sonyps4.ru

Определение цветовой модели. Цветовая модель CMYK

Мы воспринимаем окружающий мир с помощью различных факторов, один из которых — это цвет. Открывает человек глаза и видит разные цвета, а если нужно об этих цветах рассказать другому человеку, то можно сказать что-то вроде «штаны у него как спелый лимон» или «глаза у нее как ясное небо» и человеку в принципе понятно какого цвета штаны и глаза, даже если он их не видит.

То есть передать информацию о цвете от человека человеку, никакого труда не составляет. А если цветовой информацией должны оперировать не люди, а какие-нибудь технические устройства, тут вариант «глаза как ясное небо» не пойдет. Нужно какое-то иное описание цвета, понятное этим устройствам (мониторы, принтеры, фотоаппараты и т. д.). Как раз для этого и нужны цветовые модели.

Типы цветовых моделей

Существует немало цветовых моделей, наиболее часто используемые можно разделить на три группы:

  • аппаратно-зависимые — цветовые модели данной группы описываю цвет применительно к конкретному, цветовоспроизводящему устройству (например монитору), - RGB, CMYK
  • аппаратно-независимые — эта группа цветовых моделей для того, чтобы дать однозначную информацию о цвете - XYZ, Lab
  • психологические — эти модели основываются на особенностях восприятия человека - HSB, HSV, HSL

Рассмотрим по отдельности некоторые, часто используемые, цветовые модели.

Данная цветовая модель описывает цвет источника света (сюда можно отнести например экран монитора или телевизора). Из огромного множества цветов, в качестве основных (первичных) было выделено три цвета: красный (B ed), зеленый (G reen), синий (B lue). Первые буквы названий основных цветов образовали название цветовой модели RGB.

Когда смешиваются два основных цвета, получившийся цвет осветляется: красный и зеленый дают желтый, зеленый и синий дают голубой, из синего и красного получится пурпурный. Если смешать все три основных цвета, образуется белый. Такие цвета называют­ся аддитивными.

Эту модель можно представить в виде трехмерной системы координат, где каждая отражает значение одного из основных цветов в диапазоне от нуля до максимума. Получился куб, внутри которого находятся все цвета, образующие цветовое пространство RGB.

Важные точки и линии модели RGB

  • Начало координат: в этой точке значения всех основных цветов равны нулю, излучение отсутствует, т. е. это - точка черного цвета.
  • В ближайшей к зрителю точке все составляющие имеют мак­симальное значение, это значит максимальное свечение - точка белого цвета.
  • На линии, соединяющей эти точки (по диагонали куба), расположены оттенки серого цвета: от черного к белому. Этот диапазон иначе называют серой шкалой (Grayscale).
  • Три вершины куба дают чистые исходные цвета, остальные три отражают двойные смешения исходных цветов.

Плюс этой модели состоит в том, что она описывает все 16 миллионов цветов, а минус в том, что при печати часть (самые яркие и насыщенные) этих цветов потеряется.

Так как RGB аппаратно-завиисмая модель, то одна и та же картинка на разных мониторах может отличаться по цвету, например потому что экраны этих мониторов сделаны по разным технологиям или мониторы по разному настроены.

Если предыдущая модель описывает светящиеся цвета, то CMYK наоборот, для описания цветов отраженных. Еще они называются субтрактивными («вычитательными»), потому что они остаются после вычи­тания основных аддитивных. Так как цветов для вычитания у нас три, то и основных субтрактивных цветов тоже будет три: голубой (C yan), пурпурный (M agenta), желтый (Y ellow).

Три основных цвета модели CMYK, называют полиграфической триадой. Печатая этими красками, происходит поглощение красной, зеленой и синей составляющих. В изображении CMYK каждый пиксель имеет значение процентного содержания триадных красок.

Когда смешиваем две субтрактивных краски, то результирующий цвет затемняется, а если смешать три, то должен получиться черный цвет. При нулевом значении всех красок получаем белый цвет. А когда значения всех составляющих равны - получаем серый цвет.

На деле получается, что если смешать три краски при максимальных значениях, вместо глубокого черного цвета у нас получится скорее грязный темно-коричневый. Это происходит потому, что полиграфические краски не идеальны и не могут отразить весь цветовой диапазон.

Что бы компенсировать эту проблему к этой триаде добавили четвертую краску черного цвета, она и добавила последнюю букву в названии цветовой модели С - C yan (Голубой), М - M agenta (Пурпурный), Y - Y ellow (Желтый), К - blacK (Черный). Все краски обычно обозначаются начальной буквой названия, но черную обозначили последней буквой, Почему? .

Как и RGB, CMYK тоже модель аппаратно-зависимая. Зависит конечный результат от краски, от типа бумаги, от печатной машины, от особенностей технологии печати. Поэтому одно и то же изображение в разных типографиях может быть напечатанным по разному.

Цветовая модель HSB

Если вышеописанные модели соединить в одну, то результат можно изобразить в виде цветового круга, где основные цвета моделей RGB и CMY расположены в следующей зависимости: каждый цвет находится напротив комплементарного цвета, его дополняющего и между цветами, с по­мощью которых он образован.

Чтобы усилить какой-то цвет, нужно ослабить цвет находящийся напротив (дополняющий). Например, чтобы усилить желтый, нужно ослабить синий.

