sonyps4.ru

Обработка и хранение технико экономической информации. Экономическая информация может быть

Экономическая информационная система по своему составу напоминает предприятие по переработке данных и производству выходной информации. Как и в любом производственном процессе, в ЭИС присутствует технология преобразования исходных данных в результатную информацию. Понятие технология определяется как система взаимосвязанных способов обработки материалов и приемов изготовления продукции в производственном процессе.

Под информационной технологией (ИТ) понимается система методов и способов сбора, накопления, хранения, поиска и обработки информации на основе применения средств вычислительной техники.

Упорядоченная последовательность взаимосвязанных действий, выполняющихся с момента возникновения информации до получения результата, называется технологическим процессом .

Понятие информационной технологии, таким образом, неотделимо от той специфической среды, в которой она реализована, т.е. от технической и программной среды. Следует заметить, что информационная технология - достаточно общее понятие и как инструмент может использоваться различными пользователями, как непрофессионалами в компьютерной области, так и разработчиками новых ИТ.

Функциональная часть ЭИС всегда связана с предметной областью и понятием информационных технологий. Вообще говоря, технология как некоторый прецесс присутствует в любой предметной области. Так, например, технология выдачи кредита банком может иметь свои особенности в зависимости от вида кредита, вида залога и др. В ходе выполнения этих технологических процессов сотрудник банка обрабатывает соответствующую информацию.

Решение экономических и управленческих задач всегда тесно связано с выполнением ряда операций по сбору необходимой для решения этих задач информации, переработке ее по некоторым алгоритмам и выдаче лицу, принимающему решение (ЛПР), в удобной форме. Очевидно, что технология принятия решений всегда имела информационную основу, хотя обработка данных и осуществлялась вручную. Однако с внедрением средств вычислительной техники в процесс управления появился специальный термин информационная технология.



Чтобы терминологически выделить традиционную технологию решения экономических и управленческих задач, введем, термин предметная технология, которая представляет собой последовательность технологических этапов по модификации первичной информации в результатную. Например, технология бухгалтерского учета предполагает поступление первичной документации, которая трансформируется в форму бухгалтерской проводки. Последняя, изменяя состояние аналитического учета, приводит к изменению счетов синтетического учета и далее баланса.

ИТ отличаются по типу обрабатываемой информации (рис. 1.4), но могут объединяться в интегрированные технологии.

Рис. 1.4. Классификация ИТ в зависимости от типа обрабатываемой информации

Выделение, предложенное на этом рисунке, в известной мере условно, поскольку большинство этих ИТ позволяет поддерживать и другие виды информации. Так, в текстовых процессорах предусмотрена возможность выполнения примитивных расчетов, табличные процессоры могут обрабатывать не только цифровую, но и текстовую информацию, а также обладают встроенным аппаратом генерации графики. Однако каждая из этих технологий все-таки в большей мере акцентирована на обработке информации определенного вида.

Очевидно, что модификация элементов, составляющих понятие ИТ, дает возможность образования огромного их количества в различных компьютерных средах.

И сегодня можно говорить об обеспечивающих ИТ (ОИТ) и функциональных ИТ (ФИТ).

Обеспечивающие ИТ - технологии обработки информации, которые могут использоваться как инструментарий в различных предметных областях для решения различных задач. Информационные технологии обеспечивающего типа могут быть классифицированы относительно классов задач, на которые они ориентированы. Обеспечивающие технологии базируются на совершенно разных платформах, что обусловлено различием видов компьютеров и программных сред, поэтому при их объединении на основе предметной технологии возникает проблема системной интеграции. Она заключается в необходимости приведения различных ИТ к единому стандартному интерфейсу.

Функциональная ИТ представляет собой такую модификацию обеспечивающих ИТ, при которой реализуется какая-либо из предметных технологий. Например, работа сотрудника кредитного отдела банка с использованием ЭВМ обязательно предполагает применение совокупности банковских технологий оценки кредитоспособности ссудозаемщика, формирования кредитного договора и срочных обязательств, расчета графика платежей и других технологий, реализованных в какой-либо информационной технологии: СУБД, текстовом процессоре и т.д. Трансформация обеспечивающей информационной технологии в чистом виде в функциональную (модификация некоторого общеупотребительного инструментария в специальный) может быть сделана как специалистом-проектировщиком, так и самим пользователем. Это зависит от того, насколько сложна такая трансформация, т.е. от того, насколько она доступна самому пользователю; экономисту. Эти возможности все более и более расширяются, поскольку обеспечивающие технологии год от года становятся дружественнее. Таким образом, в арсенале сотрудника кредитного отдела могут находиться как обеспечивающие технологии, с которыми он постоянно работает: текстовые и табличные процессоры, так и специальные функциональные технологии: табличные процессоры, СУБД, экспертные системы, реализующие предметные технологии.

Предметная технология и информационная технология влияют друг на друга. Так, например, наличие пластиковых карточек как носителя финансовой информации принципиально меняет предметную технологию, предоставляя такие возможности, которые без этого носителя просто отсутствовали. С другой стороны, предметные технологии, наполняя специфическим содержанием ИТ, акцентируют их на вполне определенные функции. Такие технологии могут носить типовой характер или уникальный, что зависит от степени унификации технологии выполнения этих функций.

В качестве примера можно привести банковскую технологию работы с картотекой №3, которая содержит документы, поступившие на обработку и не выполненные из-за закрытия лицевого счета по мотивам финансового контроля. В этом случае сначала закрывается счет. Затем, если применяется информационная технология, эта запись помечается номером картотеки, с тем чтобы вес остальные документы, уменьшающие остаток на счете, попадали бы в эту картотеку. В структуре операционно-учетного отдела банка первая и вторая функции могут выполняться как одним исполнителем, так и двумя разными операционистами. Кроме того, процессы выполнения этих функций могут быть разнесены во времени. Таким образом, пометка в лицевом счете, сделанная при его временном закрытии одним операционистом, используется другим операционистом в процессе обработки поступающих к оплате документов. В то же время эта пометка может быть сделана тем операционистом, который является ответственным исполнителем по данному счету (открывает, закрывает счета, обеспечивает операции по счету, начисление процентов и др.).

Классификация ИТ по типу пользовательского интерфейса (рис.1.5) позволяет говорить о системном и прикладном интерфейсе. И если последний связан с реализацией некоторых функциональных ИТ, то системный интерфейс - это набор приемов взаимодействия с компьютером, который реализуется операционной системой или ее надстройкой. Современные операционные системы поддерживают командный, W1MP- и SILK- -интерфейсы. В настоящее время поставлена проблема создания общественного интерфейса (social interface).

Рис. 1.5. Классификация ИТ по типу пользовательского интерфейса

Командный интерфейс - самый простой. Он обеспечивает выдачу на экран системного приглашения для ввода команды. Например, в операционной системе MS-DOS приглашение выглядит как С:\>, а в операционной системе UNIX - это обычно знак доллара.

WIMP-интерфейс расшифровывается как Windows (окно) Image (образ) Menu (меню) Pointer (указатель). На экране высвечивается окно, содержащее образы программ и меню действий. Для выбора одного из них используется указатель.

SILK-интерфейс расшифровывается - Spich (речь) Image (образ) Language (язык) Knowledge (знание). При использований SILK-интерфейса на экране по речевой команде происходит перемещение от одних поисковых образов к другим по смысловым семантическим связям.

Общественный интерфейс будет включать в себя лучшие решения WIMP- и SILK-интерфейсов. Предполагается, что при использовании общественного интерфейса не нужно будет разбираться в меню. Экранные образы однозначно укажут дальнейший путь. Перемещение от одних поисковых образов к другим будет проходить по смысловым семантическим связям.

Операционные системы (ОС) делятся на однопрограммные, многопрограммные и многопользовательские. К однопрограммным операционным системам относятся, например, MS-DOS и др. Многопрограммные операционные системы, например UNIX (XENIX), Windows, начиная с версии 3.1, DOS 7.0, OS/2 и др., позволяют одновременно выполнять несколько приложений. Различаются они алгоритмом разделения времени. Если однопрограммные системы работают или в пакетном режиме, или в диалоговом, то многопрограммные могут совмещать указанные режимы. Таким образом, эти системы обеспечивают пакетную и диалоговую технологии.

Многопользовательские системы реализуются сетевыми операционными системами. Они обеспечивают удаленные сетевые технологии, а также пакетные и диалоговые технологии для общения на рабочем месте. Все три типа информационных технологий находят самое широкое распространение в экономических информационных системах.

Большинство обеспечивающих и функциональных ИТ могут быть использованы управленческим работником без дополнительных посредников (программистов). При этом пользователь может влиять на последовательность применения тех или иных технологий. Таким образом, с точки зрения участия или неучастия пользователя в процессе выполнения функциональных ИТ все они могут быть разделены на пакешые и диалоговые.

Экономические задачи, решаемые в пакетном режиме, характеризуются следующими свойствами:

· алгоритм решения задачи формализован, процесс ее решения не требует вмешательства человека;

· имеется большой объем входных и выходных данных, значительная часть которых хранится на магнитных носителях;

· расчет выполняется для большинства записей входных файлов;

· большое время решения задачи обусловлено большими объемами данных;

· регламентность, т.е. задачи решаются с заданной периодичностью.. Диалоговый режим является не альтернативой пакетному, а его развитием если применение пакетного режима позволяет уменьшить вмешательство пользователя в процесс решения задачи, то диалоговый режим предполагает отсутствие жестко закрепленной последовательности операций обработки данных (если она не обусловлена предметной технологией).

Особое место занимают сетевые технологии, которые обеспечивают взаимодействие многих пользователей.

Информационные технологии различаются по степени их взаимодействия между собой (рис. 1.6). Они могут быть реализованы различными техническими средствами: дискетное и сетевое взаимодействие, а также с использованием различных концепций обработки и хранения данных: распределенная информационная база и распределенная обработка данных.

Рис. 1.6. Классификация ИТ по степени их взаимодействия

Стандарт пользовательского интерфейса для диалоговых ИТ.

Пользовательский интерфейс включает в себя три понятия: общение приложения с пользователем; общение пользователя с приложением; язык общения. Язык общения определяется разработчиком программного приложения. Свойствами интерфейса являются: конкретность и наглядность. Наиболее распространенный ранее командный интерфейс имел ряд недостатков (многочисленность команд, отсутствие стандарта для приложений и т.д.), что ограничивало круг его применения. Для преодоления этих недостатков были предприняты попытки его упростить (например, Norton Commander (NC)). Однако настоящим решением проблемы стало создание графической оболочки для операционной системы. В настоящее время практически все распространенные операционные системы используют для своей работы графический интерфейс. Примером здесь может служить интерфейс, разработанный в исследовательском центре Пало Альто фирмы Xerox для компьютеров Macintosh фирмы Apple. Немного позже была разработана графическая оболочка под названием Microsoft Windows, реализующая технологию WIMP и удовлетворяющая стандарту CUA. Новшеством были применение мыши, выбор команд из меню, предоставление программам отдельных окон, использование для обозначения программ образов в виде пиктограмм.

Удобство интерфейса и богатство возможностей делают Windows оптимальной системой для повседневной работы. Приложения, написанные под Windows, используют тот же интерфейс, поэтому его единообразие сводит к минимуму процесс обучения работе с любым приложением Windows. Выход на рынок Windows-95 еще более упростил работу пользователя, так как интерфейс стал еще более простым, документированным, включающим встроенные коммуникационные возможности.

Некоторые наиболее распространенные информационные технологии

Самыми распространенными компьютерными технологиями являются редактирование текстовых данных, обработка графических и табличных данных.

Для работы с текстом используются текстовые процессоры (или редакторы).

К настоящему времени разработано много текстовых процессоров. В целом назначение у них одно, но предоставляемые возможности и средства их реализации - разные. То же относится к графическим процессорам и электронным таблицам.

Среди текстовых процессоров Windows, как наиболее распространенной среды, можно выделить Write и Word. Технология их использования основана на интерфейсе WIMP, но возможности процессоров типа Word значительно расширены и в какой-то мере его можно рассматривать как настольную издательскую систему.

Какие функции обеспечивают текстовые процессоры? Это набор текста, хранение его на компьютерных носителях, просмотр и печать. В большинстве процессоров реализованы функции проверки орфографии, выбора шрифтов и кеглей, центровки заголовков, разбиения текста на страницы, печати в одну или несколько колонок, вставки в текст таблиц и рисунков, использования шаблонов постраничных ссылок, работа с блоками текста, изменения структуры документа.

Для быстрого просмотра текста ему может быть присвоен статус черновика, а также изменен масштаб изображения. Перемещение по тексту упрощается за счет использования закладок.

С помощью средств форматирования можно создать внешний вид документа, изменить стиль, подчеркнуть, выделить курсивом, изменить размеры символов, выделить абзацы, выровнять их влево, вправо, к центру, выделить их рамкой.

