. Также желательно не переворачивать агрегат и держать его горизонтально. Если уж пришлось это сделать, и вы не уверены в правильности транспортировки до места получения - производитель рекомендует поставить систему на 12 часов в нормальное для нее положение. За это время теоретически все масло из трубок и обмотки должно скопиться в картере. Извлечение VapoChill LS без разрезания коробки в одиночку практически невозможно, ведь блоки из полистирола очень плотно сидят внутри. Кроме непосредственно фреонки в варианте с креплением для 775-го сокета мы должны найти такие комплектующие:

  • Руководство пользователя
  • Брошюра по установке испарителя
  • Прижимная пластина
  • Тюбик диэлектрической субстанции для предотвращения коррозии процессора и сокета
  • Специальная палочка для нанесения вышеуказанной субстанции
  • Двухжильный провод для включения материнской платы
  • Два USB-кабеля
  • Chill Сontrol - плата, по сути "мозг" системы
  • Три прокладки: две над сокетом и вокруг него, другая для приклеивания к прижимной пластине
  • Два нагревательных элемента
  • Чертеж для вырезания отверстия под гофру в корпусе
  • Корпус для испарителя с внутренним изолятором из твердого материала
  • 4 бочонка, 4 пружины, 8 пластмассовых шайб, 4 пластмассовых колечка и, как вариант, 4 болта, которые используются для фиксации компрессора

Также существует вариант поставки с предустановленным китом для сокетов 754, 940, 939 и 478.

Осмотрим фреонку.

Собственно размеры корпуса - 49x21x21 см. Как мы можем видеть, декоративные алюминиевые панели выполнены в стиле корпусов Lian-Li прошлого поколения, а именно моделей: PC-60, PC-61, PC-65, PC-7, PC-12, PC-37, PC-82, PC-601, PC-0700, PC-0716a, PC-0716s, PC-6077, PC-6085A. Производитель рекомендует использовать именно эти корпуса, так как они лучше подходят с эстетической точки зрения. Проблема состоит в том, что они довольно редкие гости в отечественных магазинах. Толщина панелей – 1,5 мм. Заменить их вручную очень просто - все легко снимается с помощью шестигранника. Если захотите снять панели - будьте бдительны! На них наклеены стикеры, в случае деформации которых (они очень легко рвутся) вы теряете гарантию. Если такое произошло, по советам официальных лиц, вам необходимо отправить письмо непосредственно представителям Asetek или лучше прямо на форуме оставить пост с объяснением того, что заставило вас снять панели - и, возможно, тогда все будет хорошо.

Одна расположена сразу возле места выхода гофры, а другая - в начале левой панели посередине. Если первую можно отклеить без труда, то чтобы добраться до второй, нужно сначала открутить переднюю панель (осторожно снимайте, иначе можно поцарапать контуры дисплея) и только потом можно пытаться отклеить ее через довольно маленький проем. Также все панели отличаются просто ужасным качеством изготовления - везде заусенцы, с внутренней стороны - линии разметки и грязь. Дно испарителя отполировано хорошо, но не до зеркальной поверхности, да и его ровность также не безупречна.

Синий дисплей имеет регулируемую контрастность и белую подсветку. В выключенном состоянии выводится название "VapoChill LightSpeed by Asetek Inc.", а при работе - температура испарителя. Но последнее можно легко заменить показаниями любого термодатчика или вывести скорость одного из подключенных вентиляторов. Также предусмотрена возможность набора индивидуального текста.

Сверху на корпусе имеются 4 крепежных винта, которые используются для фиксации корпуса компьютера. Для этого требуется высверлить отверстия под них и соответственно под гофру. Вот тут и пригодится чертеж из комплекта. Делать это, конечно, не обязательно - при использовании открытого стенда достаточно лишь разместить поблизости материнскую плату. При этом наверняка возникнут проблемы с проводами из-за их недостаточной длины, короткой гофры.

Переходим к осмотру внутренних компонентов.

Первое, что разочаровало - окалина после пайки на всех трубках. В корпусе трудятся два 120 мм вентилятора Panaflo на выдув, а холодный воздух поступает через сквозные боковые отверстия. При довольно больших размерах лопастей они оказались тихими, в сравнении с турбиной серии Radeon Х1800/1950 от ATI, даже на максимальных оборотах, которые можно выставить с помощью VapoChill Control Panel . В целом вся система при работе издает приличный шум, но к нему можно привыкнуть и он не раздражает.

