sonyps4.ru

Нейронные сети для начинающих часть 3. Изучаем нейронные сети за четыре шага

В данной статье собраны материалы - в основном русскоязычные - для базового изучения искусственных нейронных сетей.

Искусственная нейронная сеть, или ИНС - математическая модель, а также ее программное или аппаратное воплощение, построенная по принципу организации и функционирования биологических нейронных сетей - сетей нервных клеток живого организма. Наука нейронных сетей существует достаточно давно, однако именно в связи с последними достижениями научно-технического прогресса данная область начинает обретать популярность.

Книги

Начнем подборку с классического способа изучения - с помощью книг. Мы подобрали русскоязычные книги с большим количеством примеров:

  • Ф. Уоссермен, Нейрокомпьютерная техника: Теория и практика. 1992 г.
    В книге в общедоступной форме излагаются основы построения нейрокомпьютеров. Описана структура нейронных сетей и различные алгоритмы их настройки. Отдельные главы посвящены вопросам реализации нейронных сетей.
  • С. Хайкин, Нейронные сети: Полный курс. 2006 г.
    Здесь рассматриваются основные парадигмы искусственных нейронных сетей. Представленный материал содержит строгое математическое обоснование всех нейросетевых парадигм, иллюстрируется примерами, описанием компьютерных экспериментов, содержит множество практических задач, а также обширную библиографию.
  • Д. Форсайт, Компьютерное зрение. Современный подход. 2004 г.
    Компьютерное зрение – это одна из самых востребованных областей на данном этапе развития глобальных цифровых компьютерных технологий. Оно требуется на производстве, при управлении роботами, при автоматизации процессов, в медицинских и военных приложениях, при наблюдении со спутников и при работе с персональными компьютерами, в частности, поиске цифровых изображений.

Видео

Нет ничего доступнее и понятнее, чем визуальное обучение при помощи видео:

  • Чтобы понять,что такое вообще машинное обучение, посмотрите вот эти две лекции от ШАДа Яндекса.
  • Введение в основные принципы проектирования нейронных сетей - отлично подходит для продолжения знакомства с нейронными сетями.
  • Курс лекций по теме «Компьютерное зрение» от ВМК МГУ. Компьютерное зрение - теория и технология создания искусственных систем, которые производят обнаружение и классификацию объектов в изображениях и видеозаписях. Эти лекции можно отнести к введению в эту интересную и сложную науку.

Образовательные ресурсы и полезные ссылки

  • Портал искусственного интеллекта.
  • Лаборатория «Я - интеллект».
  • Нейронные сети в Matlab .
  • Нейронные сети в Python (англ.):
    • Классификация текста с помощью ;
    • Простой .
  • Нейронная сеть на .

Серия наших публикаций по теме

Ранее у нас публиковался уже курс #neuralnetwork@tproger по нейронным сетям. В этом списке публикации для вашего удобства расположены в порядке изучения.

  • Мозг
  • Когда, за бутылкой пива, я заводил разговор о нейронных сетях - люди обычно начинали боязливо на меня смотреть, грустнели, иногда у них начинал дёргаться глаз, а в крайних случаях они залезали под стол. Но, на самом деле, эти сети просты и интуитивны. Да-да, именно так! И, позвольте, я вам это докажу!

    Допустим, я знаю о девушке две вещи - симпатична она мне или нет, а также, есть ли о чём мне с ней поговорить. Если есть, то будем считать это единицей, если нет, то - нулём. Аналогичный принцип возьмем и для внешности. Вопрос: “В какую девушку я влюблюсь и почему?”


    Можно подумать просто и бескомпромиссно: “Если симпатична и есть о чём поговорить, то влюблюсь. Если ни то и ни другое, то - увольте.”



    Но что если дама мне симпатична, но с ней не о чем разговаривать? Или наоборот?


    Понятно, что для каждого из нас что-то одно будет важнее. Точнее, у каждого параметра есть его уровень важности, или вернее сказать - вес. Если помножить параметр на его вес, то получится соответственно “влияние внешности” и “влияние болтливости разговора”.


    И вот теперь я с чистой совестью могу ответить на свой вопрос:


    “Если влияние харизмы и влияние болтливости в сумме больше значения “влюбчивость” то влюблюсь…”



    То есть, если я поставлю большой вес “болтологичности” дамы и маленький вес внешности, то в спорной ситуации я влюблюсь в особу, с которой приятно поболтать. И наоборот.