Перед печатью документа его можно просмотреть, проверить текст, выбрать размер бумаги, задать число копий при печати.4

Повторяющиеся участки текста, например обращение в письме или заключительные слова, можно обозначить как автотекст, присвоить имя. В дальнейшем вместо данного текста достаточно указать его имя, а текстовый процессор автоматически заменит его.

Потребность ввода графиков, диаграмм, схем, рисунков, этикеток в произвольный текст или документ вызвала необходимость создания1 графических процессоров. Графические процессоры представляют собой инструментальные средства, позволяющие создавать и модифицировать графические образы с использованием соответствующих информационных технологий:

· коммерческой графики;

· иллюстративной графики;

· научной графики.

Информационные технологии коммерческой графики обеспечивают отображение информации, хранящейся в табличных процессорах, базах данных и отдельных локальных файлах в виде двух- или трехмерных графиков типа круговой диаграммы, столбиковой гистограммы, линейных графиков и др.

ИТ иллюстративной графики дают возможность создания иллюстраций для различных текстовых документов в виде регулярных - различные геометрические фигуры (так называемая векторная графика) - и нерегулярных структур - рисунки пользователя (растровая графика). Процессоры, реализующие ИТ иллюстративной растровой графики, позволяют пользователю выбрать толщину и цвет линий, палитру заливки, шрифт для записи и наложения текста, созданные ранее графические образы. Кроме того, пользователь может стереть, разрезать рисунок и перемещать его части. Эти средства реализованы в ИТ Paint Brush. Но есть ИТ, позволяющие просматривать изображения в режиме слайдов, спецэффектов и оживлять их (Corell Draw, Storyboard, 3d Studio).

ИТ научной графики предназначены для обслуживания задач картографии, оформления научных расчетов, содержащих химические, математические и прочие формулы.

Большинство графических процессоров удовлетворяют стандарту пользовательского интерфейса W1MP. Панель содержит меню действий и линейки инструментов и цветов. Линейка инструментов состоит из набора графических символов, требующихся для построения практически любого рисунка. Линейка цветов содержит цветовую гамму монитора компьютера.

Документы табличного вида составляют большую часть документооборота предприятия любого типа. Поэтому табличные ИТ особо важны при создании и эксплуатации ЭИС. Комплекс программных средств, реализующих создание, регистрацию, хранение, редактирование, обработку электронных таблиц и выдачу их на печать, принято называть табличным процессором. Электронная таблица представляет собой двухмерный массив строк и столбцов, размещенный в памяти компьютера.

Широкое распространение получили такие табличные процессоры, как SupcrCalc, VisiCalc, Lotus 1-2-3, Quattro Pro. Для Windows был создан процессор Excel, технология работы с. которым аналогична работе с любым приложением Windows интерфейса WIMP.

Табличный процессор позволяет решать большинство финансовых и административных задач, например, таких, как расчет заработной платы и другие учетные задачи; прогнозирование продаж, роста рынка, доходов; анализ процентных ставок и налогов; подготовка финансовых деклараций и балансовых таблиц; ведение бухгалтерских книг для учета платежей; сметные калькуляции; учет денежных чеков; бюджетные и статистические расчеты.

Основной единицей электронной таблицы является имеющий имя рабочий лист, где она располагается. Место пересечения строки со столбцом называется ячейкой или полем. Существуют два варианта адресации ячеек: абсолютная и относительная. Абсолютная адресация наиболее употребительна. Адресом ячейки (идентификатором) служат буква, указывающая столбец, и цифра, указывающая номер строки. И то, и другое видно на рабочем листе. При относительной адресации в верхней строке состояния указывается приращение со знаком от начала искомой клетки. В нижней строке рабочего листа дается расшифровка выбранного действия меню. В верхней части располагаются меню действий, панель инструментов и строка сумматора, где отражаются все воспроизводимые действия.

Ширина столбца и высота строки даются по умолчанию. Однако имеется возможность форматирования ячейки, столбца, строки, листа. При этом можно изменить стиль текста, что позволяет улучшить внешний вид документа без применения текстового редактора.

Данные в виде чисел, текста или формул вводятся в ту ячейку, которая отмечена текстовым курсором. Для указания блока ячеек достаточно обозначить адрес левой верхней ячейки диагонали блока, адрес нижней правой ячейки диагонали или, наоборот, поставить между ними точку либо двоеточие. Можно блок задать выделением.

Редактирование таблиц позволяет копировать, удалять, очищать ячейку, блок, лист и выполнять многие другие функции, перечисленные в меню действия Правка и Вставка. Можно вставить в таблицу посредством OLE-технологии рисунок, график, диаграмму, любой другой объект, подготовленный другой программой.

Большинство электронных таблиц имеют средства создания графиков и диаграмм, средства их редактирования и включения в нужное место листа. Кроме того, в них имеется большое число встроенных функций - математических, статистических и других. Это существенно облегчает процесс вычислений и расширяет диапазон применений. Пользователю предоставляется возможность переопределить панель инструментов, вид рабочего листа, изменить масштабирование, включить полосы прокрутки, переключатели, меню. Сервисные функции табличного процессора Excel позволяют проверить орфографию текста, защитить данные от чтения или записи. Возможно создание диалоговых окон или обращение к динамическим библиотекам. Заметим, что в табличном процессоре Excel есть средство создания макросов - Visual Basic. Он является объектно-ориентированным языком программирования. Отличие его, например, от C++ или Pascal в том, что в Visual Basic нет возможности создавать новые типы объектов или порождать потомков уже существующих: Однако пользователь получает большой набор готовых объектов: рабочие книги, листы, ячейки, диаграммы и т. д.

Все табличные процессоры позволяют создавать базы данных и предоставляют удобные средства работы с ними.

В Microsoft Excel 5.0 имеется один тип файла - рабочая книга, состоящая из рабочих листов, листов диаграмм и макросов, но при этом все листы подшиты в рабочую книгу. Такой подход упрощает работу с несколькими документами за счет быстрого доступа к каждому листу через ярлычки в нижней части листа, позволяет работать с листами, объединенными в группу, например группу учетных карточек на товар. Причем, если производится группа действий на одном листе, эти действия автоматически повторяются на всех листах группы, что упрощает оформление нескольких однотипных по структуре листов. Объемные ссылки позволяют создать сводный документ на основе данных из нескольких листов без ввода громоздких формул с внешними ссылками. Микротехнология «Мастер сводных таблиц» позволяет выбрать нужные данные из документа, представить их сводной таблицей, изменяя структуру, внешний вид, добавляя итоговые строки, группировать и сортировать. В рабочую книгу можно включать информацию о теме, авторе, ключевых словах. Ее же можно использовать при поиске файла на диске или при выяснении его назначения.

При выполнении всех функций в процессоре Excel можно использовать многооконную систему, позволяющую выполнять параллельные действия. Все объекты, созданные пользователем (сформированные таблицы, сводные таблицы, макросы, выборки из базы, диаграммы и графики), можно сохранить на диске в виде файла или распечатать.

На одном рабочем месте пользователь, как правило, имеет дело с разнотипной информацией. Использование для обработки каждого типа данных индивидуального программного инструмента усложняет технологический процесс работы, затрудняет пересылку данных для обработки несколькими средствами. Поэтому сначала появились интегрированные пакеты, совмещавшие в себе различные ИТ: текстовый, табличный и графический процессоры, систему управления базой данных, например Frame Work, Simphony и др. Для оболочки Windows был разработан набор технологий Works-2. Их цель - облегчение перемещения информации между различными приложениями - частями общего пакета. Далее в интегрированные пакеты были добавлены средства трехмерной графики, менеджер информации, системы электронного распознавания документов, электронной почты. Таким пакетом является Novell Perfect Office 3.0 для Windows. Он включает: современный текстовый процессор (Word Perfect 6.1); электронную таблицу с возможностью использования базы данных, построения графиков и диаграмм (Quattro Pro 4.1); программу для создания слайдовых шоу, презентационную графику, аналогичную по возможностям CorelDRAW (Presentations 3.0); персональный менеджер информации (Infocentral 1.1); систему электронного распространения документов (стандарт EYY), позволяющую перемещать документы по сети и просматривать их даже в том месте, где нет Perfect Office (Envoy 1.0a) и средство планирования (GroupWise 4.1 Client), которое используется для групповой работы с информацией и реализует встроенные коммуникации, и применение электронной почты.

В отечественной разработке - электронном офисе СКАТ (система комплексной автоматизации торговли) в системе LotusNotes для Windows интегрируется система управления базой данных, электронной почты, средств защиты информации и средств разработки приложений: текстовый и графический редакторы, электронные таблицы. Пакет СКАТ реализует подсистемы: склад комплектующих, склад готовой продукции, счета, договоры и другие документы, заказы на поставку, список фирм, прайс-лист, справочники, настройка системы, документация.

Электронный офис Link Works фирмы Digital обеспечивает централизованное хранение данных на основе средств реляционной СУБД и управление документооборотом в рамках сетевой технологии клиент-сервер. Этот интегрированный пакет помимо реляционной базы данных содержит текстовый, графический и табличный процессоры, которые, взаимодействуя между собой, реализуют объектно-ориентированный подход. Последний заключается в том, что пользователь работает с теми же объектами, что и раньше, до приобретения этого пакета (договоры, накладные, прайс-листы).

Пакет мобилен и работает в среде различных ОС, он обеспечивает взаимодействие с глобальными системами (по Протоколу TCP/IP или DECnet) и электронной почтой.

Информационные сетевые технологии.

В 60-х гг. появились первые вычислительные сети (ВС) ЭВМ. По сути дела они начали своего рода техническую революций, сравнимую с появлением первых ЭВМ, так как была предпринята попытка объединить технологию сбора, хранения, передачи и обработки информации на ЭВМ с техникой связи.

Одной из первых сетей, оказавших влияние на дальнейшее их развитие, явилась есть АРПА, созданная пятьюдесятью университетами и фирмами США. В настоящее время она охватывает всю территорию США, часть Европы и Азии. Сеть АРПА доказала техническую возможность и экономическую целесообразность разработки больших сетей для более эффективного использования ЭВМ и программного обеспечения.

В 60-х гг. в Европе сначала были разработаны и внедрены международные сети EIN и Евронет, затем появились национальные сети. В 1972 г. в Вене была внедрена сеть МИПСА, в 1979 г. к ней присоединились 17 стран Европы, СССР, США, Канада, Япония. Она предназначена для проведения фундаментальных работ по проблемам энергетики, продовольствия, сельского хозяйства, здравоохранения и т.д. Кроме того, благодаря новой технологии сеть позволила всем национальным институтам развивать связь друг с другом.

В 80-х гг. сдана в эксплуатацию система телеобработки статистической информации (СТОСИ), обслуживающая Главный вычислительный центр Центрального статистического управления СССР в Москве и республиканские вычислительные центры в союзных республиках.

В настоящее время в мире зарегистрировано более 200 глобальных сетей, 54 из которых созданы в США, 16 - в Японии.

С появлением микроЭВМ и персональных ЭВМ возникли локальные вычислительные сети. Они позволили поднять на качественно новую ступень управление производственным объектом, повысить эффективность использования ЭВМ, улучшить качество обрабатываемой информации, реализовать безбумажную технологию, создать новые технологии. Объединение ЛВС и глобальных сетей открыло доступ к мировым информационным ресурсам.

Все ЭВМ, объединенные в сеть, делятся на основные и вспомогательные. Основные ЭВМ - это абонентские ЭВМ (клиенты). Они выполняют вес необходимые информационно-вычислительные работы.и определяют ресурсы сети. Вспомогательные ЭВМ (серверы) служат для преобразования и передачи информации от одной ЭВМ к другой по каналам связи и коммутационным машинам (host-ЭВМ). К качеству и мощности серверов предъявляются повышенные требования, а в роли хост-машины могут выступать любые ПЭВМ.

Клиент - приложение, посылающее запрос к серверу. Он отвечает за обработку, вывод информации и передачу запросов серверу. В качестве ЭВМ клиента может быть использована любая ЭВМ.

Сервер- персональная или виртуальная ЭВМ, выполняющая функции по обслуживанию клиента и распределяющая ресурсы системы: принтеры, базы данных, программы, внешнюю память и др. Сетевой сервер поддерживает выполнение функций сетевой операционной системы, терминальный - выполнение функций многопользовательской системы. Сервер баз данных обеспечивает обработку запросов к базам данных в многопользовательских системах. Он является средством решения сетевых задач, в которых локальные сети используются для совместной обработки данных, а не просто для организации коллективного использования удаленных внешних устройств.

Host-ЭВМ -ЭВМ, установленная в узлах сети и решающая вопросы коммутации в сети. Коммутационная сеть образуется множеством серверов и host-ЭВМ, соединенных физическими каналами связи, которые называют магистральными. В качестве магистральных каналов используют коаксиальные и оптоволоконные кабели, кабели типа «витая пара».

