sonyps4.ru

Обзор видов модуляции. Квадратурная фазовая манипуляция

Из теории связи известно, что наивысшей помехоустойчивостью обладает двоичная фазовая модуляция BPSK. Однако в ряде случаев за счет уменьшения помехоустойчивости канала связи можно увеличить его пропускную способность. Более того, при применении помехоустойчивого кодирования можно более точно планировать зону, охватываемую системой мобильной связи.

В четырехпозиционной фазовой модуляции используются четыре значения фазы несущего колебания. В этом случае фаза y(t) сигнала, описываемого выражением (25) должна принимать четыре значения: 0°, 90°, 180° и 270°. Однако чаще используются другие значения фаз: 45°, 135°, 225° и 315°. Такой вид представления квадратурной фазовой модуляции приведен на рисунке 1.


Рисунок 1. Полярная диаграмма сигнала четырехпозиционной фазовой модуляции QPSK

На этом же рисунке представлены значения бит, передаваемых каждым состоянием фазы несущего колебания. Каждое состояние осуществляет передачу сразу двух бит полезной информации. При этом содержимое бит выбрано таким образом, чтобы переход к соседнему состоянию фазы несущего колебания за счет ошибки приема приводил не более чем к одиночной битовой ошибке.

Обычно для формирования сигнала QPSK модуляции используется квадратурный модулятор. Для реализации квадратурного модулятора потребуется два умножителя и . На входы умножителей можно подавать входные битовые потоки непосредственно в коде NRZ. такого модулятора приведена на рисунке 2.



Рисунок 2. Структурная схема модулятора QPSK – NRZ

Так как при этом в течение одного символьного интервала передается сразу два бита входного битового потока, то символьная скорость этого вида модуляции составляет 2 бита на символ. Это означает, что при реализации модулятора следует разделять входной поток на две составляющих — синфазную составляющую I и квадратурную составляющую Q. Синхронизацию последующих блоков следует вести с символьной скоростью.

При такой реализации спектр сигнала на выходе модулятора получается ничем не ограниченный и его примерный вид приведен на рисунке 3.



Рисунок 3. Спектр сигнала четырехпозиционной фазовой модуляции QPSK, модулированного сигналом NRZ

Естественно, этот сигнал можно ограничить по спектру при помощи полосового фильтра, включенного на выходе модулятора, однако так никогда не делают. Намного эффективнее работает фильтр Найквиста. Структурная схема квадратурного модулятора сигнала QPSK, построенная с использованием фильтра Найквиста приведена на рисунке 4.



Рисунок 4. Структурная схема модулятора QPSK с использованием фильтра Найквиста

Фильтр Найквиста можно реализовать только с использованием цифровой техники, поэтому в схеме, приведенной на рисунке 4, перед квадратурным модулятором предусмотрен цифро-аналоговый преобразователь (ЦАП). Особенностью работы фильтра Найквиста является то, что в промежутках между отсчетными точками сигнал на его входе должен отсутствовать, поэтому на его входе стоит формирователь импульсов, выдающий сигнал на свой выход только в момент отсчетных точек. Все остальное время на его выходе присутствует нулевой сигнал.

Пример формы передаваемого цифрового сигнала на выходе фильтра Найквиста приведен на рисунке 5. Сигнал на графике выглядит непрерывным благодаря достаточно высокой частоте дискретизации.



Рисунок 5. Пример временной диаграммы сигнала Q при четырехпозиционной фазовой модуляции QPSK

Так как для сужения спектра радиосигнала в передающем устройстве используется фильтр Найквиста, то межсимвольные искажения в сигнале отсутствуют только в сигнальных точках. Это отчетливо видно по глазковой диаграмме сигнала Q, приведенной на рисунке 6.



Рисунок 6. глазковая диаграмма сигнала на входе Q модулятора

Кроме сужения спектра сигнала, применение фильтра Найквиста приводит к изменению амплитуды формируемого сигнала. В промежутках между отсчетными точками сигнала амплитуда может, как возрастать по отношению к номинальному значению, так и уменьшаться почти до нулевого значения.

Для того чтобы отследить изменения, как амплитуды сигнала QPSK, так и его фазы лучше воспользоваться векторной диаграммой. Векторная диаграмма того же самого сигнала, что приведен на рисунках 5 и 6, показана на рисунке 7.


Рисунок 7 векторная диаграмма QPSK сигнала c α = 0.6

Изменение амплитуды сигнала QPSK видно и на осциллограмме сигнала QPSK на выходе модулятора. Наиболее характерный участок временной диаграммы сигнала, приведенного на рисунках 6 и 7, показан на рисунке 8. На этом рисунке отчетливо видны как провалы амплитуды несущей модулированного сигнала, так и увеличение ее значения относительно номинального уровня.