    Собственно, это правило и есть нейрон.


    Искусственный нейрон - это такая функция, которая преобразует несколько входных фактов в один выходной. Настройкой весов этих фактов, а также порога возбуждения - мы настраиваем адекватность нейрона. В принципе, для многих наука жизни заканчивается на этом уровне, но ведь эта история не про нас, верно?


    Сделаем ещё несколько выводов:

    • Если оба веса будут малыми, то мне будет сложно влюбиться в кого бы-то ни было.
    • Если же оба веса будут чересчур большими, то я влюблюсь хоть в столб.
    • Заставить меня влюбиться в столб можно также, понизив порог влюбчивости, но прошу - не делайте со мной этого! Лучше давайте пока забудем про него, ок?

    Кстати о пороге

    Смешно, но параметр “влюбчивости” называется “порогом возбуждения”. Но, дабы эта статья не получила рейтинг “18+”, давайте договоримся говорить просто “порог”, ок?

    Нейронная сеть

    Не бывает однозначно симпатичных и однозначно общительных дам. Да и влюблённость влюблённости рознь, кто бы что ни говорил. Потому давайте вместо брутальных и бескомпромиссных “0” и “1”, будем использовать проценты. Тогда можно сказать - “я сильно влюблён (80%), или “эта дама не особо разговорчива (20%)”.


    Наш примитивный “нейрон-максималист” из первой части уже нам не подходит. Ему на смену приходит “нейрон-мудрец”, результатом работы которого будет число от 0 до 1, в зависимости от входных данных.



    “Нейрон-мудрец” может нам сказать: “эта дама достаточно красива, но я не знаю о чём с ней говорить, поэтому я не очень-то ей и восхищён”



    Немного терминологии

    К слову говоря, входные факты нейрона называются синапсами, а выходное суждение - аксоном. Связи с положительным весом называются возбуждающими, а с отрицательным - тормозящими. Если же вес равен нулю, то считается, что связи нет (мёртвая связь).


    Поехали дальше. Сделаем по этим двум фактам другую оценку: насколько хорошо с такой девушкой работать (сотрудничать)? Будем действовать абсолютно аналогичным образом - добавим мудрый нейрон и настроим веса комфортным для нас образом.


    Но, судить девушку по двум характеристикам - это очень грубо. Давайте судить её по трём! Добавим ещё один факт – деньги. Который будет варьироваться от нуля (абсолютно бедная) до единицы (дочь Рокфеллера). Посмотрим, как с приходом денег изменятся наши суждения….


    Для себя я решил, что, в плане очарования, деньги не очень важны, но шикарный вид всё же может на меня повлиять, потому вес денег я сделаю маленьким, но положительным.


    В работе мне абсолютно всё равно, сколько денег у девушки, поэтому вес сделаю равным нулю.



    Оценивать девушку только для работы и влюблённости - очень глупо. Давайте добавим, насколько с ней будет приятно путешествовать:

    • Харизма в этой задаче нейтральна (нулевой или малый вес).
    • Разговорчивость нам поможет (положительный вес).
    • Когда в настоящих путешествиях заканчиваются деньги, начинается самый драйв, поэтому вес денег я сделаю слегка отрицательным.

    Соединим все эти три схемы в одну и обнаружим, что мы перешли на более глубокий уровень суждений, а именно: от харизмы, денег и разговорчивости - к восхищению, сотрудничеству и комфортности совместного путешествия. И заметьте - это тоже сигналы от нуля до единицы. А значит, теперь я могу добавить финальный “нейрон-максималист”, и пускай он однозначно ответит на вопрос - “жениться или нет”?



    Ладно, конечно же, не всё так просто (в плане женщин). Привнесём немного драматизма и реальности в наш простой и радужный мир. Во-первых, сделаем нейрон "женюсь - не женюсь" - мудрым. Сомнения же присущи всем, так или иначе. И ещё - добавим нейрон "хочу от неё детей" и, чтобы совсем по правде, нейрон “держись от неё подальше".


    Я ничего не понимаю в женщинах, и поэтому моя примитивная сеть теперь выглядит как картинка в начале статьи.


    Входные суждения называются “входной слой”, итоговые - “выходной слой”, а тот, что скрывается посередине, называется "скрытым". Скрытый слой - это мои суждения, полуфабрикаты, мысли, о которых никто не знает. Скрытых слоёв может быть несколько, а может быть и ни одного.