По способу передачи информации вычислительные сети делятся на сети коммутации каналов, сети коммутации сообщений, сети коммутации пакетов и интегральные сети.

Первыми появились сети коммутации каналов. Например, чтобы передать сообщение между клиентами В и Е (рис. 1.7), образуется прямое соединение, включающее каналы одной из групп: 3, 5,7; 1, 2,4, 6; 1, 2, 5, 7; 3,4, 6. Это соединение должно оставаться неизменным в течение всего сеанса. Легкость реализации такого способа передачи информации влечет за собой и его недостатки: низкий коэффициент использования каналов, высокую стоимость передачи данных, увеличение времени ожидания других клиентов.


Рис. 1.7. Пример сети ЭВМ: Л, В, С, D, E, F - абонентские пункты; КМ - коммуникационные машины; 1-7 - магистральные каналы

При коммутации сообщений информация передается порциями, называемыми сообщениями. Прямое соединение обычно не устанавливается, а передача сообщения начинается после освобождения первого канала и так далее, пока сообщение не дойдет до адресата. Каждым сервером осуществляются прием информации, ее сборка, проверка, маршрутизация и передача сообщения. Недостатками коммутации сообщений являются низкая скорость передачи данных и невозможность проведения диалога между клиентами, хотя стоимость передачи и уменьшается.

При коммутации пакетов обмен производится, короткими пакетами фиксированной структуры. Пакет - часть сообщения, удовлетворяющая некоторому стандарту. Малая длина пакетов предотвращает блокировку линий связи, не дает расти очереди в узлах коммутации. Это обеспечивает быстрое соединение, низкий уровень ошибок, надежность и эффективность использования сети. Но при передаче пакета возникает проблема маршрутизации, которая решается программно-аппаратными методами. Наиболее распространенными способами являются фиксированная маршрутизация и маршрутизация способом кратчайшей очереди. Фиксированная маршрутизация предполагает наличие таблицы маршрутов, в которой закрепляется маршрут от одного клиента к другому, что обеспечивает простоту реализации, но одновременно и неравномерную загрузку сети. В методе кратчайшей очереди используется несколько таблиц, в которых каналы расставлены по приоритетам. Приоритет - функция, обратная расстоянию до адресата. Передача начинается по первому свободному каналу с высшим приоритетом. При использовании этого метода задержка передачи пакета минимальная.

В настоящее время разработаны программно-аппаратные средства маршрутизации. Повторитель (repeater) - самый простой тип устройства для соединения однотипных ЛВС, он ретранслирует все принимаемые пакеты из одной ЛВС в другую. Устройство связи, позволяющее соединять ЛВС с одинаковыми и разными системами сигналов, называется мостом. Устройство связи, аналогичное мосту (маршрутизатор), выполняет передачу пакетов в соответствии с определенными протоколами, обеспечивает соединение ЛВС на сетевом уровне. Шлюз - устройство соединения ЛВС с глобальной сетью.

Сети, обеспечивающие коммутацию каналов, сообщений и пакетов, называются интегральными. Они объединяют несколько коммутационных сетей. Часть интегральных каналов используется монопольно, т. е. для прямого соединения. Прямые каналы создаются на время проведения сеанса связи между различными коммутационными сетями. По окончании сеанса прямой канал распадается на независимые магистральные каналы. Интегральная сеть эффективна, если объем информации, передаваемой по прямым каналам, не превышает 10-15%.

При разработке сетей ЭВМ возникает задача согласования взаимодействия ЭВМ клиентов, серверов, линий связи и других устройств. Она решается путем установления определенных правил, называемых протоколами. Реализацию протоколов совместно с реализацией управления серверами называют сетевой ОС. Часть протоколов реализуется программно, часть - аппаратно. Для стандартизации протоколов была создана Международная организация по стандартизации (МОС) - ISO. Она ввела понятие архитектуры открытых систем, что означает возможность взаимодействия систем по определенным правилам, хотя сами системы могут быть созданы на различных технических средствах. Основой архитектуры открытых систем является понятие уровня логической декомпозиции сложной информационной сети. Система разбивается на ряд подсистем, или уровней, каждый из которых выполняет свои функции. ISO установила семь таких уровней.

Первый уровень, физический, определяет некоторые физические характеристики канала. Это требования к характеристикам кабелей разъемов (RS, EIA, X.21) и электрическим характеристикам сигнала (например, модель V.22 бис обеспечивает скорость передачи данных 2400 бод). В 1994 г. в Европе утвержден стандарт V.32 для работы на любых каналах. В нем определены десять процедур, по которым модем после тестирования линии (первоначально по стандарту V.21) выбирает соответствующие качеству линии несущие частоты и полосу пропускания (11 комбинаций) и пр. По типу характеристик сети делятся на аналоговые (V.21 и др.), например обычная телефонная есть, и цифровые, для которых разработан стандарт ISDN, распространенный за рубежом.

Второй уровень, канальный, управляет передачей данных между двумя узлами сети. Он обеспечивает контроль корректности передачи сблокированной информации. Каждый блок снабжается контрольной суммой. В последних разработках этот контроль перемещается в аппаратную среду. Модем, работающий по одному из протоколов коррекции ошибок и обнаруживший таковую, запрашивает перепередачу. Для повышения скорости обмена осуществляется сжатие данных по типу архивации с применением тех же алгоритмов, например алгоритма, используемого в архиваторе ARC, или алгоритма Зимпеля в архиваторе PKZIP. При получении сообщения оно разворачивается. Длина передаваемого блока может меняться в зависимости от качества канала. В настоящее время используются Протоколы V.42 бис (CCITT), MNP5, MNP7.

Трети и уровень, сетевой, обеспечивает управление потоком, маршрутизацию. Он распространяется на соглашения о блокировании данных и адресации. По одному каналу может передаваться информация с нескольких модемов для увеличения его загрузки. К этому уровню относятся Протоколы Х.25 и Х.75 (космический). Для объединения неоднородных сетей различных технологий используется Протокол IP.

Четвертый уровень, транспортный, отвечает за стандартизацию обмена данными между программами, находящимися на разных ЭВМ сети (ТР0.ТР1).

Пятый уровень, сеансовый, определяет правила диалога прикладных программ, рестарта, проверки прав доступа к сетевым ресурсам.

Информационная технология — это процесс, направленный на получение информации, обеспечивающей достижение поставленных целей управления. В его составе методы, этапы, операции, действия, программные и технические средства, обеспечивающие в совокупности сбор, обработку, хранение и отображение информации. Существуют три вида информационных технологий - предметная, обеспечивающая, функциональная:

— предметная технология представляет собой последовательность процедур (действий), выполняемых с целью обработки информации без привлечения вычислительной техники;

— обеспечивающая технология представляет собой специальные инструменты в руках пользователя, программные средства, ориентированные на некоторый класс задач, но не снабженные конкретными технологическими правилами их решения;

— функциональная технология - это обеспечивающая технология, наполненная конкретными данными и правилами их обработки из некоторой предметной области.

Техническая основа информационных технологий - это средства компьютерной техники, предназначенные для обработки и преобразования информации.

Виды информационных технологий

Информационные технологии обработки данных предназначены для решения хорошо структурированных задач, по которым имеются необходимые входные данные, известны алгоритмы и другие стандартные процедуры их обработки. Технология обеспечивает выполнение основного объема работ в автоматическом режиме с минимальным участием человека. Процедуры технологии: сбор и регистрация данных, ередача информации, хранение информации, обработка данных, создание отчетов, принятие решений.

Технологический процесс обработки данных включает:

подготовительный этап - подготовка к решению задачи (создание справочников, введение в память компьютера необходимых постоянных данных, корректировка состава типовых проводок, плана счетов и др.);

начальный этап связан с операциями по сбору, регистрации и размещению документов в базовые массивы.

основной, завершающий этап работы связан с получением необходимых отчетных форм. Из компьютерной базы данных извлекаются рабочие массивы, подлежащие группировке по соответствующим ключевым признакам, подсчету по ним итоговых данных с распечаткой в дальнейшем полученных отчетных документов.

Информационные технологии управления имеют целью удовлетворение информационных потребностей сотрудников, связанных с принятием решений. Технология предусматривает оценку планируемого состояния объекта управления, уровня отклонений от планируемого состояния, выявление причин отклонений, анализ возможных решений и действий. Представляемая информация содержит сведения о прошлом, настоящем и вероятном будущем предприятия (фирмы) и имеет вид регулярных или специальных управленческих отчетов.

Информационные телекоммуникационные технологии

Основу инфраструктуры, необходимой для функционирования единой системы управления предприятием, составляет информационная вычислительная сеть. В качестве принципов функционирования сети можно назвать следующие: а) развитие элементов информационной сети на всех уровнях ее иерархии по единому плану под общим централизованным руководством; б) использование на каждом этапе открытых, апробированных, стандартизированных решений и подходов ведущих мировых производителей телекоммуникационных систем и средств; в) выполнение функционального полного комплекса технических решений, реализующих один из структурных или функциональных системообразующих элементов.

Информационная вычислительная сеть создает инфраструктуру единого информационного пространства, позволяющую объединить в себе существующие и будущие потребности предприятия по доступу ко всем видам информационных услуг. Такая инфраструктура включает: локальные вычислительные сети; телефонные сети; системы видеонаблюдения и промышленного телевидения; видеоконференции; системы безопасности и жизнеобеспечения; спутниковые линии связи; линии связи с глобальными сетями, в том числе и Интернетом.

Технологии управления деловыми процессами

Некоторые корпоративные информационные системы располагают встроенными функциями управления деловыми процессами. В этом случае функции предметных подсистем (планирование, учет, формирование документов и отчетов) изначально интегрируются с возможностями управления процессами (задание маршрутов документов в организации, контроль их прохождения, анализ потоков работ и документов). Такой подход реализован в системе управления «Парус». Это система корпоративного уровня, основанная на базе данных Oracl и включающая подсистемы управления финансами, логистикой и производством.

Экономическая информационная система - это совокупность внутренних и внешних потоков прямой и обратной информационной связи экономического объекта, методов, средств, специалистов, участвующих в процессе обработки информации и выработке управленческих решений.

Информационная система является системой информационного обслуживания работников управленческих служб и выполняет технологические функции по накоплению, хранению, передаче и обработке информации. Она складывается, формируется и функционирует в регламенте, определенном методами и структурой управленческой деятельности, принятой на конкретном экономическом объекте, реализует цели и задачи, стоящие перед ним.

Современный уровень информатизации общества предопределяет использование новейших технических, технологических, программных средств в различных информационных системах экономических объектов.

Автоматизированная информационная система представляет собой совокупность информации, экономико-математических методов и моделей, технических, программных, технологических средств и специалистов, предназначенную для обработки информации и принятия управленческих решений.

Применение автоматизированных информационных систем особо важно в управлении финансовым подразделением фирмы. Использование автоматизированных информационных систем позволяет: оптимизировать планы работы, быстро вырабатывать решения, четко маневрировать финансовыми ресурсами и т.д.

Основными факторами, определяющими результаты создания и функционирования автоматизированных информационных технологий и процессов информатизации, являются: активное участие человека в системе автоматизации обработки информации и принятия управленческих решений; интерпретация информационной деятельности как одного из видов бизнеса; наличие научно обоснованной программно-технологической платформы, реализуемой на экономическом объекте; создание и внедрение научных прикладных разработок в области информации в соответствии с требованиями пользователей; формирование условий организационно-функционального взаимодействия и его математическое, модельное, системное и программное обеспечение; постановка и решение конкретных практических задач в области управления с учетом заданных критериев эффективности.

Главной составной частью автоматизированной информационной системы является информационная технология.

Автоматизированная информационная технология — системно организованная для решения задач управления совокупность методов и средств реализации операций сбора, регистрации, передачи, накопления, поиска, обработки и защиты информации на базе применения развитого программного обеспечения, используемых средств вычислительной техники и связи, а также способов, с помощью которых информация предлагается клиентам.

Существуют различные классификации экономических информационных систем, каждая из которых преследует определенные цели. Важными классификационными признаками являются: масштаб системы и интеграция ее компонентов, степень структурированности решаемых задач, сложность алгоритмов обработки и другие:

— по сфере применения различают информационные системы бухгалтерские, банковские, страховые, налоговые и другие;

— по степени автоматизации информационных процессов - ручные, автоматические, автоматизированные;

— по характеру решаемых задач - системы, разрабатываемые для решения структурированных (формализуемых) задач, неструктурированных (не формализуемых) задач и частично структурированных задач (у большинства решаемых задач известны не все элементы и взаимосвязи между ними);

— по режиму обработки - информационные системы, работающие в пакетном и в интерактивном режимах. Пакетная технология используется в основном в экономических информационных системах централизованного типа. Особенности технологии: информация собирается по одному каналу связи или устройству ввода; процесс подготовки информации отделен от непосредственно обработки; информация обрабатывается без воздействия на нее со стороны пользователя; процесс обработки детерминирован по этапам и каждому из них соответствует свое информационное и программное обеспечение.