В данной системе используется компрессор Danfoss FR8.5CL. В отличие от устарелых Vapochill XE и Mach II GT, в которых использовался фреон R404a, VapoChill LS заправлен более эффективным 507-м. Стоковая VapoLS справляется с тепловыделением всех современных процессоров, в том числе и Quad Core. Но по причине неразвитого дизайна испарителя, разработанного небезызвестным Chilly1, конденсатором малой мощности, настройкой на другое тепловыделение, обладатели четырехъядерных процессоров должны довольствоваться ограничениями по разгону в виде 3,6 ГГц на старом степпинге и примерно 4 ГГц на новом. В противном случае из-за постоянного перегрева компрессор может выйти из строя. Чтобы выжать максимум из этих процессоров, достаточно только перенастроить VapoChill LS на нагрузку около 300 Вт, ведь феонка рассчитана всего лишь на 225 Вт - чуть меньше выделяли разогнанные Prescott в 2004 году. Также для улучшения показателей заодно можно сменить конденсатор. Снятие боковых панелей тоже улучшает температурный режим. Для бенчмаркинга очень советую дополнительно использовать кондиционер - результат примерно равен приросту от отключения одного ядра на Conroe +100 МГц.

Установка

Процесс относительно сложный. Интуитивно заставить все работать, скорее всего, не получится. Лучше всего воспользоваться подробным руководством по установке с официального сайта, но и оно имеет несколько недочетов. Стоит отметить, что использование нагревательных элементов при бенчмаркинге неоправданно. Тепловыделение процессоров не дает промораживаться ни сокету, ни изоляции испарителя. Конечно, установить их стоит, ведь отключить все можно и посредством ПО. С открытым стендом будьте бдительны - испаритель надо устанавливать только в одном возможном положении, иначе элементы на материнской плате вокруг сокета будут препятствовать плотному прилеганию изоляции. По рекомендации Asetek, диэлектрическую пасту использовать стоит только на свой страх и риск. Ничего, кроме мнимого чувства безопасности и потери товарного вида материнской платы вы от этого не получите. Вычистить сокет даже при помощи струи сжатого воздуха очень тяжело. Если уж решились на этот шаг - не используйте мягкую палочку из комплекта - ею очень легко повредить хрупкие ножки. Лучше всего это делать пальцем.

Кстати, о Chill Control. Эта маленькая плата не только координирует работу всей системы охлаждения, но и является неплохим реобасом и термометром. Кроме необходимых коннекторов на ней размещено два трехпиновых разъема для вентиляторов, 4 разъема для нагревательных элементов, 5 разъемов для подключения датчиков температуры. Первый, по умолчанию, используется встроенным в испаритель датчиком, и подключение к нему невозможно. Последнее руководство предназначено для версии 2.2, но в комплекте поставки на последних VapoChill LS идет версия 3.2. Большое количество этих деталей идет с браком. Из-за этого пользователь получает полностью неработоспособную систему. О поломке сигнализирует красный светодиод при подключенных кабелях и питании. Для ее установки в комплекте поставки имеется четыре штырька на клейкой субстанции. Они одноразовые, так что переклеивать их с места на место не получится. Хочется отметить потребность в существовании простой кнопки, при которой бы включалась фреонка, но производитель этого не предусмотрел.

Все готово для старта системы. Уже в операционной системе устанавливаем Control Panel. С помощью этой утилиты можно контролировать показатели термодатчиков и скорости вентиляторов. Также можно устанавливать следующие настройки:

  • Нужная температура на испарителе для старта компьютера
  • Температура, при которой срабатывает предупреждение о перегреве
  • Температура, при которой происходит экстренное выключение
  • Скорость вентиляторов
  • Мощность нагревателей

Практика

В технической спецификации на официальном сайте заявлено о -25,5°С при 200 Ваттах нагрузки. В режиме простоя -48°С. На практике каждый юнит будет отличается по производительности. Мне попался экземпляр, способный на -60° в простое. На рабочий режим в 20 градусов ниже нуля агрегат выходит за минуту.

Конечно, опытные люди, основываясь на этом показателе, могут сказать, какие результаты можно получить с тем или иным процессором, но лучше проверить на практике. В наличии имеются два процессора, а именно: Intel Core Duo E6400 (Conroe B2, L630A, 2 Мб кэша второго уровня) и Intel Celeron D 352 (Cedar Mill C1, 5629B) на архитектурах Core и NetBurst соответственно. Оба ядра выполнены по современной 65-нм технологии.