    Долой максимализм.

    Помните, я говорил об отрицательном влияние денег на моё желание путешествовать с человеком? Так вот - я слукавил. Для путешествий лучше всего подходит персона, у которой денег не мало, и не много. Мне так интереснее и не буду объяснять почему.


    Но тут я сталкиваюсь с проблемой:


    Если я ставлю вес денег отрицательным, то чем меньше денег - тем лучше для путешествий.
    Если положительным, то чем богаче - тем лучше,
    Если ноль - тогда деньги “побоку”.


    Не получается мне вот так, одним весом, заставить нейрон распознать ситуацию “ни много -ни мало”!


    Чтобы это обойти, я сделаю два нейрона - “денег много” и “денег мало”, и подам им на вход денежный поток от нашей дамы.


    Теперь у меня есть два суждения: “много” и “мало”. Если оба вывода незначительны, то буквально получится “ни много - ни мало”. То есть, добавим на выход ещё один нейрон, с отрицательными весами:



    “Нимногонимало”. Красные стрелки - положительные связи, синие - отрицательные


    Вообще, это значит, что нейроны подобны элементам конструктора. Подобно тому, как процессор делают из транзисторов, мы можем собрать из нейронов мозг. Например, суждение “Или богата, или умна” можно сделать так:



    Или-или. Красные стрелки - положительные связи, синие – отрицательные




    можно заменить “мудрые” нейроны на “максималистов” и тогда получим логический оператор XOR. Главное - не забыть настроить пороги возбуждения.


    В отличие от транзисторов и бескомпромиссной логики типичного программиста “если - то”, нейронная сеть умеет принимать взвешенные решения. Их результаты будут плавно меняться, при плавном изменение входных параметров. Вот она мудрость!


    Обращу ваше внимание, что добавление слоя из двух нейронов, позволило нейрону “ни много - ни мало” делать более сложное и взвешенное суждение, перейти на новый уровень логики. От “много” или “мало” - к компромиссному решению, к более глубокому, с философской точки зрения, суждению. А что если добавить скрытых слоёв ещё? Мы способны охватить разумом ту простую сеть, но как насчёт сети, у которой есть 7 слоёв? Способны ли мы осознать глубину её суждений? А если в каждом из них, включая входной, около тысячи нейронов? Как вы думаете, на что она способна?


    Представьте, что я и дальше усложнял свой пример с женитьбой и влюблённостью, и пришёл к такой сети. Где-то там в ней скрыты все наши девять нейрончиков, и это уже больше похоже на правду. При всём желании, понять все зависимости и глубину суждений такой сети - попросту невозможно. Для меня переход от сети 3х3 к 7х1000 - сравним с осознанием масштабов, если не вселенной, то галактики - относительно моего роста. Попросту говоря, у меня это не получится. Решение такой сети, загоревшийся выход одного из её нейронов - будет необъясним логикой. Это то, что в быту мы можем назвать “интуицией” (по крайней мере – “одно из..”). Непонятное желание системы или её подсказка.


    Но, в отличие от нашего синтетического примера 3х3, где каждый нейрон скрытого слоя достаточно чётко формализован, в настоящей сети это не обязательно так. В хорошо настроенной сети, чей размер не избыточен для решения поставленной задачи - каждый нейрон будет детектировать какой-то признак, но это абсолютно не значит, что в нашем языке найдётся слово или предложение, которое сможет его описать. Если проецировать на человека, то это - какая-то его характеристика, которую ты чувствуешь, но словами объяснить не можешь.

    Обучение.

    Несколькими строчками ранее я обмолвился о хорошо настроенной сети, чем вероятно спровоцировал немой вопрос: “А как мы можем настроить сеть, состоящую из нескольких тысяч нейронов? Сколько “человеколет” и погубленных жизней нужно на это?.. Боюсь предположить ответ на последний вопрос. Куда лучше автоматизировать такой процесс настройки - заставить сеть саму настраивать себя. Такой процесс автоматизации называется обучением. И чтобы дать поверхностное о нём представление, я вернусь к изначальной метафоре об “очень важном вопросе”:


    Мы появляемся в этом мире с чистым, невинным мозгом и нейронной сетью, абсолютно не настроенной относительно дам. Её необходимо как-то грамотно настроить, дабы счастье и радость пришли в наш дом. Для этого нам нужен некоторый опыт, и тут есть несколько путей по его добыче:


    1) Обучение с учителем (для романтиков). Насмотреться на голливудские мелодрамы и начитаться слезливых романов. Или же насмотреться на своих родителей и/или друзей. После этого, в зависимости от выборки, отправиться проверять полученные знания. После неудачной попытки - повторить всё заново, начиная с романов.