Для описания цвета в данной модели есть три параметра H ue (оттенок) - показывает положение цвета на цветовом круге и обозначается величиной угла от 0 до 360 градусов, S aturation (насыщенность) - определяет чистоту цвета (уменьшение насыщенности похоже на добавлене белого цвета в исходный цвет), B rightness (яркость) - показывает освещенность или затененность цвета (уменьшение яркости похоже на добавление черной краски). Первые буквы в названии этих параметров и дали название цветовой модели.

Модель HSB хорошо согласуется с человеческим восприятием: цветовой тон - длина волны света, насыщенность - интенсивность волны, а яркость - количество света.

Минусом модели HSB является необходимость конвертировать ее в RGB для отображения на экране монитора или в CMYK для печати.

Эту модель создала Международная комиссия по освещению для того, чтобы уйти от недостатков предыдущих моделей. Было необходимо создать аппаратно независимую модель для определения цвета независящую от параметров устройства.

В модели Lab цвет представлен тремя параметрами:

  • L — светлота
  • a — хроматический компонент в диапазоне от зеленого до красного
  • b — хроматический компонент в диапазоне от синего до желтого

При переводе цвета из какой-нибудь модели в Lab, все цвета сохраняются, так как пространство Lab самое большое. Поэтому данное пространство используют как посредника при конвертации цвета из одной модели в другую.

Цветовая модель Grayscale

Самое простое и понятное пространство используется для отображения черно-белого изображения. Цвет в данной модели описывается всего одним параметром. Значение параметра может быть в градациях (от 0 до 256) или в процентах (от 0% до 100%). Минимальное значение соответствует белому цвету, а максимальное — черному.

Индексные цвета

Вряд ли допечатнику придется работать с индексными цветами, но знать что это такое, не помешает.

Итак, когда-то давно, на заре компьютерных технологий, компьютеры могли отображать на экране не больше 256 цветов одновременно, а до этого 64 и 16 цветов. Исходя из таких условий был придуман индексный способ кодирования цвета. Каждый цвет, содержащийся в изображении, получил порядковый номер, с помощью этого номера описывался цвет всех пикселов, имеющих соответствующий цвет. Но у разных изображение наборы цветов разные и по этому пришлось в каждой картинке хранить свой набор цветов (набор цветов назвали — цветовая таблица).

Современные компьютеры (даже самые простые) способны отображать на экране 16,8 млн цветов, поэтому нет особой необходимости в использовании индексных цветов. Но с развитием интернета эта модель вновь используется. Все потому, что такой файл может иметь гораздо меньший размер.

Развитие компьютерной графики и цифровых систем печати поставило задачу разработки системы управления цветом, способной контролировать цветовые параметры на всех стадиях подготовки цветных изданий: от создания до получения тиражей. Усилиями специалистов в области теоретической оптики и разработчиков прикладных оптических систем предложено несколько систем, позволяющих точно описать цветовые параметры. Такие системы именуют цветовыми моделями. В основе всех моделей лежит колориметрический принцип – описание и цветовых, и яркостных характеристик неким набором числовых параметров, которые в ряде случаев называют цветовыми координатами.

Цветовая модель – система представления цветов с помощью ограниченного числа красок в полиграфии или цветовых каналов монитора и других излучающих устройств.

Существует много типов цветовых моделей, но в компьютерной графике, как правило, применяются три модели, известные под названиями RGB, CMYK, HSB. По принципу действия эти цветовые модели можно разбить на три класса: аддитивные (RGB), построенные на сложении цветов; субтрактивные (CMYK), основу которого составляет операция вычитания цветов; перцепционные (HSB), базирующиеся на восприятии цвета.

Цветовая модель RGB. В цветовой модели RGB цвета получаются в результате смешения трех цветов: красного (Red), зеленого (Green) и синего (Blue), первые буквы английских наименований и дали название этой модели. Сложение основных цветов в полной яркости дает белый цвет, в минимальной представляет черный цвет. Если цветовые координаты смешивать в равных пропорциях, то получится серый цвет различной насыщенности. Смешение красного и зеленого дает желтый, красный и синий образуют пурпурный, а зеленый и синий – голубой.

Цветовые координаты: красный, зеленый и синий – базовые цвета, или аддитивные. Цвета голубой, пурпурный, желтый, получаемые в результате попарного смешения базовых цветов, – вторичные, или комплементарные. По принципу сложения цветов работают многие устройства: мониторы, телевизоры и др. Так, RGB-мониторы работают на основе использования трех лучей, иод действием которых точка экрана светится одним из трех цветов – красным, зеленым и синим, а изображение ЖК-мониторов формируется триадой ЖК-ячеек.

Цветные изображения формируются в соответствии с двоичным кодом цвета каждой точки, хранящимся в видеопамяти. Возможна различная глубина цвета (битовая глубина), задаваемая используемым количеством битов для кодирования цвета точки. Наиболее распространенными значениями глубины цвета являются 8, 16, 24 или 32 бита на точку.