Конфигурация тестового стенда:

  • Материнская плата ASUS Commando
  • Оперативная память Geil GX21GB8500PDC (2х512 Мб Micron D9GCT)
  • Видеокарта Sapphire X1950XT
  • Блок питания FSP FX700-GLN

При использовании материнских плат на основе чипсета Intel P965 советую сделать включение VapoChill LS ручным из-за проблем со старт-стопами. В таком режиме электроника иногда дает сбой и фреонка работает постоянно, не обращая внимания на команды. Выключение в этом случае возможно только посредством обесточивания.

Методика тестирования представляет собой замер температуры процессора, как в номинальном режиме, так и в разгоне, при максимальном тепловыделении. Загрузкой процессоров будет заниматься утилита TAT 2.05. Доверим результирующие показания температуры программе S&M 1.9.0b. Для лучшей достоверности теплораспределитель процессора Celeron D 352 был отполирован. Поверхность Е6400, на удивление, очень ровная. Так как рабочие температуры не превышают -50°С, то будет использоваться термопаста КПТ-8. Для наглядности результаты занесены в сводную таблицу.

Default Разгон
Idle Burn Idle Burn
E6400 @ 2,13 ГГц 1,28 В/4,26 ГГц* -38 (-50) -20 (-43) -7,5 (-37) 39 (-30)
Celeron 352 @ 3,2 ГГц 1,2 В/5,5 ГГц* -42 (-48) -27,5 (-45) -13,5 (-35,4) 32 (-27)
* - использовалось напряжение 1,73 В vcore и 1,55 В vsfb

В скобках указана температура испарителя. Плюсовые температуры в нагрузке, конечно, могут пугать, но ведь это тестовая утилита, а в повседневном использовании подобные нагрузки получить невозможно. Результаты разгона процессоров не менее впечатляющие. Максимальная частота, при которой Е6400 прошел валидацию, составляет 4,45 ГГц , а Celeron D 352 – 6,1 ГГц - практически двукратный прирост частоты. Благодаря Asetek VapoChill LS я добился прохождения SuperPi 1M за 13,23 секунды на первом процессоре и за 23,91 сек. на втором.

Выводы

Плюсы:

  • Лучшая производительность
  • Стилизованный под корпуса Lian-Li внешний вид
  • Полная защита от конденсата
  • Сменные алюминиевые панели

Минусы:

  • Относительно шумная работа
  • Ограниченный разгон процессоров на ядре Kentsfield
  • Увеличенное потребление электроэнергии в сравнении с СВО/кулерами
  • Главным минусом Asetek VapoChill LS является цена

А если посчитать, во что обойдется постройка аналогичной системы фреонового охлаждения? Как минимум месяц на изучение объемного теоретического материала с разных форумов, сайтов. Мало прочитать - нужно все запомнить и осознать. Достойные комплектующие, материалы и инструменты обойдутся уже в 500 долларов. Добавьте к этому нелегкие поиски меди на испаритель и хорошего токаря. Затем долгий и в какой-то мере опасный процесс сборки с последующей настройкой. VapoChill LS - это неплохой выбор для тех, кто желает понять, что такое фреонка на практике - и только после этого принять решение, в каком плане двигаться дальше. Для бенчинга это может быть безболезненный и простой переход на стаканы для DI/LN2 (сухой лед/жидкий азот) или более сложный - постройка своей фреонки с последующей практикой и наработке знаний и умения для каскада. Ну а если Вы просто геймер или активный участник проекта Folding@Home - лучшего варианта не найти. Только с помощью Asetek VapoChill LS можно получить максимальный разгон в сочетании с повседневным использованием.

Требования, которые предъявляются к системам охлаждения с фреоном в качестве рабочего вещества. Фреоны, в отличие от других холодильных рабочих веществ, имеют большую текучесть, хорошо растворяются в смазочных маслах и имеют очень малую растворимость в воде. Именно с этим связаны основные отличия охлаждающих систем с фреоном в качестве рабочего вещества и от других охлаждающих систем.

На основе вышеуказанных особенностей фреонов можно сформулировать главные требования, которые предъявляются к системам охлаждения с фреоном в качестве рабочего вещества:

· поддержание гер­метичности;

· обеспечение проникновения влаги в холодильную установку;

· беспрерывная циркуляция смеси «масло–фреон» и возвращение масла в компрессор из испарителя.