    2) Обучение без учителя (для отчаянных экспериментаторов). Попробовать методом “тыка” жениться на десятке-другом женщин. После каждой женитьбы, в недоумение чесать репу. Повторять, пока не поймёшь, что надоело, и ты “уже знаешь, как это бывает”.


    3) Обучение без учителя, вариант 2 (путь отчаянных оптимистов). Забить на всё, что-то делать по жизни, и однажды обнаружить себя женатым. После этого, перенастроить свою сеть в соответствие с текущей реальностью, дабы всё устраивало.



    Всё вышесказанное справедливо для искусственной нейронной сети типа “персептрон”. Остальные сети похожи на нее по основным принципам, но имеют свою нюансы.


    Хороших вам весов и отличных обучающих выборок! Ну а если это уже и не нужно, то расскажите об этом кому-нибудь ещё.



    Веса моей нейронной сети не настроены, и я никак не могу понять к какому ресурсу должна относится эта статья.

    Только зарегистрированные пользователи могут участвовать в опросе. Войдите , пожалуйста.

    В последние годы технологический прогресс настолько ускорился, что перестал нас особенно удивлять. Мы практически свыклись с мыслью, что в ближайшие годы дороги заполонят автомобили с автопилотом, а персональный компьютер как собеседник будет поинтереснее большинства людей. Такой скачок в технологиях обеспечен прорывом в новой области знания - нейронные сети. Что это такое, стоит знать даже тем, кто никогда не интересовался миром IT.

    Краткое описание феномена

    Нейросетевыми называются такие вычислительные системы, которые обладают способностью к самообучению и постепенному повышению производительности. Они используются при решении таких задач, которые не поддаются логическому программированию:

    • Машинное обучение - разновидность искусственного интеллекта. Особенность его заключается в постепенном обучении на примере миллионов однотипных задач;
    • В робототехнике система используется в выработке многочисленных алгоритмов для железных «мозгов» автоматических систем;
    • Архитекторы компьютерных систем находят в нейросетях одно из решений проблемы параллельных вычислений;
    • Также имеются многие другие варианты имплементации: разрешение сугубо математических проблем, моделирование естественного интеллекта на основе ЭВМ и др.

    Основными элементами такой сети являются:

    1. Искусственные нейроны - элементарные, связанные между собой единицы;
    2. Синапс - соединение, которое служит для отправки-получения данных между нейронами;
    3. Сигнал - информация, подлежащая передаче.

    Сверточные нейронные сети

    Одной из самых популярных разновидностей нейросетей является так называемая сверточная , которая доказала свою эффективность в распознавании визуальных образов (изображения и видео), рекомендательных системах и обработке естественного языка:

    • Они прекрасно масштабируются и могут применяться для распознавания образов сколь угодно большого разрешения;
    • В них применяются объемные (трехмерные) нейроны. Нейроны внутри слоя связаны только небольшими областями, которые называются рецептивным полем;
    • Нейроны соседних слоев подключаются по механизму пространственной локализации. Укладка множества таких слоев обеспечивает появление нелинейных фильтров, которые начинают реагировать на все большее число пикселей;
    • Каждый фильтр расширяется на все поле зрения. Данные единицы тиражируются, делятся имеющимися параметрами и формируют карту. Тем самым все нейроны определенного сверточного слоя начинают реагировать на один и тот же объект (в пределах конкретной области ответа).