Рисунок 8. временная диаграмма QPSK сигнала c α = 0.6

Сигналы на рисунках 5 ... 8 приведены для случая использования фильтра Найквиста с коэффициентом скругления a = 0.6 . При использовании фильтра Найквиста с меньшим значением этого коэффициента влияние боковых лепестков импульсной характеристики фильтра Найквиста будет сказываться сильнее и явно прослеживающиеся на рисунках 6 и 7 четыре пути прохождения сигналов сольются в одну непрерывную зону. Кроме того, возрастут выбросы амплитуды сигнала относительно номинального значения.



Рисунок 9 – спектрограмма QPSK сигнала c α = 0.6

Присутствие амплитудной модуляции сигнала приводит к тому, что в системах связи, использующих этот вид модуляции, приходится использовать высоколинейный усилитель мощности. К сожалению, такие усилители мощности обладают низким кпд.

Частотная модуляция с минимальным разносом частот позволяет уменьшить ширину полосы частот, занимаемых цифровым радиосигналом в эфире. Однако даже этот вид модуляции не удовлетворяет всем требованиям, предъявляемым к современным радиосистемам мобильной связи. Обычно сигнал MSK в радиопередатчике дофильтровывают обычным фильтром. Именно поэтому появился еще один вид модуляции с еще более узким спектром радиочастот в эфире.

Литература:

  1. "Проектирование радиоприемных устройств" под ред. А.П. Сиверса - М.: "Высшая школа" 1976 стр. 6
  2. Палшков В.В. "Радиоприемные устройства" - М.: "Радио и связь" 1984 стр. 32

Вместе со статьей "Четырехпозиционная фазовая модуляция (QPSK)" читают:


http://сайт/UGFSvSPS/modul/DQPSK/


http://сайт/UGFSvSPS/modul/BPSK/


http://сайт/UGFSvSPS/modul/GMSK/


http://сайт/UGFSvSPS/modul/FFSK/

5. ОБЗОР ВИДОВ МОДУЛЯЦИИ

Преобразование несущего гармонического колебания (одного или нескольких его параметров) в соответствии с законом изменения передаваемой информационной последовательности называется модуляцией. При передаче цифровых сигналов в аналоговом виде оперируют понятием – манипуляция.

Способ модуляции играет основную роль в достижении максимально возможной скорости передачи информации при заданной вероятности ошибочного приема. Предельные возможности системы передачи можно оценить с помощью известной формулы Шеннона, определяющей зависимость пропускной способности С непрерывного канала с белым гауссовским шумом от используемой полосы частот F и отношения мощностей сигнала и шума Pс/Pш.

где PС - средняя мощность сигнала;

PШ - средняя мощность шума в полосе частот.

Пропускная способность определяется как верхняя граница реальной скорости передачи информации V. Приведенное выше выражение позволяет найти максимальное значение скорости передачи, которое может быть достигнуто в гауссовском канале с заданными значениями: ширины частотного диапазона, в котором осуществляется передача (DF) и отношения сигнал – шум (PС/РШ).

Вероятность ошибочного приема бита в конкретной системе передачи определяется отношением PС/РШ. Из формулы Шеннона следует, что возрастание удельной скорости передачи V/DF требует увеличения энергетических затрат (РС) на один бит. Зависимость удельной скорости передачи от отношения сигнал/шум показана на рис. 5.1.

Рисунок 5.1 – Зависимость удельной скорости передачи от отношения сигнал/шум

Любая система передачи может быть описана точкой, лежащей ниже приведенной на рисунке кривой (область В). Эту кривую часто называют границей или пределом Шеннона. Для любой точки в области В можно создать такую систему связи, вероятность ошибочного приема у которой может быть настолько малой, насколько это требуется .

Современные системы передачи данных требуют, чтобы вероятность необнаруженной ошибки была не выше величины 10-4…10-7 .

В современной цифровой технике связи наиболее распространенными являются частотная модуляция (FSK), относительная фазовая модуляция (DPSK), квадратурная фазовая модуляция (QPSK), фазовая модуляция со сдвигом (смещением), обозначаемая как O-QPSK или SQPSK, квадратурная амплитудная модуляция (QAM).

При частотной модуляции значениям «0» и «1» информационной последовательности соответствуют определенные частоты аналогового сигнала при неизменной амплитуде. Частотная модуляция весьма помехоустойчива, однако при частотной модуляции неэкономно расходуется ресурс полосы частот канала связи. Поэтому этот вид модуляции применяется в низкоскоростных протоколах, позволяющих осуществлять связь по каналам с низким отношением сигнал/шум.