Поддержание герметичности холодильной установки можно достигнуть с помощью использования специальных прокладок, которые изготавливаются из паронита или маслостойкой резины. Кроме того, необходимо осуществить специальными штуцерами соединение аппаратов и трубопроводов.

Для избегания проникновения влаги в холодильную установку сегодня выпускаются холодильные аппараты и машины, которые заполнены инертным газом. Во время запуска холодильных систем в эксплуатацию их необходимо осушить с помощью продувания инертными газами, а затем происходит вакуумирование перед заправкой хладагента. Кроме того, во время эксплуатации холодильной установки необходимо производить постоянное осушение хладагента, циркулирующего в системе. Это осуществляется с помощью фильтров-осушителей.

Беспрерывная циркуляция смеси «масло–фреон» и возвращение масла в компрессор из испарителя осуществляются на основе обеспечения условий, которые бы способствовали понижению растворения хладагента в масле в компрессоре, а также с помощью использования испарителей со специальной конструкцией. В случае использования испарителей с кипением фреона внутри труб (например, воздухоохладителей или змеевиковых охлаждающих батарей) необходимо осуществлять верхнюю или нижнюю (а в некоторых случаях – и комбинированную) подачу фреона.

В том случае, если осуществляется верхняя подача фреона в систему, легче осуществить возвращение масла в картер компрессора. Также в этом случае для заправки холодильной установки необходимо меньшее количество хладагента, нет вредоносного влияния гидростатического столба жидкос­ти на теплопередачу. Кроме того, хладагент и масло осуществляют движение сверху вниз, т. е. движутся в одном направлении. Последний фактор способствует тому, что масло лучше циркулирует в системе.

В том случае, если осуществляется нижняя подача фреона в систему, то коэффициент теплопередачи будет выше, а хладагент будет лучше распределяться между секциями, которые работают параллельно. Чаще всего системы с нижней подачей фреона используются в больших, широко раз­ветвленных, насосно-циркуляционных охлаждающих системах. Для того, чтобы масло возвращалось в картер компрессора, на трубопроводах отсоса пара создают специальные петли, которые образуют некий гидравлический затвор. В этих петлях накапливается масло, которое транспортируется паром. С целью уменьшения пагубного влияния гидростатического столба жидкости приборы охлаждения необходимо реализовывать из параллельных змеевиков с приподнятыми выходными концами, которые будут располагаться горизонтально и будут объединены коллекторами.

В том случае, если осуществляется комбинированная подача фреона, хладагент осуществляет движение через змеевики, которые соединены последовательно, сначала снизу вверх, а в последних секциях – сверху вниз. В этом случае повышается коэффициент теплопередачи (по сравнению с системами с верхней подачей фреона) и улучшается возврат масла (по сравнению с нижней подаче фреона), но вместе с тем и повышается гидравлическое сопротивление. Из-за этого данный способ подачи фреона применяется лишь в некоторых системах, которые предназначены для работы с высокими температурами кипения.

Методы подвода хладагента к испарителям. Подвод хладагента реализовывается через дроссельные устройства. При этом конструкция дросселей подбирается в зависимости от вида датчика. Дроссели могут срабатывать в случае изменения уровня жидкости в испарителе (соленоидные вентили или поплавковые регулирующие вентили; и дроссели, которые получают сигнал от электронных указателей уровня) или же в случае перегрева пара (ТРВ). Для того, чтобы испарители хорошо заполнялись фреоном, применяют терморегулирующий вентиль (ТРВ) с термобаллоном, устанавливающийся до или после теплообменного аппарата. В том случае, если термобаллон устанавливается до теплообменного аппарата, ТРВ необходимо настроить на начало открытия в случаях перегрева паров на 3–4 °С, полное же его открытие должно происходить при перегреве в 5–7 °С. Следует отметить, что перегрев пара происходит лишь в последних (по ходу движения хладагента) шлангах теплообменного аппарата, из-за чего эти шланги работают с небольшой эффективностью. Также необходимо знать, что при сравнительно малых перегревах паров чувствительность ТРВ уменьшается, а работа его становится неустойчивой.