    Экскурс в историю

    Практическая реализация теории машинного обучения стала возможна только сегодня, благодаря появлению относительно дешевого и в то же время мощного «железа». Однако теоретические изыскания на эту тему насчитывают не один десяток лет:

    • Первая вычислительная модель пороговой логики на основе математики и алгоритмов была построена Уорреном Маккалоком и Уолтером Питттсом в 1943 году;
    • В конце 1940-х годов Дональд Хебб разработал механизм нейронной пластичности и тем самым заложил правила обучения автоматов;
    • 1954 годом датируется первое применение теоретических открытий в работе ЭВМ. Элисон Кларк использовал для этих целей обычный калькулятор;
    • Фрэнк Розенблатт в 1958 году разработал алгоритм распознавания образов и математическую нотацию к нему;
    • В конце 1960-х научный интерес к проблематике заметно угас ввиду невозможности его применения на аппаратных мощностях того времени;
    • Кибернетики вернулись к нейронным сетям лишь в начале 1980-х: появилась система с механизмом обратной связи, разработаны алгоритмы самообучения и заложены основы дисциплины data mining;
    • К 2000-м вычислительная мощность ЭВМ выросла настолько, что позволила реализовать самые смелые чаяния кабинетных ученых. Широкое распространение получили программы распознавания голоса, компьютерного зрения и т. д.

    Нейронная сеть Хопфилда

    В 1982 году американский ученый Джон Хопфилд описал новый вид вычислительной системы, которая теперь носит его имя. Среди ее характерных особенностей:

    1. Блоки в сети могут принимать только два значения для описания их состояния: 1 и -1. Каждая пара единиц значения говорит о возможности или невозможности подключения узлов графа;
    2. Обновление одного узла в графе моделирования искусственных нейронов выполняется асинхронно или синхронно. В первом случае обновляется только один блок, который может быть выбран случайным образом. Во втором случае все блоки обновляются одновременно;
    3. Сеть характеризуется состоянием, которое называется «энергией». Обновления сетей всегда происходят при максимальных значениях энергии;
    4. Правила обучения сети аналогичны механизмам человеческого интеллекта. Возможно подключение новых данных как с использованием старых данных (локальное правило), так и без обращения к старым образцам (добавочное правило).

    Данная модель ввиду большой близости к биологическим образцам часто используется для понимания функционирования человеческой памяти.

    Основные ограничения и проблемы

    Список основных претензий к современным методам интеллектуального анализа данных сводятся к следующему:

    1. Требуются значительные затраты времени на сбор подходящей информации и последующее обучение машины. В первую очередь касается робототехники;
    2. Ни одна из существующих ныне систем не способна решить фундаментальные математические проблемы (задача коммивояжера и факторизация больших чисел);
    3. Высокая сложность создания, настройки и обслуживания систем. Для этого требуются специалисты с очень высокой квалификацией, оплачивать услуги которых могут позволить себе только очень крупные корпорации;
    4. Для эффективной работы необходимо наличие высокопроизводительных ферм ЭВМ и программного обеспечения. Проблема постепенно решается благодаря увеличению аппаратной мощности графических процессоров: с 1991 по 2015 годы она возросла в миллион раз.

    Несмотря на многочисленные проблемы, нейронные сети являются лучшим, что имеет ныне человечество на пути к искусственному интеллекту. Они применяются практически повсеместно: автопилоты в самолетах и автомобилях, программы для обнаружения мошенничества с кредитным картами, освоение игры в го (логическая настольная игра) и т. д.

    Рекуррентные нейронные сети

    Если соединения между блоками образуют ориентированный цикл (начинаются и заканчиваются на одной и той же вершине графа), то речь идет о рекуррентной нейронной сети :

    • Каждое соединение имеет определенный вес (приоритет);
    • Узлы делятся на два типа: вводные, узлы вывода и скрытые;
    • Информация может передаваться не только по прямой (слой за слоем), но и между нейронами. Так отдельные элементы могут получать данные о предыдущем положении системы;
    • Отличительной чертой является так называемая концепция внимания: машине можно указать на определенные фрагменты данных, требующих углубленной обработки.

    Благодаря особенностям конструкции сеть используется для решения широкого круга задач:

    • Распознавание вербальных и текстовых данных;
    • В то же время, понимание смысла текста затруднено: машина «видит» лишь визуальную картинку без привязки к качественным характеристикам;
    • РНН в настоящее время используется в системах автоматизированного перевода текста (например, Яндекс.Переводчик).

    Если в XX веке умнейшие люди планеты занимались проектированием ракет, то ныне объектом приложения их интеллектуального потенциала являются нейронные сети. Что это, сложно сегодня не знать, ведь о достижении в этой области трубят ведущие СМИ на каждом шагу. Самые известные примеры: голосовой помощник Apple Siri, онлайн-переводчик Google Translate, поисковый движок Яндекса «Палех». И это только начало на пути к полноценному искусственному интеллекту.

