sonyps4.ru

Метрологические приборы. Метрологические характеристики средств измерений

06-01-2015

Средствами измерений (СИ) называются технические средства, применяемые для измерения единицы физической величины (ФВ) на практике. Для СИ установлены нормированные погрешности.

Средства измерений классифицируются по следующим критериям:

К основным видам средств измерений относятся следующие:

  • эталон;
  • мера;
  • измерительный преобразователь;
  • измерительный прибор;
  • измерительная установка;
  • измерительная система.

Мера, эталон

Мерой является средство измерений, которое предназначено для воспроизведения заданного размера физической величины. К примеру, гиря является мерой массы, резистор - мерой электрического сопротивления.

Различают одно- и многозначные меры, а кроме того, наборы и магазины мер.

С помощью однозначной меры воспроизводится величина лишь одного размера. Примером такой меры является гиря. Многозначными мерами воспроизводятся несколько размеров ФВ. Примером многозначной меры может служить миллиметровая линейка, с помощью которой можно выразить длину предмета как в миллиметрах, так и в сантиметрах.

Меры с наивысшим порядком точности называются эталонами , подробнее о которых вы можете прочитать в материале «Средства измерения в метрологии» .

Измерительный преобразователь


Под измерительным преобразователем подразумевается СИ, которое преобразует сигнал измерительной информации в форму, удобную для его передачи, последующего преобразования, а затем обработки и хранения, но при этом сигнал в таком виде не предназначен для непосредственного восприятия наблюдателем.

Этот сигнал подается в показывающее устройство, с которого и происходит это непосредственное восприятие. По данной причине преобразователь либо входит в конструкцию измерительного прибора, либо совместно с ним применяется.

К примеру, использоваться преобразователь может с целью передачи данных в память компьютера. Преобразуемая величина носит название входной, а итог преобразования называется выходной величиной. Основная метрологическая характеристика преобразователя и определяется соотношением этих величин (входной и выходной), которое носит название «функция преобразования».

Измерительный прибор. Классификация измерительных приборов

Измерительным прибором называется СИ, которое, в отличие от преобразователя, служит для выработки сигнала в форме, которая доступна для непосредственного восприятия наблюдателем.

Существуют различные классификации измерительных приборов, это:

  • назначение;
  • конструктивное устройство;
  • степень автоматизации.

Назначение измерительных приборов

По данному признаку различают измерительные приборы (ИП):

  • универсальные, применяемые в контрольно-измерительных лабораториях всех типов производств, а кроме того в цехах мелкосерийных и единичных производств;
  • специальные, применяемые для измерения одного или нескольких параметров деталей определенного типа;
  • для контроля: приемочного (калибры), активного (при изготовлении деталей) или статистического.

Конструктивное устройство

По этому признаку различают приборы:

  • механические: штангенциркуль, микрометр, щупы, рычажные скобы и т.д.;
  • оптические: микроскоп, проектор, оптиметр и др.;
  • пневматические: длинномеры, или ротаметры, и т.д.;
  • электрические: индуктивные приборы, кругломеры, профилографы и др.

Степень автоматизации

По данному признаку приборы бывают:

  • ручного действия;
  • механизированными;
  • полуавтоматическими;
  • автоматическими.

Измерительная установка

Измерительная установка - это совокупность СИ (меры, измерительные приборы и преобразователи) и вспомогательных устройств, объединенных функционально. Предназначение составляющих измерительной установки - выработка сигналов в удобной для непосредственного восприятия наблюдателем форме. Сама измерительная установка располагается на одном месте (испытательный стенд).

Измерительная система

Измерительная система представляет собой такую же совокупность, но составляющие ее звенья соединены между собой каналами связи, которые размещены в разных точках контролируемого пространства. Цель измерительной системы - измерить одну или несколько ФВ, которые свойственны данному пространству.

Средство измерений (СрИзм) - это техническое средство (или комплекс средств), используемое при измерениях и имеющее нормированные метрологические характеристики.

СрИзм позволяют не только обнаружить физическую величину, но и измерить ее, т.е. сопоставить неизвестный размер с известным. Если физическая величина известного размера есть в наличии, то она непосредственно используется для сравнения (измерение плоского угла транспортиром, массы – с помощью весов с гирями). Если же физической величины известного размера в наличии нет, то сравнивается реакция (отклик) прибора на воздействие измеряемой величины с проявившейся ранее реакцией на воздействие той же величины, но известного размера (измерений силы тока амперметром).

  1. конструктивное исполнение;
  2. метрологическое назначение.

По конструктивному исполнению СрИзм подразделяют на меры, измерительные преобразователи; измерительные приборы, измерительные установки, и системы, измерительные принадлежности.

Это средство измерения, предназначенное для воспроизведения физических величин заданного размера. К данному виду средств измерений относятся гири, концевые меры длины и т.п. На практике используют однозначные и многозначные меры, а также наборы и магазины мер.

Однозначные меры воспроизводят величины только одного размера (гиря).