Технологический процесс обработки представляет собой маршрут, состоящий из последовательности этапов: ввод, контроль, сортировка, слияние, группировка, копирование, архивирование, непосредственно обработка, выдача информации. Недостатками технологии являются: нерациональное использование ресурсов, отсутствие взаимодействия с пользователем.

При диалоговом режиме обработки обеспечивает интерактивный способ общения пользователя с ЭВМ. Достоинства технологии: задачи могут решаться параллельно, повышается пропускная способность системы, возможно изменение последовательности этапов обработки информации. Информационные системы диалогового режима используются в сетях, системах телеобработки данных, в системах, работающих в реальном масштабе времени.

— по виду применяемых программных разные авторы классифицируют информационные системы по-разному, и единая точка зрения отсутствует. В одних работах предлагается классифицировать программные средства в соответствии с видами используемой техники, в других - по выполняемым функциям.

По структурному признаку различают системы централизованные, децентрализованные и системы коллективного пользования. Степень централизации или децентрализации зависит от количества и важности решений, принимаемых на нижнем уровне, от организации количественного контроля за работой нижнего уровня. Недостатками централизованной системы являются: слабая мобильность и модифицируемость, большие затраты времени на обработку. Децентрализация обеспечивает приоритетность и упрощение принимаемых решений, стимулирование инициативы работников;

— по сфере действия системы бывают государственными, коммерческими, производственными, управленческими и другими;

— по уровню автоматизации управления различают автоматизированные системы управления, информационно-справочные и информационно-поисковые системы;

— по режиму работы комплекса технических средств системы бывают дискретными и непрерывными;

— по характеру интеграции функциональных задач различают системы, подсистемы, отдельные задачи.

Появление новых информационных технологий, разработка интеллектуальных технических средств позволяют создавать информационные системы с высокой степенью интеллектуализации, которая проявляется: в расширении функций общесистемного программного обеспечения; в разработке новых прикладных систем с элементами экспертных систем; в организации технологических процессов планирования, управления и контроля деятельности предприятия в режиме реального времени; в интеллектуализации технической платформы (многофункциональные устройства, многопротокольные адаптеры, виртуализация памяти, каналов связи и др.).

2. МИКРОПРОЦЕССОРЫ, НАЗНАЧЕНИЕ И КЛАССИФИКАЦИЯ

Микропроцессор (МП) — это программно-управляемое электронное цифровое устройство, предназначенное для обработки цифровой информации и управления процессом этой обработки, выполненное на одной или нескольких интегральных схемах с высокой степенью интеграции электронных элементов.

В 1970 году Маршиан Эдвард Хофф из фирмы Intel сконструировал интегральную схему, аналогичную по своим функциям центральному процессору большой ЭВМ — первый микропроцессор Intel-4004, который уже в 1971 году был выпущен в продажу.

15 ноября 1971 г. можно считать началом новой эры в электронике. В этот день компания приступила к поставкам первого в мире микропроцессора Intel 4004.

Это был настоящий прорыв, ибо МП Intel-4004 размером менее 3 см был производительнее гигантской машины ENIAC. Правда работал он гораздо медленнее и мог обрабатывать одновременно только 4 бита информации (процессоры больших ЭВМ обрабатывали 16 или 32 бита одновременно), но и стоил первый МП в десятки тысяч раз дешевле.

Кристалл представлял собой 4-разрядный процессор с классической архитектурой ЭВМ гарвардского типа и изготавливался по передовой p-канальной МОП технологии с проектными нормами 10 мкм. Электрическая схема прибора насчитывала 2300 транзисторов. МП работал на тактовой частоте 750 кГц при длительности цикла команд 10,8 мкс. Чип i4004 имел адресный стек (счетчик команд и три регистра стека типа LIFO), блок РОНов (регистры сверхоперативной памяти или регистровый файл — РФ), 4-разрядное параллельное АЛУ, аккумулятор, регистр команд с дешифратором команд и схемой управления, а также схему связи с внешними устройствами. Все эти функциональные узлы объединялись между собой 4-разрядной ШД. Память команд достигала 4 Кбайт (для сравнения: объем ЗУ миниЭВМ в начале 70-х годов редко превышал 16 Кбайт), а РФ ЦП насчитывал 16 4-разрядных регистров, которые можно было использовать и как 8 8-разрядных. Такая организация РОНов сохранена и в последующих МП фирмы Intel. Три регистра стека обеспечивали три уровня вложения подпрограмм. МП i4004 монтировался в пластмассовый или металлокерамический корпус типа DIP (Dual In-line Package) всего с 16 выводами.

В систему его команд входило всего 46 инструкций.

Вместе с тем кристалл располагал весьма ограниченными средствами ввода/вывода, а в системе команд отсутствовали операции логической обработки данных (И, ИЛИ, ИСКЛЮЧАЮЩЕЕ ИЛИ), в связи с чем их приходилось реализовывать с помощью специальных подпрограмм. Модуль i4004 не имел возможности останова (команды HALT) и обработки прерываний.

Цикл команды процессора состоял из 8 тактов задающего генератора. Была мультиплексированная ША (шина адреса)/ШД (шина данных), адрес 12-разрядный передавался по 4-разряда.

1 апреля 1972 г. фирма Intel начала поставки первого в отрасли 8-разрядного прибора i8008. Кристалл изготавливался по р-канальной МОП-технологии с проектными нормами 10 мкм и содержал 3500 транзисторов. Процессор работал на частоте 500 кГц при длительности машинного цикла 20 мкс (10 периодов задающего генератора).

В отличие от своих предшественников МП имел архитектуру ЭВМ принстонского типа, а в качестве памяти допускал применение комбинации ПЗУ и ОЗУ.

По сравнению с i4004 число РОН уменьшилось с 16 до 8, причем два регистра использовались для хранения адреса при косвенной адресации памяти (ограничение технологии — блок РОН аналогично кристаллам 4004 и 4040 в МП 8008 был реализован в виде динамической памяти). Почти вдвое сократилась длительность машинного цикла (с 8 до 5 состояний). Для синхронизации работы с медленными устройствами был введен сигнал готовности READY.

Система команд насчитывала 65 инструкций. МП мог адресовать память объемом 16 Кбайт. Его производительность по сравнению с четырехразрядными МП возрасла в 2,3 раза. В среднем для сопряжения процессора с памятью и устройствами ввода/вывода требовалось около 20 схем средней степени интеграции.

Возможности р-канальной технологии для создания сложных высокопроизводительных МП были почти исчерпаны, поэтому «направление главного удара» перенесли на n-канальную МОП технологию.

1 апреля 1974 МП Intel 8080 был представлен вниманию всех заинтересованных лиц. Благодаря использованию технологии п-МОП с проектными нормами 6 мкм, на кристалле удалось разместить 6 тыс. транзисторов. Тактовая частота процессора была доведена до 2 Мгц, а длительность цикла команд составила уже 2 мкс. Объем памяти, адресуемой процессором, был увеличен до 64 Кбайт. За счет использования 40-выводного корпуса удалось разделить ША и ШД, общее число микросхем, требовавшихся для построения системы в минимальной конфигурации сократилось до 6 (рис. 1).


Рис. 1. Микропроцессор Intel 8080.

В РФ были введены указатель стека, активно используемый при обработке прерываний, а также два программнонедоступных регистра для внутренних пересылок. Блок РОНов был реализован на микросхемах статической памяти. Исключение аккумулятора из РФ и введение его в состав АЛУ упростило схему управления внутренней шиной.

Новое в архитектуре МП — использование многоуровневой системы прерываний по вектору. Такое техническое решение позволило довести общее число источников прерываний до 256 (до появления БИС контроллеров прерываний схема формирования векторов прерываний требовала применения до 10 дополнительных чипов средней интеграции). В i8080 появился механизм прямого доступа в память (ПДП) (как ранее в универсальных ЭВМ IBM System 360 и др.).

ПДП открыл зеленую улицу для применения в микроЭВМ таких сложных устройств, как накопители на магнитных дисках и лентах дисплеи на ЭЛТ, которые и превратили микроЭВМ в полноценную вычислительную систему.

Традицией компании, начиная с первого кристалла, стал выпуск не отдельного чипа ЦП, а семейства БИС, рассчитанных на совместное использование.

По числу больших интегральных схем (БИС) в микропроцессорном комплекте различают микропроцессоры однокристальные, многокристальные и многокристальные секционные .

Процессоры даже самых простых ЭВМ имеют сложную функциональную структуру, содержат большое количество электронных элементов и множество разветвленных связей. Изменять структуру процессора необходимо так, чтобы полная принципиальная схема или ее части имели количество элементов и связей, совместимое с возможностями БИС. При этом микропроцессоры приобретают внутреннюю магистральную архитектуру, т. е. в них к единой внутренней информационной магистрали подключаются все основные функциональные блоки (арифметико-логический, рабочих регистров, стека, прерываний, интерфейса, управления и синхронизации и др.).

Для обоснования классификации микропроцессоров по числу БИС надо распределить все аппаратные блоки процессора между основными тремя функциональными частями: операционной, управляющей и интерфейсной. Сложность операционной и управляющей частей процессора определяется их разрядностью, системой команд и требованиями к системе прерываний; сложность интерфейсной части разрядностью и возможностями подключения других устройств ЭВМ (памяти, внешних устройств, датчиков и исполнительных механизмов и др.). Интерфейс процессора содержит несколько десятков информационных шин данных (ШД), адресов (ША) и управления (ШУ).

Однокристальные микропроцессоры получаются при реализации всех аппаратных средств процессора в виде одной БИС или СБИС (сверхбольшой интегральной схемы). По мере увеличения степени интеграции элементов в кристалле и числа выводов корпуса параметры однокристальных микропроцессоров улучшаются. Однако возможности однокристальных микропроцессоров ограничены аппаратными ресурсами кристалла и корпуса. Для получения многокристального микропроцессора необходимо провести разбиение его логической структуры на функционально законченные части и реализовать их в виде БИС (СБИС). Функциональная законченность БИС многокристального микропроцессора означает, что его части выполняют заранее определенные функции и могут работать автономно.

На рис. 2,а показано функциональное разбиение структуры процессора при создании трехкристального микропроцессора (пунктирные линии), содержащего БИС операционного (ОП), БИС управляющего (УП) и БИС интерфейсного (ИП) процессоров.


Рис. 2 Функциональная структура процессора (а) и ее разбиение для реализации процессора в виде комплекта секционных БИС

Операционный процессор служит для обработки данных, управляющий процессор выполняет функции выборки, декодирования и вычисления адресов операндов и также генерирует последовательности микрокоманд. Автономность работы и большое быстродействие БИС УП позволяет выбирать команды из памяти с большей скоростью, чем скорость их исполнения БИС ОП. При этом в УП образуется очередь еще не исполненных команд, а также заранее подготавливаются те данные, которые потребуются ОП в следующих циклах работы. Такая опережающая выборка команд экономит время ОП на ожидание операндов, необходимых для выполнения команд программ. Интерфейсный процессор позволяет подключить память и периферийные средства к микропроцессору; он, по существу, является сложным контроллером для устройств ввода/вывода информации. БИС ИП выполняет также функции канала прямого доступа к памяти.

Выбираемые из памяти команды распознаются и выполняются каждой частью микропроцессора автономно и поэтому может быть обеспечен режим одновременной работы всех БИС МП, т.е. конвейерный поточный режим исполнения последовательности команд программы (выполнение последовательности с небольшим временным сдвигом). Такой режим работы значительно повышает производительность микропроцессора.

Многокристальные секционные микропроцессоры получаются в том случае, когда в виде БИС реализуются части (секции) логической структуры процессора при функциональном разбиении ее вертикальными плоскостями (рис. 2,б). Для построения многоразрядных микропроцессоров при параллельном включении секций БИС в них добавляются средства «стыковки».

Для создания высокопроизводительных многоразрядных микропроцессоров требуется столь много аппаратных средств, не реализуемых в доступных БИС, что может возникнуть необходимость еще и в функциональном разбиении структуры микропроцессора горизонтальными плоскостями. В результате рассмотренного функционального разделения структуры микропроцессора на функционально и конструктивно законченные части создаются условия реализации каждой из них в виде БИС. Все они образуют комплект секционных БИС МП.

Таким образом, микропроцессорная секция это БИС, предназначенная для обработки нескольких разрядов данных или выполнения определенных управляющих операций. Секционность БИС МП определяет возможность «наращивания» разрядности обрабатываемых данных или усложнения устройств управления микропроцессора при «параллельном» включении большего числа БИС.