    Видео про устройство нейронных сетей

    В данном ролике Олег Волошин расскажет простым языком, как работают современные нейронные сети, на чем основан их функционал:

    Всем привет!

    Буквально вчера нашел книгу Тарика Рашида «Создай свою нейросеть». Книга является бестселлером (топ 1 продаж) в разделе «Искусственный интеллект». Книга свежая, вышла в прошлом году.

    Впечатления от первых разделов замечательные. Одно из лучших введений в сферу нейросетей из всех мною виденных. Книга мне так понравилась, что я решил перевести ее на русский язык и выкладывать сюда в виде статей. Часть материала из книги пойдет на улучшение уже существующих глав, часть на следующие.

    Перевел уже два первых раздела 1 главы. Вы можете этих разделов.

    Читайте - наслаждайтесь!

    1 Глава. Как они работают.

    1.1 Легко для меня, тяжело для тебя

    Все компьютеры являются калькуляторами в душе. Они умеют очень быстро считать.

    Не стоит их в этом упрекать. Они отлично выполняют свою работу: считают цену с учетом скидки, начисляют долговые проценты, рисуют графики по имеющимся данным и так далее.

    Даже просмотр телевизора или прослушивание музыки с помощью компьютера представляют собой выполнение огромного количества арифметических операций снова и снова. Это может прозвучать удивительно, но отрисовка каждого кадра изображения из нулей и единиц, полученных через интернет задействует вычисления, которые не сильно сложнее тех задач, которые мы все решали в школе.

    Однако, способность компьютера складывать тысячи и миллионы чисел в секунду вовсе не является искусственным интеллектом. Человеку сложно так быстро складывать числа, но согласитесь, что эта работа не требует серьезных интеллектуальных затрат. Надо придерживаться заранее известного алгоритма по складыванию чисел и ничего более. Именно этим и занимаются все компьютеры - придерживаются четкого алгоритма.

    С компьютерами все ясно. Теперь давайте поговорим о том, в чем мы хороши по сравнению с ними.

    Посмотрите на картинки ниже и определите, что на них изображено:

    Вы видите лица людей на первой картинке, морду кошки на второй и дерево на третьей. Вы распознали объекты на этих картинках. Заметьте, что вам хватило лишь взгляда, чтобы безошибочно понять, что на них изображено. Мы редко ошибаемся в таких вещах.

    Мы мгновенно и без особого труда воспринимаем огромное количество информации, которое содержат изображения и очень точно определяем объекты на них. А вот для любого компьютера такая задача встанет поперек горла.

    У любого компьютера вне зависимости от его сложности и быстроты нет одного важного качества - интеллекта, которым обладает каждый человек.

    Но мы хотим научить компьютеры решать подобные задачи, потому что они быстрые и не устают. Искусственный интеллект как раз занимается решением подобного рода задач.

    Конечно компьютеры и дальше будут состоять из микросхем. Задача искусственного интеллекта - найти новые алгоритмы работы компьютера, которые позволят решать интеллектуальные задачи. Эти алгоритмы не всегда идеальны, но они решают поставленные задачи и создают впечатление, что компьютер ведет себя как человек.

    Ключевые моменты

    • Есть задачи легкие для обычных компьютеров, но вызывающие трудности и людей. Например, умножение миллиона чисел друг на друга.
    • С другой стороны, существуют не менее важные задачи, которые невероятно сложны для компьютера и не вызывают проблем у людей. Например, распознавание лиц на фотографиях.

    1.2 Простая предсказательная машина

    Давайте начнем с чего-нибудь очень простого. Дальше мы будет отталкиваться от материала, изученного в этом разделе.

    Представьте себе машину, которая получает вопрос, «обдумывает» его и затем выдает ответ. В примере выше вы получали картинку на вход, анализировали ее с помощью мозгов и делали вывод об объекте, который на ней изображен. Выглядит это как-то так:

    Компьютеры на самом деле ничего не «обдумывают». Они просто применяют заранее известные арифметические операции. Поэтому давайте будем называть вещи своими именами:

    Компьютер принимает какие-то данные на вход, производит необходимые вычисления и выдает готовый результат. Рассмотрим следующий пример. Если на вход компьютеру поступает выражение ​\(3 \times 4 \) ​, то оно преобразуется в более простую последовательность сложений. Как итог, получаем результат - 12.

