sonyps4.ru

На что наносить термопасту. Правильное нанесение термопасты на компьютерный процессор

Изучаем последние «белые пятна» истории процессоров

Мы думали, что в рамках тестирования устаревших платформ придется ограничиться всего двумя статьями, посвященными процессорам под Socket AM2, куда не вошли очень многие интересные с исследовательской точки зрения модели, однако действительность оказалась к нам чуть более благосклонной – удалось добыть еще четыре Athlon 64. Причем очень хорошо заполняющие пробелы предыдущих тестирований, так что сегодня мы ими и займемся. Подключив к участию также и Sempron 3200+ из первой статьи , но не устраивая межплатформенных соревнований. Причина – проста и понятна: особо не с кем сравнивать. Как мы уже убедились сверху все семейство Athlon 64 X2 (за исключением, может быть, топового 6400+) «перекрывают» такие процессоры, как А4-3400 или даже специфичный и нишевый Celeron G530T, ну а среднему классу и супротив Celeron G460 сложно устоять. А вот как там дела в среднем и нижнем классе обстоят (точнее, обстояли) внутри – как раз и любопытно взглянуть. Чем мы и займемся.

Конфигурация тестовых стендов

Процессор Sempron 3200+ Athlon 64 3000+ Athlon 64 3500+
Название ядра Manila Orleans Orleans
Технология пр-ва 90 нм 90 нм 90 нм
Частота ядра, ГГц 1,8 1,8 2,2
1/1 1/1 1/1
Кэш L1, I/D, КБ 64/64 64/64 64/64
Кэш L2, КБ 128 512 512
Оперативная память 2×DDR2-667 2×DDR2-667 2×DDR2-667
Сокет AM2 AM2 AM2
TDP 65 Вт 65 Вт 65 Вт

Начнем с одноядерных моделей. Как видим, для полного счастья нам по-прежнему не хватает еще Sempron 3400+: у него та же частота, что у Sempron 3200+ и Athlon 64 3000+, но кэш-памяти 256К байт. Т.е. если бы удалось найти такую модель, мы бы получили полную линейку L2 (128/256/512) для одноядерных моделей на одинаковой частоте. Но что удалось добыть – то удалось. Зато Athlon 64 вообще появились среди протестированных, причем сразу два, так что можно будет и прирост относительно тактовой частоты оценить.

Процессор Athlon 64 X2 4200+ (W) Athlon 64 X2 4200+ (B) Athlon 64 X2 4400+
Название ядра Windsor Brisbane Windsor
Технология пр-ва 90 нм 65 нм 90 нм
Частота ядра, ГГц 2,2 2,2 2,2
Кол-во ядер/потоков вычисления 2/2 2/2 2/2
Кэш L1 (сумм.), I/D, КБ 128/128 128/128 128/128
Кэш L2, КБ 2×512 2×512 2×1024
Оперативная память 2×DDR2-800 2×DDR2-800 2×DDR2-800
Сокет AM2 AM2 AM2
TDP 89 Вт 65 Вт 89 Вт

В списке двухъядерных моделей будут три процессора, два из которых носят одинаковое название – увы, но таковы издержки «старых» систем наименования по частоте или рейтингу производительности: дуплеты, триплеты и более того тогда сыпались как из рога изобилия. Причем 4200+ (равно как и 3800+, 4600+, 5000+... продолжить самостоятельно) еще в какой-то степени повезло – «тезки» имели одинаковые частоты и емкость L2. Почему вообще образовались пары? Сначала Athlon 64 X2 использовали 90 нм кристалл Windsor, а потом перешли на 65 нм Brisbane. Получился такой вот своеобразный бардак, в другой подлинейке подросший. Дело в том, что Windsor мог иметь как 1 МиБ кэш-памяти, так и 2 МиБ (512К/1024К на ядро, соответственно), а Brisbane – только меньшее из этих значений. В результате Athlon 64 X2 4000+/4400+/4800+ и далее были совсем разными. Например, 90 нм 4400+ (тоже участник нашего тестирования) это 2,2 ГГц и 2х1024 L2, а 65 нм 4400+ – 2,3 ГГц и 2х512. Неразбериху усугубляло и то, что массовые Windsor были как обычными (TDP 89 Вт), так и энергоэффективными (TDP 65 Вт), а Brisbane – только вторыми. В общем, в ассортименте AMD было три массовых Athlon 64 X2 4200+ и еще один встраиваемый процессор с таким же названием (на деле – тот же АМ2, тот же Brisbane, но 35 Вт)! А как их можно было различить? Только по маркировке, причем полной – начало было сходным, т.е. ADO4200 – два процессора: надо еще и «хвостик» для ясности читать.