При относительной фазовой модуляции в зависимости от значения информационного элемента изменяется только фаза сигнала при неизменной амплитуде и частоте. Причем каждому информационному биту ставится в соответствие не абсолютное значение фазы, а ее изменение относительно предыдущего значения.

Чаще применяется четырехфазная DPSK, или двукратная DPSK, основанная на передаче четырех сигналов, каждый из которых несет информацию о двух битах (дибите) исходной двоичной последовательности. Обычно используется два набора фаз: в зависимости от значения дибита (00, 01, 10 или 11) фаза сигнала может измениться на 0°, 90°, 180°, 270° или 45°, 135°, 225°, 315° соответственно. При этом, если число кодируемых бит более трех (8 позиций поворота фазы), резко снижается помехоустойчивость DPSK. По этой причине для высокоскоростной передачи данных DPSK не используется.

Модемы с 4-позиционной или квадратурной фазовой модуляцией используются в системах, в которых теоретическая спектральная эффективность устройств передачи BPSK (1 бит/(с·Гц)) недостаточна при имеющейся в наличии полосе частот. Различные методы демодуляции, используемые в системах BPSK, применяются также и в системах QPSK. Кроме прямого распространения методов двоичной модуляции на случай QPSK используется также 4-позиционная модуляция со сдвигом (смещением). Некоторые разновидности QPSK и BPSK приведены в табл. 5.1 .

При квадратурной амплитудной модуляции изменяется как фаза, так и амплитуда сигнала, что позволяет увеличить количество кодируемых бит и при этом существенно повысить помехоустойчивость. В настоящее время используются способы модуляции, в которых число кодируемых на одном бодовом интервале информационных бит, может достигать 8…9, а число позиций сигнала в сигнальном пространстве – 256…512.

Таблица 5.1 – Разновидности QPSK и BPSK

Двоичная PSK Четырехпозиционная PSK Краткое описание
BPSK QPSK Обычные когерентные BPSK и QPSK
DEBPSK DEQPSK Обычные когерентные BPSK и QPSK с относительным кодированием и СВН
DBSK DQPSK QPSK с автокорреляционной демодуляцией (нет СВН)
FBPSK

BPSK или QPSK С запатентованным процессором Феера, пригодным для систем с нелинейным усилением

QPSK со сдвигом (смещением)

QPSK со сдвигом и относительным кодированием

QPSK со сдвигом и запатентованным Феером процессорами

QPSK с относительным кодированием и фазовым сдвигом на р/4

Квадратурное представление сигналов является удобным и достаточно универсальным средством их описания. Квадратурное представление заключается в выражении колебания линейной комбинацией двух ортогональных составляющих - синусоидальной и косинусоидальной:

S(t)=x(t)sin(wt+(j))+y(t)cos(wt+(j)), (5.2)

где x(t) и y(t) - биполярные дискретные величины.

Такая дискретная модуляция (манипуляция) осуществляется по двум каналам на несущих, сдвинутых на 90° друг относительно друга, т.е. находящихся в квадратуре (отсюда и название представления и метода формирования сигналов).

Поясним работу квадратурной схемы (рис. 5.2) на примере формирования сигналов QPSK.


Рисунок 5.2 – Схема квадратурного модулятора

Исходная последовательность двоичных символов длительностью Т при помощи регистра сдвига разделяется на нечетные импульсы Y, которые подаются в квадратурный канал (coswt), и четные - X, поступающие в синфазный канал (sinwt). Обе последовательности импульсов поступают на входы соответствующих формирователей манипулирующих импульсов, на выходах которых образуются последовательности биполярных импульсов x(t) и y(t).

Манипулирующие импульсы имеют амплитуду и длительность 2T. Импульсы x(t) и y(t) поступают на входы канальных перемножителей, на выходах которых формируются двухфазные фазомодулированные колебания. После суммирования они образуют сигнал QPSK.

Для приведенного выше выражения для описания сигнала характерна взаимная независимость многоуровневых манипулирующих импульсов x(t), y(t) в каналах, т.е. единичному уровню в одном канале может соответствовать единичный или нулевой уровень в другом канале. В результате выходной сигнал квадратурной схемы изменяется не только по фазе, но и по амплитуде. Поскольку в каждом канале осуществляется амплитудная манипуляция, этот вид модуляции называют амплитудной квадратурной модуляцией.

Пользуясь геометрической трактовкой, каждый сигнал QAM можно изобразить вектором в сигнальном пространстве.

Отмечая только концы векторов, для сигналов QAM получаем изображение в виде сигнальной точки, координаты которой определяются значениями x(t) и y(t). Совокупность сигнальных точек образует так называемое сигнальное созвездие.

На рис. 5.3 показана структурная схема модулятора, а на рис. 5.4 – сигнальное созвездие для случая, когда x(t) и y(t) принимают значения ±1, ±3 (QAM-4).