    Выглядит не слишком впечатляюще. Это нормально. С помощью этих тривиальных примеров вы увидите идею, которую реализуют нейросети.

    Теперь представьте себе машину, которая преобразует километры в мили:

    Теперь представьте, что мы не знаем формулу, с помощью которой километры переводятся в мили. Мы знаем только, что зависимость между двумя этими величинами линейная . Это означает, что если мы в два раза увеличим дистанцию в милях, то дистанция в километрах тоже увеличится в два раза. Это интуитивно понятно. Вселенная была бы очень странной, если бы это правило не выполнялось.

    Линейная зависимость между километрами и милями дает нам подсказку, в какой форме надо преобразовывать одну величину в другую. Мы можем представить эту зависимость так:

    \[ \text{мили} = \text{километры} \times C \]

    В выражении выше ​\(C \) ​ выступает в роли некоторого постоянного числа - константы. Пока мы не знаем, чему равно ​\(C \) ​.

    Единственное, что нам известно - несколько заранее верно отмеренных расстояний в километрах и милях.

    И как же узнать значение ​\(C \) ​? А давайте просто придумаем случайное число и скажем, что ему-то и равна наша константа. Пусть ​\(C = 0.5 \) ​. Что же произойдет?

    Принимая, что ​\(C = 0.5 \) ​ мы из 100 километров получаем 50 миль. Это отличный результат принимая во внимания тот факт, что ​\(C = 0.5 \) ​ мы выбрали совершенно случайно! Но мы знаем, что наш ответ не совсем верен, потому что согласно таблице верных замеров мы должны были получить 62.137 мили.

    Мы промахнулись на 12.137 миль. Это наша погрешность - разница между полученным ответом и заранее известным правильным результатом, который в данном случае мы имеем в таблице.

    \[ \begin{gather*} \text{погрешность} = \text{правильное значение} — \text{полученный ответ} \\ = 62.137 — 50 \\ = 12.137 \end{gather*} \]

    Вновь смотрим на погрешность. Полученное расстояние короче на 12.137. Так как формула по переводу километров в мили линейная (​\(\text{мили} = \text{километры} \times C \) ​), то увеличение значения ​\(C \) ​ увеличит и выходной результат в милях.

    Давайте теперь примем, что ​\(C = 0.6 \) ​ и посмотрим, что произойдет.

    Так как ​\(C=0.6 \) ​, то для 100 километров имеем ​\(100 \times 0.6 = 60 \) ​ миль. Это гораздо лучше предыдущей попытки (в тот раз было 50 миль)! Теперь наша погрешность очень мала - всего 2.137 мили. Вполне себе точный результат.

    Теперь обратите внимание на то, как мы использовали полученную погрешность для корректировки значения константы ​\(C \) ​. Нам нужно было увеличить выходное число миль и мы немного увеличили значение ​\(C \) ​. Заметьте, что мы не используем алгебру для получения точного значения ​\(C \) ​, а ведь мы могли бы. Почему? Потому что на свете полно задач, которые не имеют простой математической связи между полученным входом и выдаваемым результатом.

    Именно для задач, которые практически не решаются простым подсчетом нам и нужны такие изощренные штуки, как нейронные сети.

    Боже мой! Мы хватанули слишком много и превысили правильный результат. Наша предыдущая погрешность равнялась 2.137, а теперь она равна -7.863. Минус означает, что наш результат оказался больше правильного ответа, так как погрешность вычисляется как правильный ответ — (минус) полученный ответ.

    Получается, что при ​\(C=0.6 \) ​ мы имеем гораздо более точный выход. На этом можно было бы и закончить. Но давайте все же увеличим ​\(C \) ​, но не сильно! Пусть ​\(C=0.61 \) ​.

    Так-то лучше! Наша машина выдает 61 милю, что всего на 1.137 милю меньше, чем правильный ответ (62.137).

    Из этой ситуации с превышением правильного ответа надо вынести важный урок. По мере приближения к правильному ответу параметры машины стоит менять все слабее и слабее. Это поможет избежать неприятных ситуаций, которые приводят к превышению правильного ответа.

    Величина нашей корректировки ​\(C \) ​ зависит от погрешности. Чем больше наша погрешность, тем более сильно мы меняем значение ​\(C \) ​. Но когда погрешность становиться маленькой, необходимо менять ​\(C \) ​ по чуть-чуть. Логично, не так ли?