В общем, такой вот экскурс в историю, дабы напомнить любителям поныть о добрых старых временах и непонятности нынешних процессорных номеров о том, как тогда все обстояло на самом деле:) Что же касается темы тестирования, то нам эта тройка Athlon 64 X2 позволит поискать ответы сразу на три вопроса. Первые два – очевидны: полезность увеличенной кэш-памяти («канонический» 4200+ против 4400+) и соотношение производительности двух микроархитектур. Третий же «всплывает» если внимательно посмотреть на ТТХ: 4200+ на Windsor это в точности два Athlon 64 3500+ в одном сокете. Соответственно, и польза (или ее отсутствие) от второго ядра будет видна очень хорошо, причем без «возмущающего» эффекта от общей кэш-памяти или разной емкости кэшей.

Как мы уже писали ранее, с поддержкой оперативной памяти процессорами под АМ2 есть свои тонкости. Одноядерные модели официально ограничены DDR2-667, но на практике не имеют ничего против установки частоты 800 МГц. Это положительный момент, но есть и отрицательный – делители могут быть только целочисленными, так что «истинные» 800 получаются только в процессорах, частота которых нацело делится на 400. Во всех остальных случаях все несколько хуже – для процессоров с частотой 1,8 ГГц реальный режим работы памяти вообще DDR2-720, а при 2,2 ГГц получаем DDR2-732. Понятно, что с учетом слабости (с точки зрения современности) самих ядер (или, даже, ядрышек:)) это особой роли не играет, но помнить о таком поведении «старичков» стоит.

Тестирование

Традиционно, мы разбиваем все тесты на некоторое количество групп, и приводим на диаграммах средний результат по группе тестов/приложений (детально с методикой тестирования вы можете ознакомиться в отдельной статье). Результаты на диаграммах приведены в баллах, за 100 баллов принята производительность референсной тестовой системы сайт образца 2011 года. Основывается она на процессоре AMD Athlon II X4 620, ну а объем памяти (8 ГБ) и видеокарта () являются стандартными для всех тестирований «основной линейки» и могут меняться только в рамках специальных исследований. Тем, кто интересуется более подробной информацией, опять-таки традиционно предлагается скачать таблицу в формате Microsoft Excel , в которой все результаты приведены как в преобразованном в баллы, так и в «натуральном» виде.

Интерактивная работа в трёхмерных пакетах

Мы долго разрывались в сомнениях – это одно- или двухпоточные тесты, так что полная определенность в вопросе крайне приятна:) Все-таки первое, причем еще и наблюдается проблема с миграцией процесса по ядрам, свойственная многоядерным процессорам без общей кэш-памяти. А последняя здесь важна – как видим, Athlon быстрее равночастотного Sempron аж на 20%, да и дальнейшее увеличение L2 тоже почти 10% прибавляет. На первый взгляд это кажется несущественным на фоне прироста от увеличения тактовой частоты, но не забываем, что 3000+ и 3500+ разделяет целых 400 МГц. Соответственно, возникает вопрос – каким образом AMD планировала скомпенсировать уменьшение емкости кэш-памяти в Athlon 64 X2 4400+ на Brisbane увеличением частоты всего на 100 МГц, если этот кристалл при прочих равных еще и чуть медленнее, чем Windsor? Впрочем, делать выводы по первой группе тестов, конечно, несколько опрометчиво, так что подождем.

Финальный рендеринг трёхмерных сцен

Несмотря на резко изменившийся характер нагрузки, Brisbane по-прежнему при прочих равных немного медленнее Windsor. Но более интересно не это, а практически линейная масштабируемость приложений по ядрам. Даже сверхлинейная, что тоже вполне объяснимо – у одноядерного процессора есть одно ядро на все-все-все, а не только потоки прикладной программы, а двух- и более уже может «изыскать» дополнительные ресурсы для служебных процессов с меньшим ущербом для основной работы. Хотя по тоже вполне понятным причинам абсолютные показатели старичков уже далеко не впечатляют: Celeron G465 (современный, с Hyper-Threading, но физически одноядерный и низкочастотный), к примеру, набирает 35 баллов в этой группе тестов, т.е. на уровне Athlon 64 X2 3800+ и лишь на 10% меньше, чем 4200+.