Для того, чтобы снизить перегрев пара на выходе из змеевиковых теплообменников, необходимо использовать ТРВ, которое работает на принципе внешнего выравнивания давления. В этом случае перегрев выходящего из теплообменника пара регулируется и снижается на величину, которая соответствует уменьшению давления в охлаждающем аппарате на линии от ТРВ до того места, где уравнительная трубка ТРВ присоединяется к трубопроводу.

В случае размещения термобаллона ТРВ после теплообменного аппарата теплосъем теплообменника повышается вследствие лучшего заполнения его жидким хладагентом и уменьшения концентрации масла в смеси «масло–фреон». Причем ТРВ необходимо настраивать на существенно более высокий перегрев пара (как минимум, на 15–20 °С), который бы обеспечивал доиспарение хладагента из масла.

https://pandia.ru/text/80/222/images/image002_27.jpg" width="430" height="250">

Качественное заполнение хладагентом испарителей, в которых кипение фреона происходит в межтрубном пространстве (кожухозмеевиковые или кожухотрубные теплообменные аппараты), реализовывается с помощью поплавковых регуляторов уровня или ТРВ. Следует отметить, что когда проектируется, а затем и эксплуатируется холодильная система, необходимо создавать условия для возвращения масла в картер компрессор из охлаждающих аппаратов.

В случае применения смеси «масло–фреон» с ограниченной взаимной растворимостью, фракция, которая насыщена маслом (как более легкая) накапливается виде небольшого слоя в верхней части охлаждающего аппарата. Чтобы масло возвращалось в компрессор, необходимо температуру застывания масла поддерживать значительно более низкой, чем температуру кипения хладагента. В этом случае масло начинает вспениваться парами фреона и в таком виде начинается уноситься во всасывающий трубопровод.

В случае применения смеси «масло–фреон» с неограниченной взаимной растворимостью масло из межтрубного пространства охлаждающего теплообменника может уноситься вместе с каплями неиспарившейся жидкости, захватываемыми паровым потоком.

Количество масла, которое отводится паром из кожухотрубного теплообменника, обуславливается скоростью его движения в охлаждающем теплообменнике, местом присоединения патрубка всасывания к кожуху теплообменника и его кон­струкцией. Скорость в паровом пространстве зависит от количества пара, который образовался, т. е. от тепловой нагрузки, и от степени заполнения теплообменником жидким хладагентом. В том случае, если степень заполнения теплообменника либо его тепловая нагрузка уменьшаются, то следствием этого становится снижение количества жидкой смеси «масло–фреон», которая уносится из него вместе с паром. В том случае, если имеют место малые тепловые нагрузки, унос масла из теплообменника может полностью остановиться, что приведет к существенному ухудшению его теплопередачи, и, как следствие, к аварийному уменьшению уровня масла в картере компрессора.

Принципиальная схема питания фреонового теплообменника по перегреву показана на рис. 3. Особенностью такой схемы является настройка ТРВ для того, чтобы обеспечить нормальную работу системы.


Если плавно повышать тепловую нагрузку теплообменника, усиленное парообразование в испарителе приведет к уносу жидкости, следствием чего является снижение подачи хладагента через ТРВ. Но при этом ТРВ не способен обеспечить безопасную работу холодильной системы в случае резкого повышения тепло­вой нагрузки из-за того, что вскипание хладагента может привести к перепол­нению теплообменника, и, как следствие, к влажному ходу компрессора. Следовательно, данную схему можно применять только для питания теплообменников, работающих в стационарном режиме с незначительными колебаниями тепловой на­грузки. Регулирование заполнения теплообменника в переходных и пусковых режимах необходимо реализовывать ручным регулирующим вентилем.

В том случае, если термобаллон ТРВ поместить на трубопроводе между испарителем и РТО, то немного снижается вероятность влажного хода компрессо­ра в случае переменных тепловых нагрузок, но это повлечет за собой ухудшение возвращения масла в картер компрессора, а теплопередача в испари­теле уменьшится. По некоторым опытным данным, коэффициент теплопередачи, от­несенный к полной поверхности аппарата, уменьшается на 30% при увеличении перегрева паров хладагента R22, которые выходят из испарителя от 0 до 2 °С.

Принципиальная схема заполнения хладагентом фреонового испарителя в зависимости от уровня показана на рис. 4. При этом, уровень жидкости в теплообменнике надо поддерживать таким, чтобы исключалось ее попадание во всасы­вающий трубопровод в случае максимальных тепловых нагрузок, которые соответствуют заданным условиям эксплуатации охлаждающего теплообменника. Удаление смеси «масло–фреон» из аппарата реализовывается по специальному трубопроводу, который присоединяется к теплообменнику в той зоне, где присутствует наивысшая кон­центрация масла в жидкой фазе. Жидкость, которая отводится из теплообменника, поступает в РТО, где происходит доиспарение хладагента.