Однокристальные и трехкристальные БИС МП, как правило, изготовляют на основе микроэлектронных технологий униполярных полупроводниковых приборов, а многокристальные секционные БИС МП на основе технологии биполярных полупроводниковых приборов. Использование многокристальных микропроцессорных высокоскоростных биполярных БИС, имеющих функциональную законченность при малой физической разрядности обрабатываемых данных и монтируемых в корпус с большим числом выводов, позволяет организовать разветвление связи в процессоре, а также осуществить конвейерные принципы обработки информации для повышения его производительности.

По назначению различают универсальные и специализированные микропроцессоры.

Универсальные микропроцессоры могут быть применены для решения широкого круга разнообразных задач. При этом их эффективная производительность слабо зависит от проблемной специфики решаемых задач. Специализация МП, т.е. его проблемная ориентация на ускоренное выполнение определенных функций позволяет резко увеличить эффективную производительность при решении только определенных задач.

Среди специализированных микропроцессоров можно выделить различные микроконтроллеры, ориентированные на выполнение сложных последовательностей логических операций, математические МП, предназначенные для повышения производительности при выполнении арифметических операций за счет, например, матричных методов их выполнения, МП для обработки данных в различных областях применений и т. д. С помощью специализированных МП можно эффективно решать новые сложные задачи параллельной обработки данных. Например, конволюция позволяет осуществить более сложную математическую обработку сигналов, чем широко используемые методы корреляции. Последние в основном сводятся к сравнению всего двух серий данных: входных, передаваемых формой сигнала, и фиксированных опорных и к определению их подобия. Конволюция дает возможность в реальном масштабе времени находить соответствие для сигналов изменяющейся формы путем сравнения их с различными эталонными сигналами, что, например, может позволить эффективно выделить полезный сигнал на фоне шума.

Разработанные однокристальные конвольверы используются в устройствах опознавания образов в тех случаях, когда возможности сбора данных превосходят способности системы обрабатывать эти данные.

По виду обрабатываемых входных сигналов различают цифровые и аналоговые микропроцессоры. Сами микропроцессоры цифровые устройства, однако могут иметь встроенные аналого-цифровые и цифро-аналоговые преобразователи. Поэтому входные аналоговые сигналы передаются в МП через преобразователь в цифровой форме, обрабатываются и после обратного преобразования в аналоговую форму поступают на выход. С архитектурной точки зрения такие микропроцессоры представляют собой аналоговые функциональные преобразователи сигналов и называются аналоговыми микропроцессорами. Они выполняют функции любой аналоговой схемы (например, производят генерацию колебаний, модуляцию, смещение, фильтрацию, кодирование и декодирование сигналов в реальном масштабе времени и т.д., заменяя сложные схемы, состоящие из операционных усилителей, катушек индуктивности, конденсаторов и т.д.). При этом применение аналогового микропроцессора значительно повышает точность обработки аналоговых сигналов и их воспроизводимость, а также расширяет функциональные возможности за счет программной «настройки» цифровой части микропроцессора на различные алгоритмы обработки сигналов.

Обычно в составе однокристальных аналоговых МП имеется несколько каналов аналого-цифрового и цифро-аналогового преобразования. В аналоговом микропроцессоре разрядность обрабатываемых данных достигает 24 бит и более, большое значение уделяется увеличению скорости выполнения арифметических операций.

Отличительная черта аналоговых микропроцессоров способность к переработке большого объема числовых данных, т. е. к выполнению операций сложения и умножения с большой скоростью при необходимости даже за счет отказа от операций прерываний и переходов. Аналоговый сигнал, преобразованный в цифровую форму, обрабатывается в реальном масштабе времени и передается на выход обычно в аналоговой форме через цифро-аналоговый преобразователь. При этом согласно теореме Котельникова частота квантования аналогового сигнала должна вдвое превышать верхнюю частоту сигнала.

Сравнение цифровых микропроцессоров производится сопоставлением времени выполнения ими списков операций. Сравнение же аналоговых микропроцессоров производится по количеству эквивалентных звеньев аналого-цифровых фильтров рекурсивных фильтров второго порядка. Производительность аналогового микропроцессора определяется его способностью быстро выполнять операции умножения: чем быстрее осуществляется умножение, тем больше эквивалентное количество звеньев фильтра в аналоговом преобразователе и тем более сложный алгоритм преобразования цифровых сигналов можно задавать в микропроцессоре.

Одним из направлений дальнейшего совершенствования аналоговых микропроцессоров является повышение их универсальности и гибкости. Поэтому вместе с повышением скорости обработки большого объема цифровых данных будут развиваться средства обеспечения развитых вычислительных процессов обработки цифровой информации за счет реализации аппаратных блоков прерывания программ и программных переходов.

По характеру временной организации работы микропроцессоры делят на синхронные и асинхронные.

Синхронные микропроцессоры — микропроцессоры, в которых начало и конец выполнения операций задаются устройством управления (время выполнения операций в этом случае не зависит от вида выполняемых команд и величин операндов).

Асинхронные микропроцессоры позволяют начало выполнения каждой следующей операции определить по сигналу фактического окончания выполнения предыдущей операции. Для более эффективного использования каждого устройства микропроцессорной системы в состав асинхронно работающих устройств вводят электронные цепи, обеспечивающие автономное функционирование устройств. Закончив работу над какой-либо операцией, устройство вырабатывает сигнал запроса, означающий его готовность к выполнению следующей операции. При этом роль естественного распределителя работ принимает на себя память, которая в соответствии с заранее установленным приоритетом выполняет запросы остальных устройств по обеспечению их командной информацией и данными.

По организации структуры микропроцессорных систем различают микроЭВМ одно- и многомагистральные.

В одномагистральных микроЭВМ все устройства имеют одинаковый интерфейс и подключены к единой информационной магистрали, по которой передаются коды данных, адресов и управляющих сигналов.

В многомагистральных микроЭВМ устройства группами подключаются к своей информационной магистрали. Это позволяет осуществить одновременную передачу информационных сигналов по нескольким (или всем) магистралям. Такая организация систем усложняет их конструкцию, однако увеличивает производительность.

По количеству выполняемых программ различают одно- и многопрограммные микропроцессоры.

В однопрограммных микропроцессорах выполняется только одна программа. Переход к выполнению другой программы происходит после завершения текущей программы.

В много- или мультипрограммных микропроцессорах одновременно выполняется несколько (обычно несколько десятков) программ. Организация мультипрограммной работы микропроцессорных управляющих систем позволяет осуществить контроль за состоянием и управлением большим числом источников или приемников информации.

3. ТАБЛИЧНЫЙ ПРОЦЕССОР EXCEL: ИСПОЛЬЗОВАНИЕ ФУНКЦИЙ

Табличный процессор Excel поддерживает также общие функциональные возможности текстовых процессоров, такие как использование макросов, построение диаграмм, автозамена и проверка орфографии, использование стилей, шаблонов, автоформатирование данных, обмен данными с другими приложениями, наличие развитой справочной системы, печать с настройкой параметров и другие сервисные возможности.

Табличный процессор Excel целесообразно использовать для создания таблиц в случаях, когда предполагаются сложные расчеты, сортировка, фильтрация, статистический анализ массивов, построение на их основе диаграмм.

Опишем основные ключевые понятия, используемые при работе с табличным процессором Excel.

Рабочая книга является основным документом Excel. Она хранится в файле с произвольным именем и расширением xls. При создании или открытии рабочей книги ее содержимое представлено в отдельном окне. Каждая книга по умолчанию содержит 16 рабочих листов.

Листы предназначены для создания и хранения таблиц, диаграмм и макросов. Лист состоит из 256 столбцов и 16384 строк.

Ячейка является структурной наименьшей единицей для размещения данных внутри рабочего листа. Каждая ячейка может содержать данные в виде текста, числовых значений, формул или параметров форматирования. При вводе данных Excel автоматически распознает тип данных и определяет перечень операций, которые могут с ними производиться. По своему содержимому ячейки делятся на исходные (влияющие) и зависимые. В последних записаны формулы, которые имеют ссылки на другие ячейки таблицы. Следовательно, значения зависимых ячеек определяются содержимым других (влияющих) ячеек таблицы. Ячейка, выбранная с помощью указателя, называется активной или текущей ячейкой.

Адрес ячейки предназначен для определения местонахождения ячейки в таблице. Существует два способа записи адресов ячеек:

1. Указанием буквы столбца и номера строки таблицы, перед которыми может записываться знак $, указывающий на абсолютную адресацию. Этот способ используется по умолчанию и называется стилем А1.

2. Указанием номера строки и номера столбца, следующих после букв R и С, соответственно. Номера строк и столбцов могут заключаться в квадратные скобки, которые указывают на относительную адресацию.

Формула — это математическая запись вычислений, производимых над данными таблицы. Формула начинается со знака равенства или математического оператора и записывается в ячейку таблицы. Результатом выполнения формулы является вычисленное значение. Это значение автоматически записывается в ячейку, в которой находится формула.

Функция — это математическая запись, указывающая на выполнение определенных вычислительных операций. Функция состоит из имени и одно или нескольких аргументов, заключенных в круглые скобки.

Указатель ячейки — это рамка, с помощью которой выделяется активная ячейка таблицы. Указатель перемещается с помощью мыши или клавиш управления курсором.

Список — это специальным образом оформленная таблица, с которой можно работать как с базой данных. В такой таблице каждый столбец представляет собой поле, а каждая строка — запись файла базы данных.

Функции в Excel используются для выполнения стандартных вычислений в рабочих книгах. Значения, которые используются для вычисления функций, называются аргументами. Значения, возвращаемые функциями в качестве ответа, называются результатами. Помимо встроенных функций вы можете использовать в вычислениях пользовательские функции, которые создаются при помощи средств Excel.

Чтобы использовать функцию, нужно ввести ее как часть формулы в ячейку рабочего листа. Последовательность, в которой должны располагаться используемые в формуле символы, называется синтаксисом функции. Все функции используют одинаковые основные правила синтаксиса. Если вы нарушите правила синтаксиса, Excel выдаст сообщение о том, что в формуле имеется ошибка.

Если функция появляется в самом начале формулы, ей должен предшествовать знак равенства, как и во всякой другой формуле.

Аргументы функции записываются в круглых скобках сразу за названием функции и отделяются друг от друга символом точка с запятой «; «. Скобки позволяют Excel определить, где начинается и где заканчивается список аргументов. Внутри скобок должны располагаться аргументы. Помните о том, что при записи функции должны присутствовать открывающая и закрывающая скобки, при этом не следует вставлять пробелы между названием функции и скобками.

В качестве аргументов можно использовать числа, текст, логические значения, массивы, значения ошибок или ссылки. Аргументы могут быть как константами, так и формулами. В свою очередь эти формулы могут содержать другие функции. Функции, являющиеся аргументом другой функции, называются вложенными. В формулах Excel можно использовать до семи уровней вложенности функций.

Задаваемые входные параметры должны иметь допустимые для данного аргумента значения. Некоторые функции могут иметь необязательные аргументы, которые могут отсутствовать при вычислении значения функции.

Для удобства работы функции в Excel разбиты по категориям: функции управления базами данных и списками, функции даты и времени, DDE/Внешние функции, инженерные функции, финансовые, информационные, логические, функции просмотра и ссылок. Кроме того, присутствуют следующие категории функций: статистические, текстовые и математические.

При помощи текстовых функций имеется возможность обрабатывать текст: извлекать символы, находить нужные, записывать символы в строго определенное место текста и многое другое.

С помощью функций даты и времени можно решить практически любые задачи, связанные с учетом даты или времени (например, определить возраст, вычислить стаж работы, определить число рабочих дней на любом промежутке времени).

Логические функции помогают создавать сложные формулы, которые в зависимости от выполнения тех или иных условий будут совершать различные виды обработки данных.

В Excel широко представлены математические функции . Например, можно выполнять различные операции с матрицами: умножать, находить обратную, транспонировать.

С помощью статистических функций возможно проводить статистическое моделирование. Кроме того, возможно использовать элементы факторного и регрессионного анализа.

В Excel можно решать задачи оптимизации и использовать анализ Фурье. В частности, в Excel реализован алгоритм быстрого преобразования Фурье, при помощи которого вы можете построить амплитудный и фазовый спектр.