Упаковка и распаковка

Прирост от многоядерности всего 20%, хотя уж два-то ядра умеют использовать два теста из четырех. Но недостатком Athlon с точки зрения этих программ является отсутствие общей кэш-памяти, так что ничего удивительного нет. Даже если ее количество удвоить – 4400+ обгоняет 3500+ в 1,3 раза, а аналогичное соотношение для двух- и одноядерных Celeron равно 1,47. Развернутые комментарии излишни: Pentium D были еще хуже с точки зрения практической реализации, но и на примере Athlon 64 X2 тоже хорошо заметна порочность пути создания многоядерных процессоров путем механического объединения нескольких ядер в одном корпусе. Безусловно, это лучше, чем ничего, но хуже, чем изначально многоядерный дизайн как в тех же Phenom или, хотя бы, Core Duo, за последнее время ставший стандартом де-факто в отрасли.

Кодирование аудио

Линейная масштабируемость и невосприимчивость к емкости кэш-памяти – это мы знали и раньше. Так что относительно новым стал очередной проигрыш Brisbane. Это уже становится однообразным:)

Компиляция

Масштабируемость почти линейная, поскольку здесь уже важна кэш-память, зато можно проследить – насколько она важна. Только не стоит забывать об эксклюзивной ее архитектуре. С учетом этого видим, что переход от 192 КБ (суммарно) Sempron 3200+ к 640 КБ Athlon 64 3000+ дает почти 30% прироста быстродействия. А вот дальнейшее ее увеличение с 640 до 1152 КБ добавляет 10% – в какой-то степени тоже близко к линейной масштабируемости.

Математические и инженерные расчёты

Пара потоков и здесь небесполезна, пусть и в меньшей степени, чем в предыдущих двух группах. Ее значение даже повыше, чем у кэш-памяти или тактовой частоты. Но ничего нового в этом, конечно, нет.

Растровая графика

И здесь пара ядер востребована большинством приложений, пусть и не в полной мере. Зато, кстати, от кэша пользы немного – к вящей радости тех, кто в свое время покупал Sempron. Сейчас, впрочем, ни их, ни Athlon 64, ни даже Athlon 64 X2 в таковом качестве использовать можно только на безрыбье: 62 балла это не только 65 нм Athlon 64 X2 4200+, но и... одноядерный Celeron G440 . В среднем, конечно – пакетные тесты ACDSee любым Athlon 64 X2 выполняются заметно быстрее, однако такая обработка изображений яркое, но, к сожалению, исключение из правил. Другие RAW-конвертеры, где на этапе «проявки» можно распараллелить работу одновременной обработкой нескольких фотографий, поведут себя аналогично. Но после проявки обычно наступает этап ретуширования и прочего – обычно, куда более длительный. Со всеми вытекающими. Особенно для любителей всего альтернативного – если Photoshop частично задействовать многопоточность умеет, то GIMP этому пока вовсе не обучен.

Векторная графика

На первый взгляд и эти две программы тоже, однако это не совсем так – основной проблемой Athlon 64 X2 в них оказывается отсутствие единой кэш-памяти, что и низводит эффект от второго ядра почти до нуля. А то и ниже – Brisbane здесь оказался даже хуже равночастотного Orleans.

Кодирование видео

И вновь близкая к линейной масштабируемость, а также слабая зависимость от емкости кэш-памяти. Все бы, конечно, хорошо... Если сравнивать процессоры только друг с другом, а не с современными моделями, но именно этим мы сегодня и занимаемся. К счастью для старичков, которые для работы такого рода, безусловно, уже не слишком пригодны, даже если достались даром.

Офисное ПО

А вот поработать с такими программами в принципе можно. Не потому, конечно, что «старые» процессоры так уж быстры, а потому, что и новые не слишком далеко ушли от них, поскольку большинство современных технологий приложениями этого класса не используются. Однако какой-никакой прогресс и в однопоточной производительности тоже за прошедшие годы наблюдался, так что даже Celeron G465 обходит Athlon 64 X2 4400+ на 25%. С одной стороны, вроде бы, и ничего критичного. С другой же... а зачем терпеть пусть и мелкие, но неудобства?

Java

Прирост от двухъядерности почти линейный. А вот в плане требовательности JVM к кэш-памяти мы, наконец-то, нащупали тот порог, выше которого можно не «дергаться»: со 192 КБ до 640 КБ почти 15%, но с 640 до 1152 КБ лишь 3%. На SBDC мы наблюдали второе, да и вообще большинство современных процессоров ведут себя подобным образом – в частности, многоядерные Athlon II не хуже аналогичных по частоте и количеству ядер Phenom II, но на то они и современные: либо есть L3, либо L2 большой (от 512К и далее) емкости. А вот «старичков» оказалось полезным протестировать хотя бы для того, чтобы в очередной раз убедиться, что не все зависимости можно продлять бесконечно в любую сторону – бывают пороги, которые все резко меняют. Особенно когда речь идет о кэш-памяти, которой либо хватает (и тогда дальнейшее увеличение уже ничего почти не дает), либо не хватает (и тогда все очень резко замедляется).