    Верьте или нет, но только что вы поняли самую суть работы нейронных сетей. Мы тренируем «машины» постепенно выдавать все более и более точный результат.

    Важно понимать и то, как мы решали эту задачу. Мы не решали ее в один заход, хотя в данном случае так можно было бы поступить. Вместо этого, мы приходили к правильному ответу по шагам так, что с каждым шагом наши результаты становились лучше.

    Не правда ли объяснения очень простые и понятные? Лично я не встречал более лаконичного способа объяснить, что такое нейросети.

    Если вам что-то непонятно, задавайте вопросы на форуме.

    Мне важно ваше мнение - оставляйте комментарии 🙂

    Доступно показал насколько просто создать нейронную сеть для распознования картинок. Но есть одно но - то что он описал нейронной сетью не является. Перед его следующей статьей хочу рассказать вам как решить ту же задачу, но с использованием нейронной сети Кохонена.

    Итак, распознавать мы будем цифры, написанные белым по черному, такие как эти:

    Картинки 45 на 45 пикселей, а значит входов в нашу нейронную сеть будет 45 * 45.
    Для простоты, распознаем только цифры от 0 до 5, поэтому нейронов у нас будет 6 - по одному на каждый ответ.

    Cтруктура нашей нейросети:

    Каждая связь входа сети с нейроном имеет свой вес. Импульс, проходя через связь, меняется: импульс = импульс * вес_связи.
    Нейрон получает импульсы от всех входов и просто суммирует их. Нейрон набравший больший суммарный импульс побеждает. Все просто, реализуем!

    Классы для представления элементов сети (C#):
    // Вход
    public class Input
    {
    // Связи с нейронами
    public Link OutgoingLinks;
    }

    // Связь входа с нейроном
    public class Link
    {
    // Нейрон
    public Neuron Neuron;
    // Вес связи
    public double Weight;
    }

    public class Neuron
    {
    //Все входы нейрона
    public Link IncomingLinks;
    // Накопленный нейроном заряд
    public double Power { get; set; }
    }

    Создание и инициализация сети дело скучное, кому интересно - смотрите приложенный исходник. Остановлюсь лишь на том, что цвет пикселя это число от 0 до 255, причем 0 - это черный, 255 - белый, цвета между ними - градации серого.

    Состояние класса KohonenNetwork это массив Input и массив Neuron:
    public class KohonenNetwork
    {
    private readonly Input _inputs;
    private readonly Neuron _neurons;
    ...
    }

    Предположим, что наша сеть уже обучена. Тогда, чтобы узнать что изображено на картинке мы вызовем метод Handle, там все перемножится, сложится и найдется максимум:
    // Пропустить вектор через нейронную сеть
    public int Handle(int input)
    {
    for (var i = 0; i < _inputs.Length; i++)
    {
    var inputNeuron = _inputs[i];
    foreach (var outgoingLink in inputNeuron.OutgoingLinks)
    {
    outgoingLink.Neuron.Power += outgoingLink.Weight * input[i];
    }
    }
    var maxIndex = 0;
    for (var i = 1; i < _neurons.Length; i++)
    {
    if (_neurons[i].Power > _neurons.Power)
    maxIndex = i;
    }
    //снять импульс со всех нейронов:
    foreach (var outputNeuron in _neurons)
    {
    outputNeuron.Power = 0;
    }
    return maxIndex;
    }

    Но перед тем как спрашивать у сети что-либо, её надо обучить. Для обучения предъявляем картинки и указываем что на них нарисовано:


    Обучение - это изменение весов связей:
    public void Study(int input, int correctAnswer)
    {
    var neuron = _neurons;
    for (var i = 0; i < neuron.IncomingLinks.Length; i++)
    {
    var incomingLink = neuron.IncomingLinks[i];
    incomingLink.Weight = incomingLink.Weight + 0.5 * (input[i] - incomingLink.Weight);
    }
    }

    После обучения на двух шрифтах, нейронная сеть различает цифры и из других шрифтов. В том числе будет пройден контрольный тест на таких вот цифрах:
    Конечно, для расспознавания капчей такая поделка не годится - все перестает работать, стоит только сдвинуть, растянуть или повернуть изображение.
    Однако всем становится понятно, что использовать нейронные сети не так уж и сложно, если начинать с простых примеров.



    Загрузка...