В вычислительной технике интенсивность базовых цветов принято измерять целыми числами от 0 до 255. Ноль означает отсутствие данной цветовой составляющей, число 255 – максимальную интенсивность. Базовые цвета могут смешиваться, поэтому общее количество цветов, порождаемое аддитивной моделью, равно 256x256x256 = 16 777 216. Число кажется огромным, но в действительности модель позволяет воссоздать лишь небольшую часть цветового спектра. Любой естественный цвет можно разложить на красную, зеленую и синюю составляющие и измерить их интенсивность. Обратное действие, т.е. синтез, реализуется далеко не всегда. Диапазон цветов модели RGB у́же, чем видимый спектр. Чтобы получить часть спектра, лежащую между синим и зеленым цветами, требуются излучатели с отрицательной интенсивностью красного цвета, которых, конечно же, в природе не существует. Диапазон воспроизводимых цветов модели или устройства называется цветовым охватом. Недостаток аддитивной модели – ее узкий цветовой охват. Кроме того, недостатком модели следует считать аппаратную зависимость. Цвет, заданный значениями интенсивностей базовых цветов R = 204, G = 230, В = 171, как набор цветовых координат однозначно определяет светло-салатовый цвет на устройстве, работающем по принципу сложения базовых цветов. В действительности цвет, воспроизводимый конкретным устройством, зависит от внешних факторов. Экраны дисплеев покрываются люминофорами, отличающимися по химическому и спектральному составу. Мониторы одной марки могут иметь разную степень износа и условия освещения, по-разному синтезируют цвета. Цветовые характеристики различных устройств выравнивают за счет калибровки и использования систем управления цветом.

Цветовая модель HSB. Предназначена преодолеть аппаратную зависимость модели RGB. Эта модель наиболее соответствует способу восприятия цветов человеческим глазом. В модели HSB все цвета определяются тремя составляющими и относятся к перцепционным моделям: 1) оттенком или цветовым тоном (Huc), 2) насыщенностью (Saturation) и 3) яркостью (Brightness). Название модели образовано по первым буквам английских названий цветовых координат. Разделение характеристик упрощает проблему корректного воспроизведения цветов на различных технических устройствах.

Цветовым топом, или оттенком, называется чистый цвет с определенной длиной волны. Насыщенность описывает чистоту, или силу, цвета. Один и тот же тон может быть тусклым или насыщенным. Изменение насыщенности можно представить как разбавление чистого цвета серым. Все цвета естественного происхождения имеют низкую насыщенность, поэтому чистые тона выглядят слишком яркими, ненатуральными. Яркость характеризует интенсивность, энергию цвета. Изменение яркости можно представить как смешение чистого тона и черного цвета. Большое содержание черного делает цвет затененным, неинтенсивным. С уменьшением доли черного цвета освещенность увеличивается. Черный цвет имеет нулевую яркость, а белый – абсолютную.

Достоинство системы HSB – ее независимость от аппаратуры. Однако эта независимость признается чисто теоретической, так как система HSB – абстрактная. Это значит, что нет таких устройств, синтезирующих цвет в данной системе. Не существует и прямой процедуры измерения цветового тона и насыщенности. В любом методе ввода информации о цвете сначала измеряются красная, синяя и зеленая составляющие, которые потом пересчитываются в координаты HSB. Так как при вводе и выводе цвета система HSB привязана к системе RGB, то ее аппаратная независимость пока не имеет большого практического значения.

Цветовая модель CMYK. В основе систем RGB и HSB рассматриваются источники света. Однако большинство окружающих нас объектов не излучает свет, а поглощает и отражает в разных пропорциях падающий свет. Мы видим пассивные объекты в отраженном цвете. Если яблоко имеет красный цвет, то это значит, что оно отражает длинные волны и поглощает короткие. Для описания таких явлений используется цветовая модель, объясняющая порождение цветов не как результат сложения, а как результат вычитания базовых цветов. Эта модель называется CMYK по первым буквам названий цветовых координат: Cyan (Голубой), Magenta (Пурпурный), Yellow (Желтый), BlacK (Черный). Черный цвет представлен в названии последней буквой своего названия для того, чтобы нс путать его в сокращениях с синим (Blue).

Палитры цветов. Пиксел монитора несет информацию о своем цвете, выражаемую в битах. Чем большим количеством битов описывается пиксел, тем больше информации он может в себе нести и тем больше его битовая глубина. Битовую глубину изображения часто называют цветовой разрешающей способностью. Она измеряется в битах на пиксел (bit per pixel, bpp). Так, если цветная иллюстрация имеет в каждом пикселе по 8 бит цветовой информации, то ее цветовая разрешающая способность будет 8 bрр. При 8-битовой глубине доступно 256 оттенков цвета. На принципе 8-битного цвета основана цветовая модель Index Color. Она работает на базе создания палитры цветов. Все оттенки в файле делятся на 256 возможных вариантов, каждому из которых присваивается номер. Далее из получившейся палитры цветов строится таблица, где каждому номеру ячейки приписывается цветовой оттенок в значениях RGB. Эти оттенки записываются в соответствующую таблицу.

До появления 8-битного цвета из-за малых мощностей персональных компьютеров тех времен использовались палитры из 16 цветов (4 bрр), 4 цветов (2 bрр) и самая первая компьютерная графика была однобитовая – 2 цвета. Однобитовые изображения, называемые Bitmap или иногда Lineart, используются и сегодня там, где не требуются цвето-тоновые переходы. Равный по размеру Bitmap-файл в 24 раза меньше, чем файл RGB, кроме того, он очень хорошо сжимается.