Рисунок 5.4 – Сигнальная диаграмма QAM-4

Величины ±1, ±3 определяют уровни модуляции и имеют относительный характер. Созвездие содержит 16 сигнальных точек, каждая из которых соответствует четырем передаваемым информационным битам.

Комбинация уровней ±1, ±3, ±5 может сформировать созвездие из 36 сигнальных точек. Однако из них в протоколах ITU-T используется только 16 равномерно распределенных в сигнальном пространстве точек.

Существует несколько способов практической реализации QAM-4, наиболее распространенным из которых является так называемый способ модуляции наложением (SPM). В схеме, реализующей данный способ, используются два одинаковых QPSK (рис. 5.5).

Используя эту же методику получения QAM, можно получить схему практической реализации QAM-32 (рис.5.6).

Рисунок 5.5 – Схема модулятора QAM-16

Рисунок 5.6 – Схема модулятора QAM-32


Получение QAM-64, QAM-128 и QAM-256 происходит таким же образом. Схемы получения этих модуляций не приводятся по причине их громоздкости.

Из теории связи известно, что при равном числе точек в сигнальном созвездии спектр помехоустойчивость систем QAM и QPSK различна. При большом числе точек сигналов спектр QAM идентичен спектру сигналов QPSK. Однако сигналы системы QAM имеют лучшие характеристики, чем системы QPSK. Основная причина этого состоит в том, что расстояние между сигнальными точками в системе QPSK меньше расстояния между сигнальными точками в системе QAM.

На рис. 5.7 представлены сигнальные созвездия систем QAM-16 и QPSK-16 при одинаковой мощности сигнала. Расстояние d между соседними точками сигнального созвездия в системе QAM с L уровнями модуляции определяется выражением:

(5.3)

Аналогично для QPSK:

(5.4)

где М – число фаз.

Из приведенных выражений следует, что при увеличении значения М и одном и том же уровне мощности системы QAM предпочтительнее систем QPSK. Например, при М=16 (L = 4) dQAM = 0.47 и dQPSK = 0.396, а при М=32 (L = 6) dQAM = 0.28, dQPSK = 0.174 .


Таким образом, можно сказать, что QAM на много эффективнее по сравнению с QPSK, что позволяет использовать более многоуровневую модуляцию при одинаковом соотношении сигнал/шум. Поэтому можно сделать вывод, что характеристики QAM будут наиболее приближенными к границе Шеннона (рис.5.8) где: 1 – граница Шеннона, 2 – QAM, 3 – М-позиционная АРК, 4 – М-позиционная PSK .

Рисунок 5.8 - Зависимость спектральной эффективности различных модуляций от C/N


В общем случае М-позиционные системы QAM с линейным усилением, такие как 16-QAM, 64-QAM, 256-QAM, имеют спектральную эффективность выше, чем у QPSK с линейным усилением, имеющей теоретическую предельную эффективность 2 бит/(с∙Гц).

Одной из характерных особенностей QAM является малые значения внеполосной мощности (рис. 5.9) .

Рисунок 5.9 – Энергетический спектр QAM-64

Применение многопозиционной QAM в чистом виде сопряжено с проблемой недостаточной помехоустойчивости. Поэтому во всех современных высокоскоростных протоколах QAM используется совместно с решетчатым кодированием (ТСМ). Сигнальное созвездие ТСМ содержит больше сигнальных точек (позиций сигналов), чем требуется при модуляции без решетчатого кодирования. Например, 16-позиционная QAM преобразует в созвездие 32-QAM с решетчатым кодированием. Дополнительные точки созвездия обеспечивают сигнальную избыточность и могут быть использованы для обнаружения и исправления ошибок. Сверточное кодирование в сочетании с ТСМ вносит зависимость между последовательными сигнальными точками. В результате появился новый способ модуляции, называемый треллис-модуляцией. Выбранная определенным образом комбинация конкретной QAM помехоустойчивого кода носит название сигнально-кодовой конструкции (СКК). СКК позволяют повысить помехозащищенность передачи информации наряду со снижением требований к отношению сигнал/шум в канале на 3 – 6 дБ. В процессе демодуляции производится декодирование принятого сигнала по алгоритму Витерби. Именно этот алгоритм за счет использования введенной избыточности и знания предыстории процесса приема позволяет по критерию максимального правдоподобия выбрать из сигнального пространства наиболее достоверную эталонную точку.

Применение QAM-256 позволяет за 1 бод передавать 8 сигнальных состояний, то есть 8 бит. Это позволяет значительно увеличить скорость передачи данных. Так, при ширине диапазона передачи Df=45 кГц (как в нашем случае) за интервал времени 1/Df можно передать 1 бод, то есть 8 бит. Тогда максимальная скорость передачи по данному частотному диапазону составит

Поскольку в данной системе передача производиться по двум частотным диапазонам с одинаковой шириной, то максимальная скорость передачи данной системы составит 720 кбит/с.