Игры

Как мы уже как-то писали, запуск современных игр на одноядерных процессорах – занятие не для слабонервных. Однако получить какой-никакой результат можно, порадоваться почти линейному приросту от второго вычислительного ядра тоже можно, а вот дальше мысль останавливается:) Достаточно вспомнить, что самый быстрый двухъядерный процессор, а именно Pentium G2120 набирает 119 баллов , а самый быстрый четырехъядерный Athlon II X4 651 дотягивает до 121 балла . Выше, конечно, есть всяческие Phenom II, FX и Core, но нам сейчас более интересны бюджетные модели, поскольку главными героями являются слишком уж старые процессоры. Используемая видеокарта на , безусловно, избыточна для обоих названных групп CPU, так что получаем чистое их сравнение. Вот выше уже большой прирост получить сложно – результат Core i7-3770K равен 159 баллам . А вот ниже – почти двукратная разница между современными процессорами за «около 100 долларов» и «старичками», т.е. из примерно 150% отрыва i7-3770K от Athlon 64 X2 4200+ первые 100% приходятся на пропасть между последним и современными бюджетниками. Это, повторимся, даже при использовании видеокарты, которая практически никогда в реальных компьютерах не соседствует ни с какими Athlon. Вывод? Неоднократно уже озвученный: при ориентации на игровое применение компьютера основные средства должны быть потрачены на видеокарту. Во вторую очередь – видеокарта. И в третью – она же. А процессор куда менее важен. Естественно, это не должна быть модель среднего класса шестилетней давности и уже точно не бюджетный процессор того времени, а вот из современных устройств – можно обойтись и недорогим. Можно, конечно, и дорогим, если финансы «не жмут», но только после того, как будет приобретена соответствующая видеокарта. А вот прежде чем приобретать новую дорогую видеокарту для старого компьютера, нужно три раза подумать – возможно, что для начала стоит обновить платформу. Ничего нового, конечно, в этом нет, но в очередной раз убедиться в справедливости прописных истин всегда приятно:)

Многозадачное окружение

Запуск этого экспериментального теста на Sempron (да и одноядерных Athlon 64), как тоже уже было сказано, относится к области стресс-тестирования, поскольку его однократный прогон занимает несколько часов, однако тут уже хорошо заметна разница между играми и «обычными» приложениями. Простая – если в интерактиве низкая производительность это приговор системе, то в прочем... Ну, работает медленно – и что? С задачей же за какое-то время справляется в конечном итоге. Даже если в буквальном смысле слова «перегрузить» компьютер несколькими задачами такого рода, что их и по одной-то на нем вряд ли будут решать. Более интересно другое: как видим, о линейной масштабируемости здесь (в отличие от некоторых других тестов) речь не идет: Athlon 64 X2 4200+ («правильный» т.е. 90 нм) быстрее, чем Athlon 64 3500+ примерно в полтора раза. На момент анонса платформы АМ2 отпускные цены этих двух моделей были равны 359 и 184 долларам соответственно, причем немалое количество тогдашних покупателей Х2 выбирали их «на перспективу»: в расчете на то, что через пару лет одноядерный процессор однозначно потребуется на что-нибудь менять, а вот двухъядерный еще поработает. Можно ли считать это состоявшимся хотя бы сейчас – споры не утихают:) Но интересно даже не это, а то, что в результате развязавшихся уже в том же 2006 году ценовых войн, не прошло и искомой пары лет, как Athlon 64 X2 сильно подешевели. В частности, с июля 2007 года «66-балльный » 6000+ начал отгружаться по 178 долларов. Нехитрая арифметика: 184+178-359=3 доллара в которые обошелся бы такой немного растянутый апгрейд без смены платы и с предположением, что 3500+ после него не нашел бы своего покупателя, вместо покупки 4200+ на старте. Конечно, вряд ли кто-то мог предполагать именно такое развитие событий (и вообще: Если бы я был такой умный до, как моя Сара после (с) ), но любителям «перспективных» платформ и процессоров стоит помнить о том, что бывал и такой вот исторический опыт.

Итого

Как Athlon 64 X2 соотносятся с современными процессорами мы оценили еще в прошлый раз , а с Sempron разобрались в позапрошлый, почему сегодня и решено было отойти от «дальних» сравнений, просто заполнив пробелы в знаниях о процессорах для Socket AM2. Вот с этой точки зрения на испытуемых и взглянем.