Цветовая модель Grayscale представляет собой ту же индексированную палитру, где вместо цвета пикселам назначена одна из 256 градаций серого. На основе Grayscale легко можно понять строение RGB- и CMYK-файлов.

В RGB для описания цвета используются 24 бита, которые делятся на три группы (канала) по 8 бит. Одна группа используется для хранения в пикселе величины красного цвета, две другие – зеленого и синего. Они могут дать до 16 700 000 комбинаций оттенков. Аналогичным образом в CMYK существуют четыре группы, для описания цвета используются 32 bрр. Следует заметить, что если RGB имеет стандартные 256 градаций яркости, то в CMYK яркость измеряется в процентах (т.е. до 100). Несмотря на бо́льшую, чем в RGB, цветовую глубину 32 бита на пиксел, диапазон оттенков CMYK значительно меньше, чем в RGB, так как CMYK является не более чем имитацией на экране печатных цветов.

Мир, окружающий человека, - это вселенная цвета. Цвет имеет не только информационную, но и эмоциональную составляющую. Человеческий глаз - очень тонкий инструмент, способный различать даже едва заметные опенки цвета. Однако очень трудно пересказать другому человеку свое ощущение цвета, даже если это какой-нибудь известный или привычный цвет, скажем, цвет неба или цвет листвы.
Для многих отраслей производства, в том числе для компьютерных технологий и полиграфии, необходимы численные способы описания цвета. Эта необходимость реализуются в цветовых моделях (color models), в которых цвет представляет собой набор числовых значений для определенных координатных осей.
Все предметы, которые нас окружают, с точки зрения цвета делятся на 3 большие группы:
— Предметы излучающие свет (солнце, лампочка, монитор …)
— Предметы поглощающие и отражающие свет (Прежде всего бумага, а также все не светящиесяпредметы)
— предметы пропускаюшие свет (стекла, пленки и и тд)
Для технических нужд чаще всего используются первая и вторая группы. В силу физической специфики этих предметов для их описания используются разные цветовые модели.

Цветовая модель RGB
Многие цвета видны оттого, что в органы зрения человека попадают излучаемые тем или иным источником световые потоки (цвета на экране телевизора, монитора, кино, слайд-проектора и т. д.). У таких устройств базовым цветом, который он способен показывать даже будучи не подключенным к розетке, является черный цвет. А все остальные цвета в нем синтезируются смешением всего 3 основных цветов разной интенсивности — красного, зеленого и синего. При смешении двух основных цветов результат осветляется. При смешении красного и зеленого получается желтый, при смешении зеленого и синего получается голубой, синий и красный дают пурпурный. Если смешиваются все три цвета, в результате образуется белый. Такие цвета называются аддитивными.

Модель, в основе которой лежат указанные три цвета, носит название RGB по первым буквам английских слов Red (красный), Green (зеленый), Blue (синий). В компьютерной реализации модели RGB значение каждой составляющей принадлежит диапазону от 0 до 255

— Нулевые значения всех составляющих (0, 0, 0) соответствуют черному цвету.
— Максимальные значения всех составляющих (255, 255, 255) соответствуют белому цвету.
— При нулевом значении одной составляющей и двух максимальных обеспечиваются вторичные основные цвета - голубой, пурпурный и желтый.
— Все оттенки серого получаются тогда, когда интенсивность каждого из основных цветов одинакова. Например, 50% серый получается при установке значений red=128 green=128 blue=128
Эта модель, конечно, совсем не очевидна для фотографа, художника или дизайнера, но ее необходимо принять и разобраться в ней, потому что она является теоретической основой процессов фотографирования, сканирования и визуализации изображений на экране монитора.

Цветовая модель CMYK

В модели CMYK к отражаемым относятся цвета, которые остаются после вычитания из белого падающего светового потока на какую-либо поверхность. Такие цвета называются субтрактивными («вычитательными»), поскольку это результат вычитания основных аддитивных (например, полиграфическая краска голубого цвета поглощает красный и отражает синий и зеленый цвета).
К основным субтрактивным цветам относятся: голубой (cyan), пурпурный (magenta), желтый (yellow). Они входят в так называемую полиграфическую триаду (process colors), которая может быть представлена в виде трехмерной модели:

Диапазон каждой составляющей простирается от 0 до 100% (рис. 2.2).
При смешении двух субтрактивных составляющих результирующий цвет затемняется, а при смешении всех трех должен получиться черный цвет. При полном отсутствии краски остается белый цвет (белая бумага).

Данная модель описывает реальные полиграфические краски, которые далеко не столь совершенны, как луч света. Они не могут полностью
перекрыть весь цветовой диапазон, а это приводит, в частности, к тому, что смешение трех основных красок, которое должно давать (согласно теоретической модели) черный цвет, на самом деле дает темный цвет не очень определенного цвета (бурый).
Для исключения этого недостатка в число основных полиграфических красок была внесена черная краска, позволяющая получить глубокий черный цвет. Именно она добавила последнюю букву в название модели CMYK, хотя и не совсем обычно. С - это Cyan (голубой), М - Magenta (пурпурный), Y - Yellow (желтый), а К - это сокращение от Key color - «контурный цвет», т. е. черный цвет.