Так как передаваемый поток бит содержит не только информационные биты, а и служебные, то информационная скорость будет зависеть от структуры передаваемых кадров. Кадры применяемые в данной системе передачи данных формируются на основе протоколов Ethernet и V.42 и имеют максимальную длину К=1518 бит, из которых КС=64 – служебные. Тогда информационная скорость передачи будет зависеть от соотношения информационных бит и служебных

Данная скорость превышает скорость, заданную в техническом задании. Поэтому можно сделать вывод, что выбранный способ модуляции удовлетворяет требованиям, поставленным в техническом задании.

Поскольку в данной системе передача осуществляется по двум частотным диапазонам одновременно, то требуется организация двух, параллельно работающих модуляторов. Но следует учитывать, что возможен переход работы системы с основных частотных диапазонов на резервные. Поэтому требуется генерация всех четырех несущих частот и управление ими. Синтезатор частот, предназначенный для генерации несущих частот, состоит из генератора опорного сигнала, делителей и высокодобротных фильтров. В качестве генератора опорных сигналов выступает кварцевый генератор прямоугольных импульсов (рис. 5.10).

Рисунок 5.10 - Генератор с кварцевой стабилизацией

С целью оценки состояния обеспечения безопасности информации; - управление допуском участников совещания в помещение; - организация наблюдения за входом в выделенное помещение и окружающей обстановкой в ходе проведения совещания. 2. основными средствами обеспечения защиты акустической информации при проведении совещания являются: - установка различных генераторов шума, мониторинг помещения на...


С применением полиграфических компьютерных технологий? 10. Охарактеризуйте преступные деяния, предусмотренные главой 28 УК РФ «Преступления в сфере компьютерной информации». РАЗДЕЛ 2. БОРЬБА С ПРЕСТУПЛЕНИЯМИ В СФЕРЕ КОМПЬЮТЕРНОЙ ИНФОРМАЦИИ ГЛАВА 5. КОНТРОЛЬ НАД ПРЕСТУПНОСТЬЮВ СФЕРЕ ВЫСОКИХ ТЕХНОЛОГИЙ 5.1 Контроль над компьютерной преступностью в России Меры контроля над...

11 мая 2011 в 19:42

Модуляция радиосигнала

  • Блог компании Yota

В комментариях к статье посетовал на отсутствие статей описывающей физическую сторону передачи информации по радио каналу.
Мы решили исправить это упущение и написать цикл постов о беспроводной передаче данных.
В первом из них мы расскажем о главном аспекте передачи информации посредством радиосигнала – модуляции.


Модуля́ция (лат. modulatio - размерность) - процесс изменения одного или нескольких параметров высокочастотного несущего колебания по закону низкочастотного информационного сигнала.
Передаваемая информация заложена в управляющем сигнале, а роль переносчика информации выполняет высокочастотное колебание, называемое несущим.
Модуляция может осуществляться изменением амплитуды, фазы или частоты высокочастотной несущей.
Эта техника дает несколько важных преимуществ:

  1. Позволяет сформировать радиосигнал, который будет обладать свойствами соответствующими свойствам несущей частоты. О свойствах волн разных частотных диапазонов можно почитать, например, .
  2. Позволяет использовать антенны малого размера, ведь размер антенны должен быть пропорционален длине волны.
  3. Позволяет избежать интерференции с другими радиосигналами.
Передаваемый в сетях WiMax поток данных соответствует частоте в районе 11 кГц. Если мы попробуем передавать этот низкочастотный сигнал по воздуху, нам понадобится антенна следующих размеров:


Антенна длинной 24 километра не кажется достаточно удобной в использовании.
Если же мы будем передавать этот сигнал наложенным на несущую частоту в 2.5 ГГц (частота используемая в Yota WiMax), то нам понадобится антенна длиной 12 см.

Аналоговая модуляция.

Прежде чем перейти непосредственно к цифровой модуляции, приведу картинку, иллюстрирующую аналоговую AM (амплитудную) и FM (частотную) модуляцию, которая освежит у многих школные познания:


исходный сигнал


AM (амплитудная модуляция)


FM (частотная модуляция)

Цифровая модуляция и ее типы.

В цифровой модуляции аналоговый несущий сигнал модулируется цифровым битовым потоком.
Существуют три фундаментальных типа цифровой модуляции (или шифтинга) и один гибридный:
  1. ASK – Amplitude shift keying (Амплитудная двоичная модуляция).
  2. FSK – Frequency shift keying (Частотая двоичная модуляция).
  3. PSK – Phase shift keying (Фазовая двоичная модуляция).
  4. ASK/PSK.
Упомяну, что существует традиция в русской терминологии радиосвязи использовать для модуляции цифровым сигналом термин «манипуляция».