Sempron и одноядерные Athlon 64 на деле очень похожи. Заметно, конечно, что большая емкость кэш-памяти дает последним немало, однако, фактически, Athlon с разным L2 отличаются друг от друга не менее заметно. По диаграмме кажется, что более, но не стоит забывать, что Sempron 3400+ нам найти не удалось, а вот он как раз, скорее всего, встроился бы в промежуток между Sempron 3200+ и Athlon 64 3000+ образом, подобным Athlon 64 Х2 4200+ и 4400+. В общем, различия между одноядерными семействами искусственные: второе начиналось чуть выше, чем первое заканчивалось. Единственной точкой пересечения можно считать разве что Sempron 3600+ и Athlon 64 3000+: более высокая частота пусть и при 256К L2 вполне может позволить первому процессору иногда даже обгонять второй. Но, кстати, обратите внимание на то, насколько разные рейтинги для этого нужны: 3600+ и 3000+. Хотя у обоих процессорах они по указаниям AMD указывают на производительность, однако гранаты явно разной системы ;) Что всегда лило воду на мельницу приверженцев версии, что на деле рейтинг указывает вовсе не какую-то объективную (пусть и гипотетическую) производительность сравнительно с эталонным Athlon на каком-то наборе приложений, а частоту сравнимых по производительности процессоров Intel. Только разных – Celeron и Pentium 4 соответственно. За давностью лет, да и сменой системы маркировки процессоров AMD на, мягко говоря, более удобную и логичную (точнее, вот уже несколько новых более удобных и логичных), естественно, серьезно заниматься этим вопросом сегодня нет смысла, но раз уж у нас в своем роде экскурс в историю, почему бы эту самую историю в очередной раз не вспомнить? :)

Рейтингование же Athlon 64 Х2 по сути контрольный выстрел в лоб официальной версии. Понятно, что массовое ПО не сразу стало хотя бы двухпоточным, однако в перспективе других вариантов развития событий изначально не прослеживалось. И к чему мы пришли? 500 очков Athlon 64 дает прирост итогового балла нашей методики в 1,19 раза, а 300 очков между семействами – 1,2 раза (если сравнить Athlon 64 Х2 3800+ и Athlon 64 3500+). Но следующие 400 очков уже внутри Athlon 64 Х2 – лишь 1,07 раза! В общем, судить по рейтингу разных семейств о производительности – занятие совсем неблагодарное, хотя официально для этого его и вводили. Впрочем, у Athlon 64 Х2 рейтинги уже никак не сопоставишь и с тактовой частотой процессоров Intel – не было Pentium D с официальными частотами по 4 ГГц и выше. Но и Pentium 4 таких тоже не было.

Сравнение же двух вариантов Athlon 64 Х2, т.е. Brisbane и Windsor, тоже уже интересно лишь с исторической точки зрения, но перекликается с современностью. Да и с рейтингами тоже – как видим, процессор на более новом кристалле настолько устойчиво отстает от равного по ТТХ предшественника, что 65 нм Athlon 64 Х2 4200+ стоило бы иметь частоту хотя бы на 100 МГц выше, т.е. 2,3 ГГц. Увы, но такой Brisbane назывался Athlon 64 Х2 4400+, с чем он точно не имел ничего общего. Понятно, что проблему можно было бы решить более грамотной раздачей рейтингов, но ведь без них ее можно было бы и вовсе не создавать. А почему это перекликается с современностью? Brisbane дешевле в производстве, чем Windsor и несколько экономичнее – прямая аналогия с Sandy Bridge и Ivy Bridge. Но есть и серьезные различия: при равных ТТХ Ivy таки быстрее Sandy во-первых, и называются такие процессоры по-разному во-вторых. В общем, ругая Intel за слишком уж небольшой прирост от освоения техпроцесса 22 нм, стоит помнить, что бывали в истории случаи и хуже.

На этом мы заканчиваем архивную тему – как минимум до ввода в эксплуатацию новой версии методики тестирования. На очереди – заключительная версия процессорных итогов, благо материала по сравнению с промежуточной накопилось достаточно: почти столько же, сколько было в последней. Осталось только изучить производительность новых процессоров AMD для Socket AM3+, чем мы в следующей статье и займемся.