Цветовая модель HSB

Если основные цвета двух вышеописанных моделей разместить в виде единой последовательности, то получится усеченный вариант цветового круга, в котором цвета располагаются в известном порядке: красный (R), желтый (Y), зеленый (G), голубой (С), синий (В) и пурпурный (М). В цветовой модели HSB этот круг взят за основу.


— По краю этого цветового крута располагаются так называемые спектральные цвета или цветовые тоны (Hue), которые определяются длиной световой волны, отраженной от непрозрачного объекта или прошедшей через прозрачный объект. Цветовой тон характеризуется положением на цветовом круге и определяется величиной угла в диапазоне от 0 до 360 градусов. Эти цвета обладают максимальной насыщенностью.
— Насыщенность (Saturation) - это параметр цвета, определяющий его чистоту. Уменьшение насыщенности цвета означает его разбеливание. С уменьшением насыщенности цвет становится пастельным, блеклым, размытым. На модели все одинаково насыщенные цвета располагаются на концентрических окружностях, т. е. можно говорить об одинаковой насыщенности, например, зеленого и пурпурного цветов, и чем ближе центр круга, тем все более разбеленные цвета получаются. В самом центре любой цвет максимально разбеливается, проще говоря, становится белым цветом. Ось насыщенности - это радиус окружности. Диапазон значений - от 0 до 100%.
— Яркость (Brightness) - это параметр цвета, определяющий затемненность цвета. Уменьшение яркости цвета означает его зачернение. Работу с яркостью можно охарактеризовать как добавление в спектральный цвет определенного процента черной краски. Чем больше в цвете содержание черного, тем ниже яркость цвета, и тем более темным он становится. Ось яркости - это вертикаль, опущенная из центра окружности. Диапазон значений - от 0 до 100%.

В общем случае модель можно представить в форме конуса, любой цвет в модели HSB получается из спектрального цвета добавлением определенного процента белой и черной красок, т. е. фактически серой краски.

Примечание
Название модели HSB - аббревиатура от Hue, Saturation и Brightness
Важной особенностью модели HSB является наличие треугольника (на рис. выше он выделен серым цветом), в пределах которого располагаются все оттенки одного цветового тона, что соответствует привычной логике выбора цвета.

Цветовая модель Lab

Цветовая модель Lab была создана Международной комиссией по освещению (Commission Internationale de I’EcIairage - CIE) с целью преодоления существенных недостатков перечисленных моделей, в частности, она призвана стать аппаратно-независимой моделью и определять цвета без учета особенностей устройства (сканера, монитора, принтера, печатного станка и т. д.).

Что касается цветовых параметров, то в этой модели любой цвет определяется светлотой (Lightness) и двумя хроматическими компонентами: параметром «a», который изменяется в диапазоне от красного до зеленого, и параметром «b», изменяющимся в диапазоне от желтого до синего.

В данной модели так же трудно ориентироваться, как в моделях RGB и CMYK, но нужно иметь представление о ней, поскольку программа Adobe Photoshop использует ее в качестве модели-посредника при конвертировании из одной цветовой модели в другую.
Кроме того, эта модель является центральной в системе управления цветом и имеет максимально широкий цветовой охват (см ниже).
Цветовое пространство модели Lab можно условно представить в виде графика цветности ху. Все цвета, расположенные внутри и на границе «подковы», являются физически реализуемыми.

Цветовой охват

Мы видим естественный цвет в природных условиях - и представленный на экране монитора или на бумаге. Возможный диапазон видимых цветов, или цветовой охват (gamut), при этом отличается.
Самый широкий он, естественно, в природе и ограничивается, естественно, возможностями нормального человеческого зрения.

Часть из того, что существует в природе, может передать монитор (на экране нельзя точно передать, например, чистые голубой и желтый цвета).
Часть из того, что передает монитор, можно напечатать (например, при полиграфическом исполнении совсем не передаются цвета, составляющие которых имеют очень низкую плотность).
Представить цветовой охват можно на графике цветности ху (площадь «подковы» совпадает с цветовым охватом модели Lab).

Очень часто у людей, напрямую не связанных с полиграфическим дизайном, возникают вопросы "Что такое CMYK?", "Что такое Pantone?" и "почему нельзя использовать ничего, кроме CMYK?".

В этой статье постараемся немного разобраться, что такое цветовые пространства CMYK, RGB, LAB, HSB и как использовать краски Pantone в макетах.

Цветовая модель

CMY(K), RGB, Lab, HSB - это цветовая модель. Цветовая модель - термин, обозначающий абстрактную модель описания представления цветов в виде кортежей чисел, обычно из трёх или четырёх значений, называемых цветовыми компонентами или цветовыми координатами. Вместе с методом интерпретации этих данных множество цветов цветовой модели определяет цветовое пространство.

RGB - аббревиатура английских слов Red, Green, Blue - красный, зелёный, синий. Аддитивная (Add, англ. - добавлять) цветовая модель, как правило, служащая для вывода изображения на экраны мониторов и другие электронные устройства. Как видно из названия – состоит из синего, красного и зеленого цветов, которые образуют все промежуточные. Обладает большим цветовым охватом.

Главное, что нужно понимать, это то, что аддитивная цветовая модель предполагает, что вся палитра цветов складывается из светящихся точек. То есть на бумаге, например, невозможно отобразить цвет в цветовой модели RGB, поскольку бумага цвет поглощает, а не светится сама по себе. Итоговый цвет можно получить, прибавляя к исходномой черной (несветящейся) поверхности проценты от каждого из ключевых цветов.