В случае амплитудного шифтинга амплитуда сигнала для логического нуля может быть (например) в два раза меньше логической и единицы.
Частотная модуляция похожим образом представляет логическую единицу интервалом с большей частотой, чем ноль.
Фазовый шифтинг представляет «0» как сигнал без сдвига, а «1» как сигнал со сдвигом.
Да, тут мы как раз имеем дело со «сдвигом по фазе»:)
Каждая из схем имеет свои сильные и слабые стороны.
  • ASK хороша с точки зрения эффективности использования полосы частот, но подвержена искажениям при наличии шума и недостаточно эффективна с точки зрения потребляемой мощности.
  • FSK – с точностью до наоборот, энергетически эффективна, но не эффективно использует полосу частот.
  • PSK – хороша в обоих аспектах.
  • ASK/PSK – комбинация двух схем. Она позволяет еще лучше использовать полосу частот.
Самая простая PSK схема (показанная на рисунке) имеет собственное название - Binary phase-shift keying. Используется единственный сдвиг фазы между «0» и «1» - 180 градусов, половина периода.
Существуют также QPSK и 8-PSK:
QPSK использует 4 различных сдвига фазы (по четверти периода) и может кодировать 2 бита в символе (01, 11, 00, 10). 8-PSK использует 8 разных сдвигов фаз и может кодировать 3 бита в символе.

Одна из частных реализаций схемы ASK/PSK которая называется QAM - Quadrature Amplitude Modulation (квадратурная амплитудная модуляция (КАМ). Это метод объединения двух AM-сигналов в одном канале. Он позваляет удвоить эффективную пропускную способность. В QAM используется две несущих с одинаковой частотой но с разницей в фазе на четверть периода (отсюда и возникает слово квадратура). Более высокие уровни QAM строятся по тому же принципы, что и PSK. Если вас интересуют детали, вы без труда можете их найти в сети.
Теоретическая эффективность использования полосы пропускания:
Формат Эффективность (бит/с/Гц)
BPSK 1
QPSK 2
8-PSK 3
16-QAM 4
32-QAM 5
64-QAM 6
256-QAM 8

Чем сложнее схема модуляции, тем более пагубное воздействие на нее оказывают искажения при передаче, и тем меньше расстояние от базовой станции, на котором сигнал может быть успешно принят.
Теоретически возможны PSK и QAM схемы еще более высокого уровня, но на практике при их использовании возникает слишком большое количество ошибок.
Теперь, когда мы рассмотрели основные моменты, можно написать какие схемы модуляции применяются в сетях WiMax.

Модуляция сигнала в сетях WiMax.

В WiMax используется «динамическая адаптивная модуляция», которая позволяет базовой станции делать выбор между пропускной способностью и максимальным расстоянием до приемника. Чтобы увеличить дальность, базовая станция может переключиться между 64-QAM, 16-QAM и QPSK.

Заключение.

Я надеюсь, что у меня получилось соблюсти баланс между популярностью изложения и техничностью содержания. Если данная статья окажется востребованной, я продолжу работать в этом направлении. Технология WiMax имеет множество нюансов, о которых можно рассказать.

Как следует из названия, quadrature phase shift keying (QPSK) – квадратурная фазовая манипуляция является модификацией двоичной фазовой манипуляции - binary phase shift keying (BPSK). Вспомните, что метод BPSK на самом деле представляет собой DSBSC модуляцию с цифровым сообщением в качестве модулирующего сигнала. Важно отметить, что при BPSK модуляции информация передается последовательно бит за битом. QPSK также является разновидностью DSBSC модуляции, однако здесь передаются по два бита в течение каждого интервала времени, не используя другую несущую частоту.

В связи с тем, что при QPSK биты передаются парами, может возникнуть иллюзия, что скорость передачи в два раза выше, чем при BPSK. На самом деле, преобразование последовательности одиночных бит в последовательность сдвоенных бит обязательно снижает скорость передачи в два раза, что не позволяет получить выигрыш в скорости.

Тогда зачем этот метод модуляции нужен? Снижение в два раза скорости передачи сигналов методом QPSK позволяет занимать в два раз меньший участок радиочастотного спектра, чем BPSK сигнал. Это дает возможность увеличить количество абонентов в канале связи.

На рисунке 1 приведена блок-схема реализации математической модели QPSK модулятора.