Инструкция

Прежде всего, следует определиться с назначением термопасты. Она используется для увеличения теплопроводности между микросхемой (процессором ) и радиатором . При этом сама обладает низкой теплопроводностью, и ее следует наносить тонким слоем для более плотного между двумя деталями. Таким образом, она максимально заполняет существующее воздушное пространство. Выбирая термопасту , постарайтесь избежать подделок под фирменные бренды, хорошо зарекомендовавшие себя. Если нанести подделку на , может произойти перегрев микросхемы и ее поломка. Способы проверки термопасты, а также бренды, подходящие для использования в компьютерной технике, можно без труда найти в сети Интернет.

Чтобы нанести термопасту на процессор, с помощью мягкой салфетки очистите поверхность микросхемы от остатков старого вещества. То же самое сделайте и с контактирующей подошвой радиатора кулера. Перед нанесением основного слоя термопасты можно втереть в обе так называемый нулевой слой вещества, то есть после предварительного нанесения снять его. Таким образом, термопаста останется в бороздках и царапинках обеих поверхностей и обеспечит контакт.

Выдавите небольшое количество вещества на основную микросхему. Некоторые советуют нанести термопасту на процессор накрест , и тем самым достигнуть лучшей промазки поверхностей особенно по углам. Размазывать ее по нужно небольшой крепкой пластинкой. Не советуют это пальцами, но если вам так нравится больше, воспользуйтесь резиновыми напальчниками или перчатками. Получившийся слой термопасты на процессоре должен быть тонким.

Большее количество вещества нанесите на подошву кулера и также равномерно распределите его по всей поверхности. После этого плотно зафиксируйте радиатор над процессором и прижмите его замками крепления.

Видео по теме

Обратите внимание

Наносить термопасту на процессор просто. Достаточно стереть старый слой термопасты. Процессор должен быть совершенно чистым, а все следы прежней термопасты должны быть убраны. После того, как Вы очистите CPU, можно делать нанесение термопасты на процессор. Именно небольшого количества более чем достаточно, - нанести нужно тонкий слой, поскольку, как мы уже писали выше, термопаста нужна для передачи тепла от источника к радиатору.

Полезный совет

Обеспечивая лучшую передачу тепла, она позволяет эффективнее охлаждать процессор. Владельцам компьютеров полезно будет знать, как наносить термопасту самостоятельно. По густоте термопасты можно судить о легкости нанесения: чем гуще термопаста, тем тяжелее будет ее наносить. Обратите внимания на форму выпуска термопасты. Если вы собираетесь наносить термопасту впервые, выберите термопасту в тюбике (шприце) - это облегчит дозировку и нанесение термопасты.

Совет 2: Как правильно наносить термопасту для охлаждения процессора

Поменять процессор в своем компьютере или только систему охлаждения лучше всего, воспользовавшись услугами сервисного центра. В том случае, если решено сделать это самостоятельно, неизбежно становится вопрос о правильном нанесении термопасты, которая необходима для обеспечения достаточного контакта поверхности процессора и радиатора. При этом важно, чтобы термопасты было и не много, и не мало, а распределение ее было равномерным.

Способ нанесения термопасты может отличаться в виду того, что она может быть жидкой или густой, кремнийорганичной или с добавлениями металлов и кристаллов. Вопрос о выборе термопасты сам по себе может занять отдельную тему для статьи. Часто к системам охлаждения своя в пакете или в , тогда вопрос выбора отпадает сам собой.

Основная цель состоит в том, чтобы при установке радиатора поверх процессора микросхемы на или была равномерно распределена по всей поверхности. Толщина слоя должна быть в пределах полмиллиметра, чтобы ее было достаточно, и не образовывались излишки, которые впоследствии выступят по бокам кристалла или корпуса процессора. Не стоит этого допускать, так как термопаста сама по себе обладает меньшей теплопроводностью, чем радиатор, поэтому слой свыше 0,5 мм только ухудшит процесс охлаждения процессора.

Нанесение жидкой термопасты

Жидкая термопаста наносится равномерно на всю верхнюю поверхность процессора или на кристалл микросхемы, не заходя на боковые грани или на подложку. Слой должен быть тонким и равномерным, без борозд или вспучиваний. Наносится термопаста с помощью кисточки, которая чаще всего прилагается к ее тюбику. Наносится любая термопаста только на охлаждаемую поверхность, а не на радиатор системы охлаждения.

Если термопаста достаточно , то она быстро растечется и сравняется, после этого можно располагать на место радиатор и защелкивать крепления.

Важно помнить, что термопаста может быть токопроводящей, поэтому не следует допускать ее попадания на плату и элементы обвязки вокруг процессора, микросхемы или элементы на ее подложке.