CMYK - Cyan, Magenta, Yellow, Key color - субтрактивная (subtract, англ. - вычитать) схема формирования цвета, используемая в полиграфии для стандартной триадной печати. Обладает меньшим, в сравнении с RGB, цветовым охватом.

CMYK называют субстрактивной моделью потому, что бумага и прочие печатные материалы являются поверхностями, отражающими свет. Удобнее считать, какое количество света отразилось от той или иной поверхности, нежели сколько поглотилось. Таким образом, если вычесть из белого три первичных цвета - RGB, мы получим тройку дополнительных цветов CMY. «Субтрактивный» означает «вычитаемый» - из белого вычитаются первичные цвета.

Key Color (черный) используется в этой цветовой модели в качестве замены смешению в равных пропорциях красок триады CMY. Дело в том, что только в идеальном варианте при смешении красок триады получается чистый черный цвет. На практике же он получится, скорее, грязно-коричневым - в результате внешних условий, условий впитываемости краски материалом и неидеальности красителей. К тому же, возрастает риск неприводки в элементах, напечатанных черным цветом, а также переувлажнения материала (бумаги).



В цветовом пространстве Lab значение светлоты отделено от значения хроматической составляющей цвета (тон, насыщенность). Светлота задана координатой L (изменяется от 0 до 100, то есть от самого темного до самого светлого), хроматическая составляющая - двумя декартовыми координатами a и b. Первая обозначает положение цвета в диапазоне от зеленого до пурпурного, вторая - от синего до желтого.

В отличие от цветовых пространств RGB или CMYK, которые являются, по сути, набором аппаратных данных для воспроизведения цвета на бумаге или на экране монитора (цвет может зависеть от типа печатной машины, марки красок, влажности воздуха на производстве или производителя монитора и его настроек), Lab однозначно определяет цвет. Поэтому Lab нашел широкое применение в программном обеспечении для обработки изображений в качестве промежуточного цветового пространства, через которое происходит конвертирование данных между другими цветовыми пространствами (например, из RGB сканера в CMYK печатного процесса). При этом особые свойства Lab сделали редактирование в этом пространстве мощным инструментом цветокоррекции.

Благодаря характеру определения цвета в Lab появляется возможность отдельно воздействовать на яркость, контраст изображения и на его цвет. Во многих случаях это позволяет ускорить обработку изображений, например, при допечатной подготовке. Lab предоставляет возможность избирательного воздействия на отдельные цвета в изображении, усилиения цветового контраста, незаменимыми являются и возможности, которые это цветовое пространство предоставляет для борьбы с шумом на цифровых фотографиях.


HSB - модель, которая в принципе является аналогом RGB, она основана на её цветах, но отличается системой координат.

Любой цвет в этой модели характеризуется тоном (Hue), насыщенностью (Saturation) и яркостью (Brightness). Тон - это собственно цвет. Насыщенность - процент добавленной к цвету белой краски. Яркость - процент добавленной чёрной краски. Итак, HSB - трёхканальная цветовая модель. Любой цвет в HSB получается добавлением к основному спектру чёрной или белой, т.е. фактически серой краски. Модель HSB не является строгой математической моделью. Описание цветов в ней не соответствует цветам, воспринимаемых глазом. Дело в том, что глаз воспринимает цвета, как имеющие различную яркость. Например, спектральный зелёный имеет большую яркость, чем спектральный синий. В HSB все цвета основного спектра (канала тона) считаются обладающими 100%-й яркостью. На самом деле это не соответствует действительности.

Хотя модель HSB декларирована как аппаратно-независимая, на самом деле в её основе лежит RGB. В любом случае HSB конвертируется в RGB для отображения на мониторе и в CMYK для печати,а любая конвертация не обходится без потерь.


Стандартный набор красок

В стандартном случае полиграфическая печать осуществляется голубой, пурпурной, желтой и черной красками, что, собственно и составляет палитру CMYK. Макеты, подготовленные для печати, должны быть в этом пространстве, поскольку в процессе подготовки фотоформ растровый процессор однозначно трактует любой цвет как составляющую CMYK. Соответственно, RGB-рисунок, который на экране смотрится очень красиво и ярко, на конечной продукции будет выглядеть совсем не так, а, скорее, серым и бледным. Цветовой охват CMYK меньше, чем RGB, поэтому все изображения, подготавливаемые для полиграфической печати, требуют цветокоррекции и правильной конвертации в цветовой пространство CMYK!. В частности, если вы пользуетесь Adobe Photoshop для обработки растровых изображений, следует пользоваться командой Convert to Profile из меню Edit.

Печать дополнительными красками

В связи с тем, что для воспроизведения очень ярких, "ядовитых" цветов цветового охвата CMYK недостаточно, в отдельных случаях используется печать CMYK + дополнительные (SPOT) краски . Дополнительные краски обычно называют Pantone , хотя это не совсем верно (каталог Pantone описывает все цвета, как входящие в CMYK, так и не содержащиеся в нем) - правильно называть такие цвета SPOT (плашечные), в отличие от смесевых, то есть CMYK.