На входе модулятора четные биты (с номерами 0, 2, 4 и т.д.) выделяются с помощью “расщепителя бит” из потока данных и перемножаются с несущей, формируя BPSK сигнал, обозначенный как PSKI. В то же время, нечетные биты (с номерами 1, 3, 5 и т.д.) также выделяются из потока данных и перемножаются с той же несущей, сдвинутой на 90°, формируя второй BPSK сигнал, обозначенный PSK Q . В этом и заключается принцип работы QPSK модулятора.

Перед передачей QPSK сигнала два BPSK сигнала просто складываются и, поскольку они имеют одну и ту же несущую частоту, эти сигналы занимают один и тот же участок спектра. Однако, для того чтобы разделить сигналы, несущие которых сдвинуты на 90º, требуется приемник с фазовым дискриминатором.

На рисунке 2 приведена блок-схема реализации математической модели QPSK демодулятора.

В приведенной схеме демодуляцию двух BPSK сигналов независимо и одновременно осуществляют два детектора на основе умножителей. На выходах детекторов появляются пары битов исходных данных, которые с помощью компаратора очищаются от искажений, и собираются в исходную последовательность с помощью 2-разрядного параллельно-последовательного преобразователя.

Чтобы понять, каким образом каждый детектор выделяет только один BPSK сигнал, а не оба вместе, вспомните, что детектирование DSBSC сигналов обладает “чувствительностью” к фазовому сдвигу. Таким образом, прием сообщения будет оптимальным, только в том случае, если несущие колебания передатчика и приемника будут точно совпадать по фазе. Важно отметить, что при фазовом рассогласовании 90º прием сообщения становится невозможным, т.к. амплитуда восстановленного сигнала становится равной нулю. Другими словами, сообщение полностью подавляется.

QPSK демодулятор данное обстоятельство превращает в преимущество. Обратите внимание, что детекторы произведения на рисунке 2 используют одну несущую, но для одного из детекторов несущая сдвинута на 90°. В этом случае один детектор восстанавливает данные из одного BPSK сигнала, одновременно подавляя другой BPSK сигнал, а второй детектор восстанавливает второй BPSK сигнал, подавляя первый BPSK сигнал.

Цифровая фазовая модуляция - это универсальный и широко используемый метод беспроводной передачи цифровых данных.

В предыдущей статье мы видели, что мы можем использовать дискретные изменения амплитуды или частоты несущей как способ представления единиц и нулей. Неудивительно, что мы также можем представлять цифровые данные с помощью фазы; этот метод называется фазовой манипуляцией (PSK, phase shift keying).

Двоичная фазовая манипуляция

Наиболее простой тип PSK называется двоичной фазовой манипуляцией (BPSK, binary phase shift keying), где «двоичный» относится к использованию двух фазовых смещений (одно для логической единицы и одно для логического нуля).

Мы интуитивно можем признать, что система будет более надежной, если разделение между этими двумя фазами будет большим - конечно, приемнику будет сложно различать символ со смещением фазы 90° от символа со смещением фазы 91°. Для работы у нас есть диапазон фаз 360°, поэтому максимальная разница между фазами логической единицы и логического нуля составляет 180°. Но мы знаем, что переключение синусоиды на 180° - это то же самое, что ее инвертирование; таким образом, мы можем думать о BPSK как о простом инвертировании сигнала несущей в ответ на одно логическое состояние и оставление ее в исходном состоянии в ответ на другое логическое состояние.

Чтобы сделать следующий шаг, мы вспомним, что умножение синусоиды на отрицательную единицу - это то же самое, что ее инвертирование. Это приводит к возможности внедрения BPSK с использованием следующей базовой аппаратной конфигурации:

Базовая схема получения BPSK сигнала

Однако эта схема легко может привести к переходам с высоким наклоном в форме сигнала несущей частоты: если переход между логическими состояниями происходит, когда сигнал несущей находится в своем максимальном значении, напряжение сигнала несущей должно быстро перейти к минимальному значению.

Высокий наклон в форме BPSK сигнала при изменении логического состояния модулирующего сигнала

Такие события с высоким наклоном нежелательны, потому что они создают энергию на высокочастотных составляющих, которые могут помешать другим радиочастотным сигналам. Кроме того, усилители имеют ограниченную способность производить резкие изменения в выходном напряжении.

Если мы усовершенствуем вышеприведенную реализацию двумя дополнительными функциями, то сможем обеспечить плавные переходы между символами. Во-первых, нам необходимо убедиться, что период цифрового бита равен одному или нескольким полным периодам сигнала несущей. Во-вторых, нам необходимо синхронизировать цифровые переходы с сигналом несущей. Благодаря этим усовершенствованиям мы могли бы разработать систему таким образом, чтобы изменение фазы на 180° происходило, когда сигнал несущей частоты находится в пересечении нуля (или близко к нему).