Excel содержит более 400 встроенных функций. Поэтому непосредственного вводить с клавиатуры в формулу названия функций и значения входных параметров не всегда удобно. В Excel есть специальное средство для работы с функциями - Мастер функций
. При работе с этим средством вам сначала предлагается выбрать нужную функцию из списка категорий, а затем в окне диалога предлагается ввести входные значения.
Мэлони Э, Носситер Дж. Microsoft Word 2000. — М.: Диалектика, 2001.ПОНЯТИЕ ИНФОРМАЦИИ И ДАННЫХ Представление (кодирование) информации. Абстрактные языки и их характеристики

2014-05-23

ЛЕКЦИЯ № 1

ТЕХНОЛОГИЯ ОБРАБОТКИ ЭКОНОМИЧЕСКОЙ ИНФОРМАЦИИ

Учебные вопросы:

2. Виды экономической информации

3. Компоненты системы обработки данных

5. Компьютерные сети в финансово-экономической деятельности

1. Общая характеристика процесса сбора, передачи, обработки и накопления информации

Современный период развития цивилизованного общества характеризует процесс информатизации.

Информатизация общества - это глобальный социальный процесс, особенность которого состоит в том, что доминирующим видом деятельности в сфере общественного производства является сбор, накопление, продуцирование, обработка, хранение, передача и использование информации, осуществляемые на основе современных средств микропроцессорной и вычислительной техники, а также на базе разнообразных средств информационного обмена . Информатизация общества обеспечивает:

Активное использование постоянно расширяющегося интеллектуального потенциала общества, сконцентрированного в печатном фонде, и научной, производственной и других видах деятельности его членов;

Вывод информации в виде документов, таблиц и видео-грамм, сигналов для прямого управления технологическими процессами, информации для связи с другими системами;

Организация, управление вычислительным процессом (планирование, учет, контроль, анализ реализации хода вычислений) в локальных и глобальных вычислительных сетях.

Система обработки данных (СОД) предназначена для информационного обслуживания специалистов разных органов управления предприятия (фирмы), принимающих управленческие решения.

Выделение типовых операций обработки данных позволило создать специализированные программно-аппаратные комплексы, их реализующие (различные периферийные устройства, оргтехнику, стандартные наборы программ, в том числе пакеты прикладных программ - ППП, реализующих функциональные задачи). Конфигурация аппаратных комплексов образует так называемую топологию вычислительной системы.

СОД могут работать в трех основных режимах: пакетном, интерактивном, реальном масштабе времени.

Информационные сети" href="/text/category/informatcionnie_seti/" rel="bookmark">обработки информации , что снижает оперативность принятия управленческих решений.

При интерактивном (диалоговом) режиме работы происходит обмен сообщениями между пользователем и системой. Пользователь обдумывает результаты запроса и принятые решения вводит в систему для дальнейшей обработки. Типичными примерами диалоговых задач можно считать многовариантные задачи использования ресурсов (трудовых, материальных, финансовых).

Режим реального времени используется для управления быстропротекающими процессами, например передачей и обработкой банковской информации в глобальных международных сетях типа SWIFT, и непрерывными технологическими процессами.

Практически все системы обработки данных информационных систем независимо от сферы их применения включают один и тот же набор составных частей (компонентов), называемых видами обеспечения. Принято выделять информационное, программное, техническое, правовое, лингвистическое обеспечение.

Какой бы сложной и хитроумной ни была СОД, ценность ее равна нулю, если она не имеет адекватных средств получения первичных данных, т. е. сведений, точно отображающих свойства предметной области и процессы, в ней протекающие. Поэтому роль и значение первичной информации переоценить невозможно. Соответственно для будущего экономиста и финансиста очень важно знание технологии работы с первичной информацией.

4. Первичная информация в информационных системах

ПРОЦЕССЫ СБОРА ДАННЫХ

Для регистрации любой хозяйственной операции, т. е. для получения первичных (исходных) сведений о процессах, протекающих в объекте управления, необходимо выполнять такие действия, как идентификация, измерение, привязка ко времени.

Идентификация. Идентификатором называется комбинация символов, сопоставленная с объектом идентификации и однозначно отличающая его от любого другого объекта. Образно говоря, идентификатор - это уникальное имя объекта.

Идентификация - это действие, процесс, в результате которого устанавливают (узнают, определяют) идентификатор объекта. Применительно к автоматизированной системе обработки данных следует различать две стороны этого процесса. Во-первых, необходимо узнать (определить, распознать) значение идентификатора объекта. Во-вторых, требуется это значение представить в машинной форме, т. е. ввести в СОД.

Для повышения эффективности СОД важно найти способы идентификации, которые позволяли бы получать идентификатор сразу в машиночитаемой форме.

Измерение. Собственно измерение - процесс, суть которого хорошо известна. Однако конкретные формы его весьма разнообразны, так как они зависят от вида, физической сущности объекта измерения, требуемой точности измерения, подлежащих измерению количеств и т. д.

Привязка ко времени. Этот элемент формирования документов и сообщений выполняется либо самым традиционным способом (человек смотрит на календарь, на часы и вручную заносит данные в документ), либо с помощью специальных устройств, которые автоматически заносят дату и время в документ или на носитель.

ТРЕБОВАНИЯ К ПРОЦЕССУ СБОРА ПЕРВИЧНЫХ ДАННЫХ

Процесс получения первичных данных имеет ряд характерных черт, которые необходимо учитывать при создании любой СОД. Пренебрежение Ими может привести к тому, что программы и производительная вычислительная техника не принесут желаемого результата.

Прежде всего следует учитывать, что сбор данных есть обычный трудовой процесс, и как таковой он требует затрат сил, времени и определенной квалификации.

Чтобы СОД объективно отражала результаты хозяйственной деятельности, первичные документы должны точно описывать хозяйственные операции, т. е. первичная информация должна быть достоверной и своевременной.

Достоверность. Ошибки в данных могут возникнуть вследствие разнообразных причин: погрешности измерений, ошибки при записи измерений в промежуточный документ, ошибки при считывании данных из промежуточного документа при вводе их с клавиатуры, преднамеренное искажение данных, ошибки при идентификации объекта и субъектов хозяйственной операции и др. Любая ошибка приводит к тем или иным нежелательным последствиям, в том числе и к материальным потерям.

Трудоемкость. Трудозатраты на сбор первичной информации весьма значительны. Для их сокращения предпринимаются различные меры. Частично эта цель достигается попутно с реализацией мер по повышению достоверности данных. Так, замена процедуры ввода идентификаторов с клавиатуры их считыванием с магнитных карт или считыванием штрих-кодов одновременно снижают и трудоемкость этой операции.

Для снижения трудозатрат используются и разнообразные аппаратные средства, обеспечивающие удешевление процессов измерения и счета. Конкретные формы таких средств в решающей степени определяются видом объектов, подлежащих измерению и счету.

СРЕДСТВА СОСТАВЛЕНИЯ И РАЗМНОЖЕНИЯ ДОКУМЕНТОВ

Для документального оформления информации, обращающейся в информационной системе, используются разнообразные приемы и средства: пишущая ручка (перьевая, шариковая и т. п.), пишущие машинки, бланки и др.

Многие документы оформляются в нескольких экземплярах, так как в них заинтересованы сразу несколько человек. Чтобы получить много экземпляров документа, используются разные приемы и средства: копировальная бумага, копировально-множительная техника. На сегодня в мире известны и используются сотни моделей копировально-множительных устройств, различающихся принципом действия, функциональными возможностями и эксплуатационными характеристиками.

СРЕДСТВА ХРАНЕНИЯ И ПОИСКА ДАННЫХ Для систематизации и хранения бумажных документов применяют разнообразные средства оргтехники. Несмотря на кажущуюся архаичность многих из них, они будут необходимы в делопроизводстве, пока не совершится полный переход к безбумажным информационным системам (примечательно, что разработчики операционных систем и прикладных программ охотно заимствуют термины из сферы традиционного документооборота: «книга», «папка», «картотека», «стеллажи»). В хорошо организованном документохранилище каждая папка закреплена за определенным местом, стеллажу придана систематизированная опись-путеводитель.

Для хранения документов на машинных носителях используются накопители на магнитных дисках и лентах, на магнитооптических дисках, на перезаписываемых оптических дисках. Какие именно устройства и какие носители будут использованы, в какой про порции будут сочетаться - зависит от назначения хранилища данных, необходимой емкости, требований к надежности и безопасности.

В последнее время интенсивно развивается концепция информационных хранилищ (Data Warehouse, DW). Эти программно-аппаратные комплексы призваны придать единый общий вид всей совокупности данных, порождаемых в рамках организации, предприятия, территориального образования.

Информационное хранилище напоминает промышленное предприятие: многочисленные источники данных (и первичных и производных) выступают в качестве аналогов цехов, производящих продукцию и передающих ее на склад. Оттуда она распределяется по потребителям. Задача информационного хранилища состоит в том, чтобы обеспечить регулярное, систематическое накопление разнообразных данных, их надежное длительное хранение и быструю выборку по запросам, которые могут иметь не запланированное заранее содержание. Эта задача решается на базе сложного комплекса накопителей большой емкости, быстродействующих процессоров и специальных программных средств.

В случаях особо высоких требований к надежности хранилищ данных (например, в банковских системах) широко используется специальная программно-аппаратная технология, получившая название RAID (Reduntant Arrays of Independent Disks, массив независимых дисков с избыточностью). RAID-системы существуют в нескольких различных модификациях, построенных по единому принципу: запись данных производится одновременно на несколько накопителей (т. е. с большой избыточностью). Если в аппаратуре обнаруживается сбой или отказ, то работа продолжается на исправной части накопителей. Программная часть системы осуществляет непрерывный анализ ее состояния и выработку своевременных и адекватных команд на необходимую переадресацию потоков данных. Естественно, повышенная надежность оплачивается многократным (в десятки раз) удорожанием дисковой подсистемы хранилища по сравнению с обычными накопителями сопоставимой емкости.

5. Компьютерные сети в финансово-экономической деятельности

Конкурентоспособная экономика базируется на системе финансовых организаций, способных предоставить услуги всем потенциальным клиентам. Без использования вычислительной техники, новейших информационных технологий и систем электронной передачи финансовой информации создать систему финансовых учреждений, отвечающих современным требованиям, невозможно. Российские финансовые учреждения учитывают сложившиеся требования к уровню автоматизации, внедряя передовые компьютерные технологии и осваивая международные стандарты. Проведем обзор некоторых известных сетей.

Сеть была создана в 1990 г. и в настоящее время развивается как сеть общего назначения, объединяющая научные и коммерческие организации , государственные ведомства и учреждения. Через Relcom легко и просто работать с коммерческой информационной системой RELIS (Москва), предлагающей, в частности, ежедневные новости , тематические информационные выпуски, дайджесты, аналитические обзоры на многие экономические темы.

СЕТЬ SPRINTNET

Сеть передачи данных SprintNet имеет узлы доступа в сотнях городов десятков стран мира. К сети подключены тысячи баз данных , содержащих информацию широкого профиля. Сеть SprintNet позволяет обмениваться информацией с большой скоростью. Услугами сети пользуются десятки крупных банков России.

СЕТЬ SOVAM TELEPORT

Международная компьютерная информационная сеть учреждена в 1990 году. Сеть предназначена прежде всего для международного обмена телексными и телефаксными сообщениями в режиме реального времени.

МЕЖДУНАРОДНАЯ СЕТЬ SWIFT

Международная сеть SWIFT, названная по имени Общества Международных Межбанковских Финансовых Телекоммуникаций, начала функционировать в 1977 г. В настоящее время основу сети составляют три коммутационные станции, которые находятся в Голландии, Бельгии и США, и региональные станции, обслуживающие клиентов своих стран. Международная сеть, предъявляя особо строгие требования к процедуре подключения терминалов.

Участникам фондового рынка России доступны услуги многих глобальных сетей. Этими системами активно пользуются биржи, брокерские конторы, промышленные предприятия.

Технология электронной обработки экономической информации включает в себя человеко-машинный процесс исполнения взаимосвязанных операций, протекающих в установленной последовательности с целью преобразования исходной (первичной) информации в результатную. Операция представляет собой комплекс совершаемых технологических действий, в результате которых информация преобразуется. Технологические операции разнообразны по сложности, назначению, технике реализации, выполняются на различном оборудовании, многими исполнителями. В условиях электронной обработки данных преобладают операции, выполняемые автоматически на машинах и устройствах, которые считывают данные, выполняют операции по заданной программе в автоматическом режиме без участия человека или сохраняя за пользователем функции контроля, анализа и регулирования.

Построение технологического процесса определяется следующими факторами: особенностями обрабатываемой экономической информации, ее объемом, требованиями к срочности и точности обработки, типами, количеством и характеристиками применяемых технических средств. Они ложатся в основу организации технологии, которая включает установление перечня, последовательности и способов выполнения операций, порядка работы специалистов и средств автоматизации, организацию рабочих мест, установление временных регламентов взаимодействия и т.п. Организация технологического процесса должна обеспечить его экономичность, комплексность, надежность функционирования, высокое качество работ. Это достигается использованием системотехнического подхода к проектированию технологии решения экономических задач. При этом имеет место комплексное взаимосвязанное рассмотрение всех факторов, путей, методов построения технологии, применение элементов типизации и стандартизации, а также унификации схем технологических процессов.