Соленоидный вентиль, который расположен между охлаждающим теплообменником и ТРВ, закрывается одновременно с выключением компрессора, тем самым предотвраща­я возможное поступление жидкости во всасывающий трубопровод. Данная схема обеспечивает надежную эксплуатацию холодильной системы в случае переменных тепловых нагрузок.

В том случае, если для охлаждения необходимы низкотемпературные фре­оновые установки, можно применить схему питания охлаждающего теплообменника, которая показана на рис. 5. Данная схема отличается от схемы, изображенной на рис. 4, тем, что тут применяется оросительный испаритель с насосной циркуля­цией смеси «масло–фреон». Ряд зарубежных фирм-изготовителей производят оросительные испарители, которые оснащены эжекторами либо же встроенными цир­куляционными насосами.

https://pandia.ru/text/80/222/images/image006_11.jpg" width="450" height="312">

В случае проектирования РТО можно принимать гидравли­ческое сопротивление его зоны пара по данным фирмы «Данфосс», приведенным на рис. 6.

Разводка трубопроводов. В охлаждающих системах разводку тру­бопроводов выполняют так, чтобы обеспечить непрерывный равномер­ный возврат в компрессор уносимого масла.

Жидкостные трубопроводы с фреоном необходимо прокладывать аналогично аммиачным. Но при этом следует отметить, что плотность фреонов значительно выше, а скрытая теплота фазового перехода существенно ниже по сравнению с аммиаком . Вследствие этого внимание необходимо обращать на предупреждение вскипания хладагента из-за уменьшения его давления в трубопроводах, которые направляют жидкость снизу вверх – к дроссельным и распределительным устройствам. При этом следует поддерживать достаточную для транспортировки масла скорость пара во фреоновых паровых трубопроводах, которая зависит от плотности пара и размеров капель масла, при этом она резко меняется при изменении температуры и давления в системе.

Если в трубопроводах повысить скорость, то более крупные капли масла легче уносятся обратно в компрессор, но при этом это приводит к резкому увеличению потерь давления. Вследствие этого ухудшаются условия работы компрессора, а также уменьшается его холодопроизводительность. Крайне нежелательны при этом возрастание гидравлического сопротивления во всасывающих трубопроводах в одно - и многоступенчатых установках, которые работают на низкие температуры.

Рекомендуются следующие минимальные скорости, которые бы обеспечивали перенос масла: в вертикальных всасывающих трубопроводах, в которых фреон движется снизу вверх, – 8,0 м/с; в вертикальных нагнетательных трубопроводах – 7,5 м/с; в горизонтальных всасывающих трубопроводах, в которых создается уклон по ходу движения пара – 4,5 м/с; в горизонтальных нагнетательных трубопроводах – 3,5 м/с.

Чтобы обеспечить более легкий подъем масла в вертикальных паровых трубопроводах, нижнюю часть трубопроводов необходимо изготовить в виде сифонов. При этом масло постепенно заполняет сифон, тем самым увеличивая его гидравлическое сопротивление до того момента, пока не выбросится потоком пара в сторону низкого давления.

В том случае, если необходимо подавать масло с парами хладагента вверх на существенную высоту, на трубопроводе изготавливают каскад сифонов, которые расположены друг от друга на расстоянии 3–9 м. Масло под давлением парообразного хладагента поступательно движется от нижнего сифона к верхнему..

Верхнюю часть вертикальных трубопроводов, которые транспортируют смесь «масло–пар», из отдельных приборов охлаждения снизу вверх, необходимо выгибать в виде грифонов, которые представляют собой обратные сифоны, подключая их к общей всасывающей линии сверху. Вследствие этого предотвращается возможность попадания смеси «масло–фреон» из одного прибора охлаждения в другой.

Надежный возврат масла из приборов охлаждения в картер компрессора обеспечивается в том случае, если всасывающий вентиль компрессора находится ниже выход­ных патрубков приборов охлаждения, и вместе с тем используется верхняя разводка всасы­вающих трубопроводов.