QPSK

BPSK передает один бит на символ, к чему мы и привыкли. Всё, что мы обсуждали в отношении цифровой модуляции, предполагало, что сигнал несущей изменяется в зависимости от того, находится ли цифровое напряжение на низком или высоком логическом уровне, и приемник воссоздает цифровые данные, интерпретируя каждый символ как 0 или 1.

Прежде чем обсуждать квадратурную фазовую манипуляцию (QPSK, quadrature phase shift keying), нам необходимо ввести следующую важную концепцию: нет причин, по которым один символ может передавать только один бит. Это правда, что мир цифровой электроники строится вокруг схем, в которых напряжение находится на одном или другом экстремальном уровне, так что напряжение всегда представляет собой один цифровой бит. Но радиосигнал не является цифровым; скорее, мы используем аналоговые сигналы для передачи цифровых данных, и вполне приемлемо разработать систему, в которой аналоговые сигналы кодируются и интерпретируются таким образом, чтобы один символ представлял два (или более) бита.

Преимущество QPSK заключается в более высокой скорости передачи данных: если мы сохраняем одну и ту же длительность символа, то можем удвоить скорость передачи данных от передатчика к приемнику. Недостатком является сложность системы. (Вы можете подумать, что QPSK более восприимчив к битовым ошибкам, чем BPSK, поскольку разделение между возможными значениями в нем меньше. Это разумное предположение, но если вы рассмотрите их математику, то оказывается, что вероятности ошибок на самом деле очень похожи.)

Варианты

QPSK модуляция, конечно, является эффективным методом модуляции. Но ее можно улучшить.

Скачки фазы

Стандартная QPSK модуляция гарантирует, что переходы между символами будут происходить с высоким наклоном; поскольку скачки фазы могут составлять ±90°, мы не можем использовать подход, описанный для скачков фазы на 180°, создаваемых BPSK модуляцией.

Эту проблему можно смягчить, используя один из двух вариантов QPSK. Квадратурная фазовая манипуляция со сдвигом квадратур (OQPSK, Offset QPSK), которая включает в себя добавление задержки к одному из двух потоков цифровых данных, используемых в процессе модуляции, уменьшает максимальный скачок фазы до 90°. Другим вариантом является π/4-QPSK, которая уменьшает максимальный скачок фазы до 135°. Таким образом, OQPSK обладает преимуществом в уменьшении разрывов фазы, но π/4-QPSK выигрывает, поскольку она совместима с дифференциальном кодированием (обсуждается ниже).

Другим способом решения проблем с разрывами между символами является реализация дополнительной обработки сигналов, которая создает более плавные переходы между символами. Этот подход включен в схему модуляции, называемую частотной модуляцией минимального фазового сдвига (MSK, minimum shift keying), а также улучшение MSK, известное как Гауссовская MSK (GMSK, Gaussian MSK).

Дифференциальное кодирование

Еще одна сложность заключается в том, что демодуляция PSK сигналов сложнее, чем FSK сигналов. Частота является «абсолютной» в том смысле, что изменения частоты всегда можно интерпретировать, анализируя изменения сигнала во времени. Фаза, однако, относительна в том смысле, что она не имеет универсальной опорной точки - передатчик генерирует изменения фазы относительно одного момента времени, а приемник может интерпретировать изменения фазы относительно другого момента времени.

Практическое проявление этого заключается в следующем: если между фазами (или частотами) генераторов, используемых для модуляции и демодуляции, существуют различия, PSK становится ненадежной. И мы должны предположить, что будут разности фаз (если приемник не включает в себя схему восстановления несущей).

Дифференциальная QPSK (DQPSK, differential QPSK) - это вариант, который совместим с некогерентными приемниками (т.е. приемниками, которые не синхронизируют генератор демодуляции с генератором модуляции). Дифференциальная QPSK кодирует данные, создавая определенный сдвиг фазы относительно предыдущего символа таким образом, чтобы схема демодуляции анализировала фазу символа, используя опорную точку, которая является общей и для приемника, и для передатчика.

Резюме

  • Двоичная фазовая манипуляция (BPSK) - это простой способ модуляции, который может передавать один бит на символ.
  • Квадратурная фазовая манипуляция (QPSK) более сложна, но она удваивает скорость передачи данных (или достигает той же скорости передачи данных при вдвое меньшей ширине полосы частот).
  • Квадратурная фазовая манипуляция со сдвигом квадратур (OQPSK), π/4-QPSK, частотная модуляция минимального фазового сдвига (MSK) - это схемы модуляции, которые смягчают эффекты изменения напряжения сигнала несущей с высоким наклоном при переходе между символами.
  • Дифференциальная QPSK (DQPSK) использует разность фаз между соседними символами, чтобы избежать проблем, связанных с отсутствием фазовой синхронизации между передатчиком и приемником.


Загрузка...