Технология автоматизированной обработки экономической информации строится на следующих принципах:

Интеграции обработки данных и возможности работы пользователей в условиях эксплуатации автоматизированных систем централизованного хранения и коллективного использования данных (банков данных);

Распределенной обработки данных на базе развитых систем передачи;

Рационального сочетания централизованного и децентрализованного управления и организации вычислительных систем;

Моделирования и формализованного описания данных, процедур их преобразования, функций и рабочих мест исполнителей;

Учета конкретных особенностей объекта, в котором реализуется машинная обработка экономической информации.

Различают два основных типа организации технологических процессов: предметный и пооперационный.

Предметный тип организации технологии предполагает создание параллельно действующих технологических линий, специализирующихся на обработке информации и решении конкретных комплексов задач (учет труда и заработной платы, снабжение и сбыт, финансовые операции и т.п.) и организующих пооперационную обработку данных внутри линии.

Пооперационный (поточный) тип построения технологического процесса предусматривает последовательное преобразование обрабатываемой информации, согласно технологии, представленной в виде непрерывной последовательности сменяющих друг друга операций, выполняемых в автоматическом режиме. Такой подход к построению технологии оказался приемлемым при организации работы абонентских пунктов и автоматизированных рабочих мест.

Организация технологии на отдельных ее этапах имеет свои особенности, что дает основание для выделения внемашинной и внутримашинной технологии. Внемашинная технология (ее нередко именуют предбазовой) объединяет операции сбора и регистрации данных, запись данных на машинные носители с контролем. Внутримашинная технология связана с организацией вычислительного процесса в ЭВМ, организацией массивов данных в памяти машины и их структуризацией, что дает основание называть ее еще и внутрибазовой. Учитывая, что средствам, составляющим техническую базу внемашинного и внутримашинного преобразования информации, посвящены последующие главы учебника, кратко рассмотрим лишь особенности построения названных технологий.

Основной этап технологического процесса связан с решением функциональных задач на ЭВМ. Внутримашинная технология решения задач на ЭВМ, как правило, реализует следующие типовые процессы преобразования экономической информации: формирование новых массивов информации; упорядочение информационных массивов; выборка из массива некоторой части записей, слияние и разделение массивов; внесение изменений в массив; выполнение арифметических действий над реквизитами в пределах записей, в пределах массивов, над записями нескольких массивов. Решение каждой отдельной задачи или комплекса задач требует выполнения следующих операций: ввод программы машинного решения задачи и размещение ее в памяти ЭВМ, ввод исходных данных, логический и арифметический контроль введенной информации, исправление ошибочных данных, компоновка входных массивов и сортировка введенной информации, вычисления по заданному алгоритму, получение выходных массивов информации, редактирование выходных форм, вывод информации на экран и на машинные носители, печать таблиц с выходными данными.

Выбор того или иного варианта технологии определяется прежде всего объемно-временными особенностями решаемых задач, периодичностью, срочностью, требованиями к быстроте обработки сообщений и зависит как от диктуемого практикой режима взаимодействия пользователя с ЭВМ, так и режимных возможностей технических средств - в первую очередь ЭВМ.

Различают следующие режимы взаимодействия пользователя с ЭВМ: пакетный и интерактивный (запросный, диалоговый). Сами же ЭВМ могут функционировать в различных режимах: одно- и многопрограммном, разделении времени, реального времени, телеобработки. При этом предусматривается цель удовлетворения потребности пользователей в максимально возможной автоматизации решения разнообразных задач.

Пакетный режим был наиболее распространен в практике централизованного решения экономических задач, когда большой удельный вес анализа производственно-хозяйственной деятельности экономических объектов разного уровня управления.

Организация вычислительного процесса при пакетном режиме строилась без доступа пользователя к ЭВМ. Его функции ограничивались подготовкой исходных данных по комплексу информационно-взаимосвязанных задач и передачей их в центр обработки, где формировался пакет, включающий задание для ЭВМ на обработку, программы, исходные, нормативно-расценочные и справочные данные. Пакет вводился в ЭВМ и реализовывался в автоматическом режиме без участия пользователя и оператора, что позволяло минимизировать время выполнения заданного набора задач. При этом работа ЭВМ могла проходить в однопрограммном или многопрограммном режиме, что предпочтительнее, так как обеспечивалась параллельная работа основных устройств машины. В настоящее время пакетный режим реализуется применительно к электронной почте.

Интерактивный режим предусматривает непосредственное взаимодействие пользователя с информационно-вычислительной системой, может носить характер запроса (как правило, регламентированного) или диалога с ЭВМ.

Запросный режим необходим пользователям для взаимодействия с системой через значительное число абонентских терминальных устройств, в том числе удаленных на значительное расстояние от центра обработки. Такая необходимость обусловлена решением оперативных задач, какими являются, например, маркетинговые задачи, задачи перестановки кадров, задачи стратегического характера и т.п. ЭВМ в подобных случаях реализует систему массового обслуживания, работает в режиме разделения времени, при котором несколько независимых абонентов (пользователей) с помощью устройств ввода-вывода имеют в процессе решения своих задач непосредственный и практически одновременный доступ к ЭВМ. Этот режим позволяет дифференцированно в строго установленном порядке предоставлять каждому пользователю время для общения с ЭВМ, а после окончания сеанса отключать его.

Диалоговый режим открывает пользователю возможность непосредственно взаимодействовать с вычислительной системой в допустимом для него темпе работы, реализуя повторяющийся цикл выдачи задания, получения и анализа ответа. При этом ЭВМ сама может инициировать диалог, сообщая пользователю последовательность шагов (предоставление меню) для получения искомого результата.

Обе разновидности интерактивного режима (запросный, диалоговый) основываются на работе ЭВМ в режимах реального времени и телеобработки, которые являются дальнейшим развитием режима разделения времени. Поэтому обязательными условиями функционирования системы в этих режимах являются: во-первых, постоянное хранение в запоминающих устройствах ЭВМ необходимой информации и программ и лишь в минимальном объеме поступление исходной информации от абонентов и, во-вторых, наличия у абонентов соответствующих средств связи с ЭВМ для обращения к ней в любой момент времени.

Экономическая информация - это преобразованная и обработанная совокупность сведений, отражающая состояние и ход экономических процессов. Экономическая информация циркулирует в экономической системе и сопровождает процессы производства, распределения, обмена и потребления материальных благ и услуг. Экономическую информацию следует рассматривать как одну из разновидностей управленческой информации.

Экономическая информация может быть:

Управляющая (в форме прямых приказов, плановых заданий и т.д.);

Осведомляющая (в отчетных показателях, выполняет в экономической системе функцию обратной связи).

Информацию можно рассматривать как ресурс, аналогичный материальным, трудовым и денежным ресурсам. Информационные ресурсы - совокупность накопленной информации, зафиксированной на материальных носителях в любой форме, обеспечивающей ее передачу во времени и пространстве для решения научных, производственных, управленческих и других задач.

Сбор, хранение, обработка, передача информации в числовой форме осуществляется с помощью информационных технологий. Особенностью информационных технологий является то, что в них и предметом и продуктом труда является информация, а орудиями труда - средства вычислительной техники и связи.

Основная цель информационных технологий - производство необходимой пользователю информации в результате целенаправленных действий по ее переработке.

Известно, что информационная технология - это совокупность методов, производственных и программно-технологических средств, объединенных в технологическую цепочку, обеспечивающую сбор, хранение, обработку, вывод и распространение информации.

С точки зрения информационных технологий для информации необходим материальный носитель в качестве источника информации, передатчик, канал связи, приемник и получатель информации.

Сообщение от источника к получателю передается через каналы связи или посредством среды.

Информация является формой связи между управляемыми и управляющими объектами в любой системе управления. В соответствии с общей теорией управления, процесс управления можно представить как взаимодействие двух систем - управляющей и управляемой.

Точность информации обеспечивает ее однозначное восприятие всеми потребителями. Достоверность определяет допустимый уровень искажения как поступающей, так и результатной информации, при котором сохраняется эффективность функционирования системы. Оперативность отражает актуальность информации для необходимых расчетов и принятия решений в изменившихся условиях.

В процессах автоматизированной обработки экономической информации в качестве объекта, подвергающегося преобразованиям, выступают различного рода данные, которые характеризуют те или иные экономические явления. Такие процессы именуются технологическими процессами АОЭИ и представляют собой комплекс взаимосвязанных операций, протекающих в установленной последовательности. Или, более детально, это процесс преобразования исходной информации в выходную с использованием технических средств и ресурсов.

Рациональное проектирование технологических процессов обработки данных в ЭИС во многом определяет эффективное функционирование всей системы.

Весь технологический процесс можно подразделить на процессы сбора и ввода исходных данных в вычислительную систему, процессы размещения данных и хранения в памяти системы, процессы обработки данных с целью получения результатов и, процессы выдачи данных в виде, удобном для восприятия пользователем.

Технологический процесс можно разделить на 4 укрупненных этапа:

1. - начальный или первичный (сбор исходных данных, их регистрация и передача на ВУ);

2. - подготовительный (прием, контроль, регистрация входной информации и перенос ее на машинный носитель);

3. - основной (непосредственно обработка информации);

4. - заключительный (контроль, выпуск и передача результатной информации, ее размножение и хранение).

В зависимости от используемых технических средств и требований к технологии обработки информации изменяется и состав операций технологического процесса. Например: информация на ВУ может поступать на МН, подготовленных для ввода в ЭВМ или передаваться по каналам связи с места ее возникновения.

Операции сбора и регистрации данных осуществляются с помощью различных средств.

Различают:

─механизированный;

─автоматизированный;

1). Механизированный - сбор и регистрация информации осуществляется непосредственно человеком с использованием простейших приборов (весы, счетчики, мерная тара, приборы учета времени и т.д.).

2). Автоматизированный - использование машиночитаемых документов, регистрирующих автоматов, универсальных систем сбора и регистрации, обеспечивающих совмещение операций формирования первичных документов и получения машинных носителей.

3). Автоматический - используется в основном при обработке данных в режиме реального времени.

(Информация с датчиков, учитывающих ход производства - выпуск продукции, затраты сырья, простои оборудования и т.д. - поступает непосредственно в ЭВМ).

Технические средства передачи данных включают:

─ аппаратуру передачи данных (АПД), которая соединяет средства обработки и подготовки данных с телеграфными, телефонными и широкополосными каналами связи;

─ устройства сопряжения ЭВМ с АПД, которые управляют обменом информации - мультиплексоры передачи данных.

Запись и передача информации по каналам связи в ЭВМ имеет следующие преимущества:

─ упрощает процесс формирования и контроля информации;

─ соблюдается принцип однократной регистрации информации в первичном документе и машинном носителе;

─ обеспечивается высокая достоверность информации, поступающей в ЭВМ.

Дистанционная передача данных, основанная на использовании каналов связи, представляет собой передачу данных в виде электрических сигналов, которые могут быть непрерывными во времени и дискретными, т.е. носить прерывный во времени характер. Наиболее широко используются телеграфные и телефонные каналы связи. Электрические сигналы, передаваемые по телеграфному каналу связи являются дискретными, а по телефонному - непрерывными.

В зависимости от направлений, по которым пересылается информация, различают каналы связи:

─ симплексный (передача идет только в одном направлении);

─ полудуплексный (в каждый момент времени производится либо передача, либо прием информации);

─ дуплексный (передача и прием информации осуществляются одновременно в двух встречных направлениях).

Каналы характеризуются скоростью передачи данных, достоверностью, надежностью передачи.

Скорость передачи определяется количеством информации, передаваемой в единицу времени и измеряется в бодах (бод = бит/сек).

Телеграфные каналы (низкоскоростные - V=50-200 бод),

телефонные (среднескоростные - V=200-2400 бод), а

широкополосные (высокоскоростные - V=4800 бод и более).

При выборе наилучшего способа передачи информации учитываются объемные и временные параметры доставки, требования к качеству передаваемой информации, трудовые и стоимостные затраты на передачу информации.

Говоря о технологических операциях сбора, регистрации, передачи информации с помощью различных технических средств необходимо несколько слов сказать и о сканирующих устройствах.

Ввод информации, особенно графической, с помощью клавиатуры в ЭВМ очень трудоемок. В последнее время наметились тенденции применения деловой графики - одного из основных видов информации, что требует оперативности ввода в ЭВМ и предоставления пользователям возможности формирования гибридных документов и БД, объединяющих графику с текстом. Все эти функции в ПЭВМ выполняют сканирующие устройства. Они реализуют оптический ввод информации и преобразование ее в цифровую форму с последующей обработкой.