Физически это означает, что вместо четырех печатных секций со стандартными CMYK-цветами используется большее их количество. Если печатных секций всего четыре, организовывается дополнительный прогон, при котором в уже готовое изделие впечатываются дополнительные цвета.

Существуют печатные машины с пятью печатными секциями, поэтому печать всех цветов происходит за один прогон, что, несомненно, улучшает качество приводки цвета в готовом изделии. В случае печати в 4 CMYK-секциях и дополнительным прогоном через печатную машину с плашечными красками цветосовпадение может страдать. Особенно это будет заметно на машинах с менее чем 4 печатными секциями - наверняка не раз вы видели рекламные листовки, где за края, к примеру, красивых ярко-красных букв может немного выступать желтая рамочка, которая есть ни что иное, как желтая краска из раскладки данного красивого красного цвета.

Подготовка макетов для полиграфии

Если вы готовите макет для печати в типографии и вами не оговорена возможность печати дополнительными (SPOT) красками, готовьте макет в цветовом пространстве CMYK, какими бы привлекательными вам не казались цвета в палитрах Pantone. Дело в том, что для имитации цвета Pantone на экране используются цвета, выходящие за пределы цветового пространства CMYK. Соответственно, все ваши SPOT-краски будут автоматически переведены в CMYK и результат будет совсем не таким, как вы ожидаете.

Если в вашем макете (при договоренности об использовании триады) все-таки есть не CMYK краски, будьте готовы к тому, что макет вам вернут и попросят переделать.

При составлении статьи за основу были взяты материалы с citypress72.ru и masters.donntu.edu.ua/

Цветовая модель

Цветовая модель - термин, обозначающий абстрактную модель описания представления цветов в виде кортежей чисел, обычно из трёх или четырёх значений, называемых цветовыми компонентами или цветовыми координатами . Вместе с методом интерпретации этих данных (например, определение условий воспроизведения и/или просмотра - то есть задание способа реализации), множество цветов цветовой модели определяет цветовое пространство .

Трёхкомпонентное цветовое пространство стимулов

Человек является трихроматом - сетчатка глаза имеет 3 вида рецепторов света, ответственных за цветное зрение (см.: колбочки). Каждый вид колбочек реагирует на определённый диапазон видимого спектра . Отклик, вызываемый в колбочках светом определённого спектра, называется цветовым стимулом , при этом свет с разными спектрами может иметь один и тот же цветовой стимул и, таким образом, восприниматься человеком одинаково. Это явление называется метамерией - два излучения с разными спектрами, но одинаковыми цветовыми стимулами, будут неразличимы для человека.

Трёхмерное представление цветового пространства человека

Можно определить цветовое пространство стимулов как линейное пространство , если задать координаты x, y, z в качестве значений стимулов, соответствующих отклику колбочек длинноволнового (L), средневолнового (M) и коротковолнового (S) диапазона оптического спектра. Начало координат (S, M, L) = (0, 0, 0) будет представлять чёрный цвет. Белый цвет не будет иметь чёткой позиции в данном определении диаграммы всевозможных цветов, а будет определяться, например, через цветовую температуру , определённый баланс белого или каким-либо иным способом. Полное цветовое пространство человека имеет вид конуса в форме подковы (см. рисунок справа). Принципиально данное представление позволяет моделировать цвета любой интенсивности - начиная с нуля (чёрного цвета) до бесконечности. Однако, на практике, человеческие рецепторы могут перенасытиться или даже быть повреждены излучением с экстремальной интенсивностью, поэтому данная модель не применима для описания цвета в условиях чрезвычайно высоких интенсивностей излучений и также не рассматривает описание цвета в условиях очень низких интенсивностей (поскольку у человека задействуется иной механизм восприятия через палочки).

Являясь линейным пространством, пространство цветовых стимулов имеет свойство аддитивного смешивания - сумма двух цветовых векторов будет соответствовать цвету, равному получаемому смешением этих двух цветов (см. также: Закон Грассмана). Таким образом, можно описывать любые цвета (вектора цветового пространства) через линейную комбинацию цветов, выбранных в качестве базиса . Такие цвета называют основными (англ. primary colors ). Чаще всего в качестве основных цветов выбирают красный, зелёный и синий (модель RGB), однако возможны другие варианты базиса основых цветов. Выбор красного, зелёного и синего оптимален по ряду причин, например потому что при этом минимизируется количество точек цветового пространства, для представления которых используются отрицательные координаты, что имеет практическое значения для цветовоспроизведения (нельзя воспроизводить цвет излучением с отрицательной интенсивностью). Этот факт следует из того что пики чувствительностей L,M и S колбочек приходятся на красный, зелёный и синий части видимого спектра.

Некоторые цветовые модели используются для цветовоспроизведения , например воспроизведения цвета на экранах телевизоров и компьютеров, или цветной печати на принтерах. Используя явление метамерии, устройства цветовоспроизведения не воспроизводят оригинальный спектр изображения, а лишь имитируют стимульную составляющую этого спектра, что в идеале позволяет получить картину неотличимую человеком от оригинальной сцены.

Цветовое пространство CIE XYZ

Цветовое пространство XYZ - это эталонная цветовая модель, заданная в строгом математическом смысле организацией CIE (International Commission on Illumination - Международная комиссия по освещению) в 1931 году. Модель XYZ является мастер-моделью практически всех остальных цветовых моделей, используемых в технических областях.