Нанесение густой термопасты

Значительно чаще можно встретить густую термопаст. Ее распределять по охлаждающей поверхности не надо, потому как вероятны образования воздушных карманов или же мест ее излишка или . Для равномерного нанесения достаточно в центре охлаждающей поверхности наложить необходимое количество термопасты и аккуратно, опуская радиатор параллельно поверхности, прижать его к процессору. В результате термопаста распределится по всей поверхности без пропущенных мест и воздушных карманов. Если термопаста слишком густая, то следует дополнительно прижать радиатор и слегка покрутить его по оси из сторон в сторону.

Вопрос, как наносить термопасту правильно, серьёзно беспокоит многих пользователей ноутбуков. При этом многие из них боятся этого процесса, считая, что могут повредить процессор или кулер. Такие опасения частично оправданы - неправильное нанесение приведёт к снижению эффективности работы компьютера и даже к поломке оборудования. Обычно термопасту на процессор ноутбука наносят в двух случаях:

Необходимость нанесения

Необходимость в наличии термопасты на поверхности процессора (центрального или графического) связана с выделением значительного количества тепла. Во время работы он сильно нагревается, поэтому избыток тепловой энергии требуется отвести. С этой целью применяют кулер, который прижимают к процессору металлической частью (радиатором). Однако даже идеально отполированные поверхности соприкасаются, оставляя между собой небольшое пространство, заполняемое воздухом. Для получения более плотного прилегания кулера и процессора, и для устранения воздушной прокладки применяют специальный , роль которого играет паста. Она позволяет намного эффективнее передавать тепло и обладает минимальным тепловым сопротивлением, стабильностью свойств при любых температурах и удобной для нанесения консистенцией.

Этапы выполнения работы

Процесс замены или нанесения термопасты представляет собой операцию, требующую строго соблюдения всех этапов и определённых правил. Также следует придерживаться периодичности замены. И, если, например, для домашнего компьютера можно менять пасту не чаще 1 раза в 2 года, для ноутбука период вдвое меньший. Для нанесения термопасты на и процессор никаких предварительных действий, кроме распаковки их из коробок и подготовки материнской платы, на которую они будут устанавливаться, не требуется. Зато при замене термоизолирующего материала или при повторном использовании комплектующих обязательно очистить их соприкасающиеся поверхности. Если этого не сделать, изоляция будет малоэффективной, и процессор будет сильно перегреваться.

1. Очистка кулера

Удалять все следы предыдущей пасты следует не только при повторном использовании кулера, но и при наличии сохранившейся заводской, которая вряд ли будет достаточно эффективной. Проводить процедуру несложно, так как металлическая поверхность детали легко протирается любыми очищающими средствами, включая спиртосодержащие. Подойдёт, например, водка или специальная жидкость для удаления пасты. После устранения следов поверхность протирается сухой тканью.

2. Подготовка процессора

Когда Вы снимите радиатор, на процессоре, скорее всего, останется отработанная термопаста. Ее удаляют смоченной в спирте тряпкой, стараясь, чтобы жидкость не попала на другие детали компьютера (с целью экономии времени и обеспечения сохранности процессора лучше всего проводить очистку, когда он установлен на плате).
Если старая термопаста оказалась засохшей, рассоединять обе детали следует очень аккуратно, не поцарапав их поверхности. Царапины на процессоре приведут к нарушению температурного режима и могут даже вызвать его поломку. Иногда для отделения комплектующих друг от друга следует полностью извлечь обе из ноутбука. После разделения затвердевшую пасту требуется убрать, тоже стараясь ничего не повредить. Для этого можно воспользоваться следующим способом:

  1. Взять обычный школьный ластик;
  2. Натирать металлическую часть процессора до блеска;
  3. Продолжать до тех пор, пока следов пасты не останется.

Методика длительная, но эффективная. Тем более что процессор остаётся неповреждённым и очень чистым.

3. Нанесение пасты

Решая вопрос, сколько термопасты наносить на поверхность чипа, следует в зависимости от качества материала. У большинства недорогих паст средняя термопроводность, в результате чего достаточно нанесения слоя толщиной около 0,5 мм. После нанесения крышка процессора может немного просвечивать через защиту - хотя, конечно, надписей не должно быть видно. Хорошие термопасты наносят слоем в 1 мм. К ним относят, например, материалы с использованием золотого порошка. Стоимость такой пасты значительно превысит цену средних материалов, но проводить её замену придётся реже, а качество защиты будет выше. Начинать процесс следует с нанесения на центральную часть детали капли термопасты . После этого материал аккуратно распределяют по поверхности крышки, выбирая толщину слоя в соответствии с типом пасты. Если этого недостаточно, наносят вторую каплю и повторяют действия. Термопасту допускается наносить не только пальцами, но и подручными средствами типа специальной лопатки или деревянной палочки. Не следует делать это с помощью металлических предметов типа отвёрток, способных случайно поцарапать микросхему. Также необходимо не допустить вытекания материала за края детали - в этом случае излишки аккуратно снимаются специальным раствором.