Для ПЭВМ IBM PC разработана система PC Image/Graphix, предназначенная для сканирования различных документов и их передачи по коммуникациям. В числе документальных носителей системы, которые могут сканироваться камерой, являются: текст, штриховые чертежи, фотографии, микрофильмы. Сканирующие устройства на базе ПЭВМ применяются не только для ввода текстовой и графической информации, но и в системах контроля, обработки писем, выполнения различных учетных функций.

Для указанных задач наибольшее применение нашли способы кодирования информации штриховыми кодами. Сканирование штриховых кодов для ввода информации в ПЭВМ производится с помощью миниатюрных сканеров, напоминающих карандаш. Сканер перемещается пользователем перпендикулярно группе штрихов, внутренний источник света освещает область этого набора непосредственно около наконечника сканера. Штриховые коды нашли широкое применение и в сфере торговли, и на предприятиях (в системе табельного учета: при считывании с карточки работника фактически отработанное время, регистрирует время, дату и т.д.).

В последнее время все большее внимание уделяется устройствам тактильного ввода - сенсорному экрану ("сенсорный" - чувствительный). Устройства тактильного ввода широко применяются как информационно-справочные системы общего пользования и системы автоматизированного обучения. Фирмой США разработан сенсорный монитор Point-1 с разрешением 1024 х 1024 точек для ПЭВМ IBM PC и др. ПЭВМ. Сенсорный экран широко применяется для фондовых бирж (сведения о последних продажных ценах на акции...).

На практике существует множество вариантов (организационных форм) технологических процессов обработки данных. Это зависит от использования различных средств вычислительной и организационной техники на отдельных операциях технологического процесса.

Построение технологического процесса зависит от характера решаемых задач, круга пользователей, от используемых технических средств, от систем контроля данных и т.д.

Программа Microsoft Excel относится к классу программ, называемых электронными таблицами . Электронные таблицы ориентированы прежде всего на решение экономических и инженерных задач, позволяют систематизировать данные из любой сферы деятельности. Существуют следующие версии данной программы - Microsoft Excel 4.0, 5.0, 7.0, 97, 2000. В данном практикуме рассмотрена версия 97. Знакомство с более ранними версиями позволит легко перейти к следующей.

Программа Microsoft Excel позволяет:

· сформировать данные в виде таблиц;

· представить данные из таблиц в графическом виде;

· организовать данные в конструкции, близкие по возможностям к базе данных.

В Microsoft Excel имеется 12 функций рабочего листа, используемых для анализа данных из списков или баз данных. Каждая из этих функций, которые из соображений совместимости имеют обобщенное название БДФункция, использует три аргумента: база данных, поле и критерий. Эти три аргумента ссылаются на интервалы ячеек на рабочем листе, которые используются данной функцией.

База данных — это интервал ячеек, формирующих список или базу данных.

База данных в Microsoft Excel — это список связанных данных, в котором строки данных являются записями, а столбцы - полями. Верхняя строка списка содержит названия каждого столбцов. Ссылка может быть задана как диапазон ячеек либо как имя, соответствующее диапазону списка.

Поле определяет столбец, используемый функцией. Поля данных в списке должны содержать идентифицирующее имя в первой строке. Аргумент поле может быть задан как текст с названием столбца в двойных кавычках, например «Возраст» или «Урожай» в приведенном ниже примере базы данных, или как число, задающее положение столбца в списке: 1 — для первого поля (Дерево), 2 — для второго поля (Высота) и так далее.

Критерий — это ссылка на интервал ячеек, задающих условия для функции. Функция возвращает данные из списка, которые удовлетворяют условиям, определенным диапазоном критериев. Диапазон критериев включает копию названия столбца в списке, для которого выполняется подведение итогов. Ссылка на критерий может быть введена как интервал ячеек, например A1:F2 в приведенном ниже примере базы данных, или как имя интервала, например "Критерии". Для получения дополнительных сведений об условиях, которые могут быть использованы в качестве аргумента критерий нажмите кнопку.

Функции для работы с базами данных и списками

БДДИСП Оценивает дисперсию по выборке из выделенных записей базы данных

БДДИСПП Вычисляет дисперсию по генеральной совокупности из выделенных записей базы данных

БДПРОИЗВЕД Перемножает значения определенного поля в записях базы данных, удовлетворяющих условию

БДСУММ Суммирует числа в поле для записей базы данных, удовлетворяющих условию

БИЗВЛЕЧЬ Извлекает из базы данных одну запись, удовлетворяющую заданному условию

БСЧЁТ Подсчитывает количество числовых ячеек в базе данных

БСЧЁТА Подсчитывает количество непустых ячеек в базе данных

ДМАКС Возвращает максимальное значение среди выделенных записей базы данных

ДМИН Возвращает минимальное значение среди выделенных записей базы данных

ДСРЗНАЧ Возвращает среднее значение выбранных записей базы данных

ДСТАНДОТКЛ Оценивает стандартное отклонение по выборке из выделенных записей базы данных

ДСТАНДОТКЛП Вычисляет стандартное отклонение по генеральной совокупности из выделенных записей базы данных

Организация данных в программе

Файл программы представляет собой так называемую рабочую книгу , или рабочую папку. Каждая рабочая книга может содержать 256 рабочих листов . По умолчанию версия программы Excel 97 содержит 3 рабочих листа, предыдущая версия программы по умолчанию содержала 16 рабочих листов. На листах может содержаться как взаимосвязанная, так и совершенно независимая информация. Рабочий лист представляет собой заготовку для таблицы.

Правила работы с формулами

· формула всегда начинается со знака =;

· формула может содержать знаки арифметических операций + - * / (сложение, вычитание, умножение и деление);

· если формула содержит адреса ячеек, то в вычислении участвует содержимое ячейки;

· для получения результата нажмите.

Если необходимо рассчитать данные в столбце по однотипной формуле, в которой меняются только адреса ячеек при переходе на следующую строку таблицы, то такую формулу можно скопировать или размножить на все ячейки данного столбца.

Например:

Наименование товара

Единица измерения

Цена одного экземпляра

Количество

На сумму

Молоко

пакет

4,9

100

Расчет суммы в последнем столбце происходит путем перемножения данных из столбца “Цена одного экземпляра” и данных из столбца “Количество”, формула при переходе на следующую строку в таблице не изменяется, изменяются только адреса ячеек.

Копирование содержимого ячеек

Выделяем исходную ячейку, помещаем указатель мыши на край рамки и при нажатой клавише и левой клавише мыши перемещаем рамочку в новое место. При этом копируется содержимое ячейки, в том числе и формула.

Автозаполнение ячеек

Выделяем исходную ячейку, в нижнем правом углу находится маркер заполнения, помещаем курсор мыши на него, он примет вид + ; при нажатой левой клавише растягиваем границу рамки на группу ячеек. При этом все выделенные ячейки заполняются содержимым первой ячейки. При этом при копировании и автозаполнении соответствующим образом изменяются адреса ячеек в формулах. Например, формула = А1 + В1 изменится на = А2 + В2.

Например: = $A$5 * A6

При копировании этой формулы в следующую строку ссылка на первую ячейку останется неизменной, а второй адрес в формуле изменится.

Расчет итоговых сумм по столбцам

В таблицах часто необходимо подсчитать итоговые суммы по столбцу. Для этого существует специальная пиктограмма Автосуммирование . Предварительно ячейки с исходными данными нужно выделить, для этого нажимаем пиктограмму, сумма будет расположена в свободной ячейке под столбцом.

Рассмотренные технологические процессы и режимы работы пользователей в системе "человек - машина" особенно четко проявляются при интегрированной обработке информации, которая характерна для современного автоматизированного решения в принятии управленческих задач. Информационные процессы, применяемые при разработке управленческого решения в автоматизированных системах организационного управления, реализуются с помощью ЭВМ и других технических средств. По мере развития вычислительной техники совершенствуются и формы ее использования. Существуют разнообразные способы доступа и общения с ЭВМ. Индивидуальный и коллективный доступ к вычислительным ресурсам зависит от степени их концентрации и организационных форм функционирования. Централизованные формы применения вычислительных средств, которые существовали до массового использования ПЭВМ, предполагали их сосредоточение в одном месте и организацию информационно-вычислительных центров (ИВЦ) индивидуального и коллективного пользования (ИВЦКП).

В последнее время организация применения компьютерной техники претерпевает значительные изменения, связанные с переходом к созданию интегрированных информационных систем. Интегрированные информационные системы создаются с учетом того, что они должны осуществлять согласованное управление данными в пределах предприятия (организации), координировать работу отдельных подразделений, автоматизировать операции по обмену информацией как в пределах отдельных групп пользователей, так и между несколькими организациями, отстоящими друг от друга на десятки и сотни километров. Основой для построения подобных систем служат локальные вычислительные сети (ЛВС). Характерной чертой ЛВС является предоставление возможности пользователям работать в универсальной информационной среде с функциями коллективного доступа к данным.

В последние 2-3 года компьютеризация вышла на новый уровень: активно создаются вычислительные системы различной конфигурации на базе персональных компьютеров (ПК) и более мощных машин. Состоящие из нескольких автономных компьютеров с общими совместно используемыми внешними устройствами (диски, ленты) и единым управлением, они позволяют обеспечить более надежную защиту компьютерных рерурсов (устройств, баз данных, программ), повысить отказоустойчивость, обеспечить простоту модернизации и наращивания мощности системы. Все больше внимания уделяется развитию не только локальных, но и распределенных сетей, без которых немыслимо решение современных задач информатизации.

В зависимости от степени централизации вычислительных ресурсов роль пользователя и его функции меняются. При централизованных формах, когда у пользователя нет непосредственного контакта с ЭВМ, его роль сводится к передаче исходных данных на обработку, получению результатов, выявлению и устранению ошибок. При непосредственном общении пользователя с ЭВМ его функции в информационной технологии расширяются. Все это реализуется в пределах одного рабочего места. От пользователя при этом требуется знание основ информатики и вычислительной техники.

1. Громов Г.Р. Очерки информационной технологии. - М.: ИнфоАрт, 1992.

2. Данилевский Ю.Г., Петухов И.А., Шибанов B.C. Информационная технология в промышленности. - Л.: Машиностроение. Ленингр. отделение, 1988.

3. Докучаев А.А., Мошенский С.А., Назаров О.В. Средства информатики в офисе торговой фирмы. Средства компьютерных коммуникаций. - СП б, ТЭИ, 1996. - 32с.

4. Информационная технология, экономика, культура / Сб. обзоров и рефератов. - М.: ИНИОН РАН, 1995.

5. Информационные системы в экономике / Под ред. В.В. Дика. - М.: Финансы и статистика, 1996.

6. Климова Р.Н., Сорокина М.В., Хахаев И.А., Мошенский С.А. Информатика торговой фирмы / Учебное пособие. Для студентов всех специальностей всех форм обучения. - СП б.: СПбТЭИ, 1998. - 32с.

7. Компьютерные технологии обработки информации./Под ред. Назарова С.И. - М.: Финансы и статистика, 1996.

8. Фридланд А. Информатика - толковый словарь основных терминов. - Москва, Приор, 1998.

9. Шафрин Ю. Информационные технологии, - М., ООО" Лаборатория базовых знаний”, 1998.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Роль и место комплекса задач в экономической информационной системе, технико-экономическое обоснование автоматизации обработки информации. Характеристика и анализ существующей организации обработки информации по комплексу задач на объекте управления.

    дипломная работа , добавлен 29.06.2012

    Разработка проекта автоматизированной системы обработки экономической информации для малого рекламного предприятия. Назначение и основные функции проектируемой системы, требования к ней. Технология обработки и защиты экономической информации предприятия.

    контрольная работа , добавлен 10.07.2009

    Требования и структура систем обработки экономической информации. Технология обработки информации и обслуживание системы, защита информации. Процесс создания запросов, форм, отчетов, макросов и модулей. Средства организации баз данных и работы с ними.

    курсовая работа , добавлен 25.04.2012

    Появление и развитие компьютеров. Разработка технологий управления и обработки потока информации с применением вычислительной техники. Свойства информационных технологий, их значение для современного этапа технологического развития общества и государства.

    презентация , добавлен 13.01.2015

    Понятие информации и ее свойства. Классификация экономической информации, ключевые понятия, определяющие ее структуру. Примеры использования информационных технологий в бизнесе. Экономические информационные системы, их классификация и структура.

    шпаргалка , добавлен 22.08.2009

    Понятия, определения и терминология информационных технологий. Роль и значение ИТ для современного этапа развития общества и их значение для экономики стран. Методы обработки информации в управленческих решениях. Классификация информационных технологий.

    реферат , добавлен 28.02.2012

    Проблемы защиты информации в информационных и телекоммуникационных сетях. Изучение угроз информации и способов их воздействия на объекты защиты информации. Концепции информационной безопасности предприятия. Криптографические методы защиты информации.

    дипломная работа , добавлен 08.03.2013



Загрузка...