Горизонтальные участки паровых трубопроводов необходимо выполнять с уклоном 3–5% по ходу хладагента. Уклон обеспечивает снижение скорости пара и предотвращение обратного слива масла по трубе в том случае, если произошла остановка компрессора, либо же снизилась его производительность.

В схемах, где используется верхняя разводка трубопроводов, стоя­ки нагнетания компрессоров, которые работают параллельно, необходимо присоеди­нять к общему коллектору. Это реализуется с помощью сифонов, прямо перед которыми устанавливаются обратные клапаны на каждом стояке. Вследствие этого можно защитить компрессоры, которые временно не работают, от конденсации в них пара и вредоносного заполне­ния нагнетательных стояков маслом.

В малых установках, в которых присутствует переменная тепловая на­грузка, часто используется один компрессор, в котором регулируется холодопроизводительность. Этот один компрессор позволяет поддерживать давление кипения примерно постоянным. В том случае, если тепловая нагрузка будет изменяться во времени, скорость пара в нагнетательном и всасывающем трубопроводах вследствие этого может колебаться в существенном диапазоне. В таких условиях становится сложным осуществлять транспортировку масла в трубопроводах, которые направлены снизу вверх (например, в таких случаях, когда конденсатор находится на крыше здания). Для этого сечение вертикального отрезка линии нагнетания компрессора необходимо рассчитать таким образом, чтобы в случае минимальной тепловой нагрузки в этой линии поддерживалась достаточная для транспортировки масла скорость. Но если повышать производительность компрессора, гидравлическое сопротивление трубопровода начинает резко возрастать.

В холодильных установках, в которых регулируется холодопроизводительность, необходимо использовать нагнетательную линию, которая будет состоять из двух труб разного диаметра, как показано на рис. 7.

В том случае, когда тепловая нагрузка будет возрастать, общее сечение трубопроводов будет поддерживать необходимую для транспортировки масла скорость пара. Если производительность компрессора уменьшается, то скорость движения пара недопустимой, происходит постепенное заполнение сифона маслом, тем самым создается гидравлический затвор, которые перекрывает трубу с большим диаметром. Это приведет к тому, что весь пар начнет двигаться по трубе с меньшим диаметром со скоростью, которая будет достаточной для переноса масла.

Циркуляция смесей «масло–фреон». Концентрация масла в смеси, которая возвращается в компрессор, зависит от пе­регрева пара хладагента в РТО.

Если во фреоновой холодильной установке, в которой осуществляется безнасосная система охлаждения, будет отсутствовать РТО, то хладагент в приборах охлаждения будет фактически полностью испаряться. Малое количество хладагента при этом будет доиспаряться из масла во всасывающем трубопроводе. Концентрация масла в смеси «масло–фреон» в приборах охлаждения высокая, а на выходе из них – будет близка к единице, что приведет к существенному скоплению масла в приборах охлаждения, и как следствие, теплопередача приборов охлаждения и надежность всей системы заметно снизится.

В случае наличия РТО в приборы охлаждения поступает смесь «масло–фреон», которая имеет концентрацию масла x1 и содержит (G + DG) кг жидкого хладагента. Под воздействием теплопритоков в приборах охлаждения выкипает G кг хладагента, и из него выходит смесь «масло–фреон» с концентрацией мас­ла x2, которая содержит DG кг хладагента. Данная смесь движется в РТО, где происходит доиспарение хладагента в количестве DG, а затем происходит пере­грев всего пара, который образовался, на величину DtП за счет переохлажде­ния жидкого хладагента, движущегося после конденсатора, на величину DtЖ.

Уравнение теплового баланса РТО в условиях стационарного режима описывается соотношением:

(G + DG) × DiЖ + GМ × сМ × DtЖ = DG × r + (G + DG) × DiП + GМ × сМ × DtП,

где GМ – количество масла, возвращаемого в компрессор из РТО, равное количеству масла, поступающего в приборы охлаждения, кг; сМ – удельная теплоемкость масла (для упрощения сМ принимается постоянной и определяется по средней температуре смеси «масло–фреон» в РТО), кДж/(кг×м); DiЖ и DiП – разности энтальпий, соответственно, жидкого и парообразного хладагента, соответствующие разностям температурам, соответственно, DtЖ и DtП, кДж/кг; r – скрытая теплота парообразования фреона при средней температуре в РТО, кДж/кг.