4. Завершение работы

Завершают работу сборкой всех деталей:

  • соединением кулера с процессором;
  • защёлкиванием специальных креплений, фиксирующих положение комплектующих;
  • установкой полученной конструкции на плату;
  • сборкой всего ноутбука.

При возникновении сомнений в правильности нанесения пасты следует скачать и установить на ноутбуке программу, проверяющую температуру процессора. Если она остаётся в норме (до 60 градусов в обычном состоянии, до 90 и даже 100 - при высокой загрузке), значит, беспокоиться не о чём. В случае перегрева процессора, ноутбук разбирают и проверяют соприкасающиеся поверхности кулера и чипсета на наличие просветов в пасте, при необходимости, нанося новый термоинтерфейс.

В сборке компьютера много важных этапов но почему то нанесение термопасты вызывает так много опасений среди начинающих сборщиков, почему так происходит? Отчасти опасения оправданы, ведь не правильное нанесение термопасты или установка кулера может привести к зависанию и снижению работоспособности компьютера это как минимум, как максимум выход из строя дорогостоящего процессора. Наше маленькое пособие призвано помочь в освоении начинающих компьютерщиков правильной установке процессора и кулера.

Для чего нужна термопаста

Кристалл процессора спрятанный под металлическую крышечку во время своей работы выделяет достаточное количество тепла, которое необходимо отвести от процессора. Для этой цели служит кулер. Который прижимается к процессору металлической частью рабочего пространства. Между двумя металлическими элементами (процессор и кулер) неизбежно остаются микроскопические пространства, как бы идеально не были отполированы поверхности. Но воздух не является идеальным проводником тепла, вот поэтому мы и применяем термопасту. Термопаста заполняет эти микроскопические пустоты и в разы эффективней передает тепло от процессора к кулеру. Существуют несколько различных типов теплопроводных материалов, включая керамических и металло-паст и твердых, восковых тепловых прокладок. На некоторых кулерах уже нанесена термопаста но мы не рекомендуем ее использовать, лучше нанесите более эффективную например Arctic Silver 5 или Arctic Silver CERAMIQUE.

Подготовка процессора и кулера

Если вы повторно используете кулер или же у вас на кулере нанесена старая термопаста первым делом следует удалить старую термопасту. Можно купить специальное средство удаления термопасты такую как ArctiClean, но подойдет любая спирт содержащая жидкость например водка. Капните пару капель на старую термопасту и подождите минуту пока спирт растворит термопасту, теперь протрите сухой тканью без ворса. Повторите процедуру несколько раз.

Нанесите термопасту

Посоветуем вам нанести каплю чуть меньше горошины в центре процессора. Теперь аккуратно распределите пальцем термопасту по всему процессору, старайтесь нанести тонкий равномерный слой. Слой примерно должен быть таким что крышка процессора слегка просвечивала. Прижмите кулер в его рабочем положении к процессору и слегка поводите влево - вправо кулером. Теперь защелкните крепления кулера.

Если у вас возникнуть какие либо сомнения аккуратно снимите процессорный кулер и посмотрите на то как термопаста себя повела. Если увидите равномерный слой то все в порядке, если же есть пробелы то лучше повторить операцию. Следите что бы термопаста не вытекла за края процессора, если такое произошло то снимите излишки чистящим раствором. .

Добавлю к этой публикации маленькое видео. Предлагаю вам ознакомиться с таким вот способом нанесения термопасты

Обновлено

После проведения целого ряда замены термопаст от различных производителей пришел к такому выводу.

Как часто необходимо заменять термопасту в домашнем компьютере? Примерно один раз в два года.

Как часто необходимо менять термопасту в ноутбуке? Примерно один раз в 1 год.

Толшина наносимого слоя завист напрямую от качества термопасты. Необходимо проверить термопроводность пасты. Как правило на дешевых термопастах она на среднем уровне или даже ниже среднего. Такие термопасты необходимо наносить тонким слоем примерно пол миллиметра. Смотрите видео выше.

На хороших термопастах наносимый слой может быть до 1 миллиметра (так даже лучше) мною была протестирована термопаста на основе золотого порошка.

Подробно о термопастах их коэфициенте теплопроводности читайте на этом сайте http://www.kakras.ru/mobile/thermal-conductivity.html



Загрузка...