Функции цветового соответствия

Являясь трихроматом, человек имеет три типа светочувствительных детекторов или, другими словами, зрение человека трёхкомпонентно . Каждый тип детекторов (колбочек) имеет различающуюся чувствительность к разным длинам волн спектра, что описывается функцией спектральной чувствительности (которая напрямую определяется видом конкретных молекул фотопсинов , используемых данным типом колбочек). Можно сказать, что глаз, как детектор, выдает три вида сигнала (нервные импульсы). С математической точки зрения, из спектра (описываемого бесконечномерным вектором) путём умножения на функции спектральной чувствительности колбочек получается трёхкомпонентный вектор, описывающий детектируемый глазом цвет. В колориметрии данные функции принято называть функциями цветового соответствия (англ. color matching functions ).

Эксперименты, проведённые Дэвидом Райтом (англ. David Wright ) и Джоном Гилдом (англ. John Guild ) в конце 1920-х и начале 1930-х годов, послужили основой для определения функций цветового соответствия. Изначально функции цветового соответствия были определены для 2-градусного поля зрения (использовался соответствующий колориметр). В 1964 году комитет CIE опубликовал дополнительные данные для 10-градусного поля зрения.

При этом в определении кривых модели XYZ заложен фактор своевольности - форма каждой кривой может быть измерена с достаточной точностью, однако кривая суммарной интенсивности (или сумма всех трёх кривых) заключает в своём определении субъективный момент, при котором реципиента просят определить, имеют ли два источника света одинаковую яркость, даже если эти источники абсолютно разного цвета. Также, имеется произвольность относительной нормировки кривых X, Y и Z, поскольку можно предложить альтернативную работающую модель, в которой кривая чувствительности X имеет двукратно усиленную амплитуду. При этом цветовое пространство будет иметь иную форму. Кривые X, Y и Z в модели CIE XYZ 1931 и 1964 были выбраны таким образом, чтобы площади поверхности под каждой кривой были равны между собой.

Хроматические координаты Yxy

На рисунке справа представлена классическая хроматическая диаграмма модели XYZ с длинами волн цветов. Значения x и y в ней соответствуют X, Y и Z согласно следующим формулам:

x = X/ (X + Y + Z ), y = Y/ (X + Y + Z ).

В математическом смысле данную хроматическую диаграмму можно представить как подобласть действительной проективной плоскости , при этом x и y будут являться проективными координатами цветов. Данное представление позволяет задавать значение цвета через светлоту Y (англ. luminance ) и две координаты x , y . Однако светлота Y в модели XYZ и Yxy - это не то же самое, что яркость Y в модели YUV или YCbCr .

Обычно диаграмма Yxy используется для иллюстрации характеристик гамутов различных устройств воспроизведения цвета - дисплеев и принтеров. Конкретный гамут обычно имеет вид треугольника, углы которого образованы точками основных , или первичных , цветов. Внутренняя область гамута описывает все цвета, которые способно воспроизвести данное устройство.

Особенности цветного зрения

Значения X , Y и Z получаются путём умножения физического спектра излучения на функции цветового соответствия. Синяя и красная часть спектра оказывают меньшее влияние на воспринимаемую яркость, что может быть продемонстрировано на примере:

red
КРАСНЫЙ
green
ЗЕЛЁНЫЙ
blue
СИНИЙ
yellow
КРАСНЫЙ
+ЗЕЛЁНЫЙ
aqua/cyan
ЗЕЛЁНЫЙ
+СИНИЙ
fuchsia/magenta
КРАСНЫЙ
+СИНИЙ
black
ЧЁРНЫЙ
white
КРАСНЫЙ
+ЗЕЛЁНЫЙ
+СИНИЙ

Для среднестатистического человека, имеющего нормальное цветовое зрение, зелёный будет восприниматься ярче синего. В то же время, хотя чистый синий цвет воспринимается как очень неяркий (если рассматривать надпись синего цвета с большого расстояния, то её цвет будет трудно отличить от чёрного), в смеси с зелёным или красным воспринимаемая яркость значительно повышается.

При определённых формах дальтонизма зелёный цвет может восприниматься эквивалентно-ярким синему, а красный как очень тёмный, либо вообще как неразличимый. Люди с дихромией - нарушением восприятия красного, например, не способны видеть красный сигнал светофора при ярком солнечном дневном свете. При дейтеранопии - нарушении восприятия зелёного, в ночных условиях зелёный сигнал светофора становится неотличимым от света уличных фонарей.

Классификация

Цветовые модели можно классифицировать по их целевой направленности:

  1. XYZ - описание восприятия; L*a*b* - то же пространство в других координатах.
  2. Аддитивные модели - рецепты получения цвета на мониторе (например, RGB).
  3. Полиграфические модели - получение цвета при использовании разных систем красок и полиграфического оборудования (например, CMYK).
  4. Модели, не связанные с физикой оборудования, являющиеся стандартом передачи информации.
  5. Математические модели, полезные для каких-либо способов цветокоррекции, но не связанные с оборудованием, например HSV .

Распространённые цветовые модели

См. также

Примечания

Ссылки

  • Алексей Шадрин, Андрей Френкель. Color Management System (CMS) в логике цветовых координатных систем. Часть I , Часть 2 , Часть 3


Загрузка...