В случае решения вышеназванного уравнения можно получить выражение, которое будет определять количество хладагента DG, которое нужно испарить в РТО для возвращения в компрессор масла в количестве GМ кг в зависимости от условий работы холодильной системы:

DG = G × k1 + GМ × k2,

k1 = (DiЖ – DiП) / (r + DiП – DiЖ);

k2 = cМ × (DtЖ – DtП) / (r + DtП – DtЖ)

В том случае, если переохлаждение жидкого хладагента в РТО происхо­дит за счет кипения жидкого хладагент и перегрева паров, которые поступают из приборов охлаждения холодильной установки, то в них нужно подавать боль­шее количество жидкости хладагента, чем требуется для нейтрализации наружных теплопритоков. В данных условиях кратность циркуляции хладагента через приборы охлаждения, которая определяется как n = (G + DG) / G, будет больше единицы. Таким образом, создается запас жидкого хладагента, который компенсирует неравномерность распределения его между шлангами приборов охлаждения, работающих параллельно.

Расчетное выражение для определения кратности циркуляции n можно получить из зави­симостей для DG, k1 и k2:

n = 1 + k1 + (GМ / G) × k2

Для фреоновых одноступенчатых установок с РТО значение кратности циркуляции хладагента n должно составлять 1,1–1,3 в зави­симости от условий работы. Это упрощает распределение хладагента между приборами охлаждения и обеспечивает постоянное питание их в тех случаях, когда происходят небольшие колебания тепловой нагрузки во время эксплуа­тации.

Из формулы для n следует, что кратность циркуляции увеличивается с повышением количества теплоты, которая пропорциональна DiЖ и отводится в РТО от переохлаждаемого хладагента. Поэтому необходимо стремиться к тому, чтобы хладагент, который поступает из конденсато­ра, переохлаждался в РТО до температуры, которая будет на 2–3 °С больше температуры кипения.

Кроме того, переохлаждение хладагента в РТО позволяет предотвратить расслоение смеси «масло–фреон» в дроссельном вентиле, а также уменьшить концентрацию масла в приборах охлаждения из-за уменьшения сухости отводимого от приборов охлаждения пара.

Следует отметить, что вариант, когда на переохлаждение в РТО подается часть жидкого хладагента, которая приходит из конденсатора, а вторая часть дросселируется без предварительно переохлаждения, является нецелесообразным.

Концентрация масла в смеси «масло–фреон», которая поступает в приборы охлаждения x1 и выходящая из них x2 находятся из следующих соотношений:

x1 = GМ / (G + DG + GМ);

x2 = GМ / (DG + GМ).

Из этих соотношений можно получить формулы, связывающие количества хладагента, который выкипает в приборах охлаждения, и масла, которое поступает в них (или удаляемого из них), с концентрациями масла x1 и x2:

G / GМ = (1 / x1) – (1 / x2);

x2 / x1 = 1 + G / (DG + GМ).

В случае решения системы уравнений, содержащих концентрации относительно x2, можно получить расчетную зависимость для определения концентрации масла в смеси «масло–фреон», которая выходит из приборов охлаждения, если известны концентрация x1 и условия работы холодильной системы:

x2 = (1 + k1) / (1 + k1 / x1 + k2)

Затем можно получить расчетную зависимость для определения кратности циркуляции хладагента n, если известны концентрации смеси «масло–фреон», которая поступает в приборы охлаждения x1 и выходящая из них x2:

n = (1 – x1) / (1 – x1 / x2).

Анализ данного выражения показывает, что меньшая кратность циркуляции хладагента соответствует большей концентрации масла x2. В том случае, если повысить концентрацию масла x1, кратность циркуляции хладагента немного повышается, особенно при небольших концентрациях масла в жидкости, которая поступает в РТО из приборов охлаждения.

Следует отметить, что увеличение перегрева пара на всасывании компрессора приведет к повышении его коэффициента подачи. Но из-за того, что ограничено количество теплоты, которое отводится в РТО, большие перегревы пара на выходе из компрессора могут получать из-за повышения сухости пара, который поступает в РТО, т. е. за счет понижения DG. Это может привести к понижению кратности циркуляции хладагента через охлаждающие приборы и к увеличению концентрации масла в этих испарителях.

Проанализировав данные уравнения, можно прийти к выводу, что необходимо определять наиболее оптимальные перегревы пара на всасывании компрессора, которые соответствуют наиболее эффективной работе испарителей и компрессора для различных режимов эксплуатации холодильной системы.



Загрузка...