К однозначным мерам можно отнести стандартные образцы (СО). СО состава вещества (материала) – стандартный образец с установленными значениями величин, характеризующих содержание определенных компонентов в веществе (материале).

СО свойств веществ (материалов) – стандартный образец с установленными значениями величин, характеризующих физические, химические, биологические и другие свойства.

Многозначные меры воспроизводят несколько размеров физической величины. Например, миллиметровая линейка дает возможность выразить длину предмета в сантиметрах и в миллиметрах.

СрИзм, предназначенные для преобразования измеряемой величины в другую однородную или неоднородную величину с целью представления измеряемой величины в форме, удобной при обработке, хранении, передаче в показывающее устройство. Измерительные преобразователи не имеют устройств отображения измерительной информации, поэтому они входят в измерительные приборы или применяются вместе с ними.

Различают:

  • Первичные преобразователи - предназначены для непосредственного восприятия измеряемой величины, как правило, неэлектронной и преобразовывая ее в электрическую (например, датчики).
  • Промежуточные преобразователи – преобразователи, расположенные в измерительной цепи первичного преобразователя и обычно по измеряемой физической величине, однородные с ним.

Пример: овременные измерительные преобразователи нередко оснащаются и цифровыми, и аналоговыми выходными цепями. Примерами таких преобразователей являются Е854ЭЛ, Е856ЭЛ и Е849ЭЛ

Совокупность конструктивно объединенных первичных и промежуточных преобразователей носит название «измерительные приборы».

Измерительные приборы

Это средства измерений, которые позволяют получать измерительную информацию в форме, удобной для восприятия пользователем. Различают измерительные приборы прямого действия и приборы сравнения.

  • Приборы прямого действия отображают измеряемую величину на показывающем устройстве, имеющем соответствующую градуировку в единицах этой величины. Изменения рода физической величины при этом не происходит. К приборам прямого действия относят, например, амперметры, вольтметры, термометры и т.п.
  • Приборы сравнения предназначаются для сравнения измеряемых величин с величинами, значения которых известны, например, аналитические весы. Такие приборы широко используются в научных целях.

Измерительные установки и системы

Это совокупность средств измерений, объединённых по функциональному признаку со вспомогательными устройствами, для измерения одной или нескольких физических величин объекта измерений. Обычно такие системы автоматизированы и обеспечивают ввод информации в систему, автоматизацию самого процесса измерения, обработку и отображение результатов измерений для восприятия их пользователем.

Это вспомогательные средства измерений величин. Они необходимы для вычисления поправок к результатам измерений, если требуется высокая степень точности.

По метрологическому назначению СрИзм делят на два вида – рабочие средства измерений и эталоны.

Рабочие средства измерений

Применяют для определения параметров (характеристик) технических устройств, технологических процессов, окружающей среды и др.

Производственные средства обладают устойчивостью к воздействиям различных факторов производственного процесса: температуры, влажности, вибрации и т.п., что может сказаться на достоверности и точности показаний приборов.

Полевые средства работают в условиях, постоянно изменяющихся в широких пределах внешних воздействий.

Это высокоточная мера, предназначенная для воспроизведения и хранения единицы величины с целью передачи её размера другим средствам измерений. От эталона единица величины передаётся разрядным эталонам, а от них – рабочим средствам измерений. Эталоны классифицируют на:

  • Первичный эталон – это эталон, воспроизводящий единицу физической величины с наивысшей точностью, возможной в данной области измерений на современном уровне научно-технических достижений. Первичный эталон может быть национальным (государственным) и международным.
  • Вторичные эталоны могут утверждаться либо Госстандартом РФ, либо государственными научными метрологическими центрами, что связано с особенностями их использования.
  • Рабочие эталоны воспринимают размер единицы от вторичных эталонов и в свою очередь служат для передачи размера менее точному рабочему эталону (или эталону более низкого разряда и рабочим средствам измерений.

Презентация на тему Классификация видов средств измерений

  • 13. Классификация систематических погрешностей измерений по причине возникновения.
  • 14. Классификация систематических погрешностей измерений по характеру проявления.
  • 15. Классификация методов измерений, определение методов, входящих в классификацию.
  • 16. Определения терминов: мера, измерительный прибор, измерительный преобразователь, измерительная установка, измерительная система.
  • 17. Классификация измерительных приборов.
  • 18. Классификация измерительных преобразователей.
  • Вопрос 19. Структура измерительных приборов прямого действия
  • Вопрос 20. Структура измерительных приборов сравнения
  • Вопрос 21. Метрологические характеристики средств измерений
  • 26. Динамические характеристики средств измерений: Дифференциальные уравнения, передаточные функции.
  • 27. Частотные характеристики средств измерений.
  • 28. Классификация погрешностей измерительных устройств.
  • 29) Определение аддитивной, мультипликативной, гистерезисной погрешности и вариации
  • 30) Определение основной, дополнительной, абсолютной, относительной и приведенной погрешностей измерений
  • 31) Нормирование метрологических характеристик средств измерений
  • 32. Нормирование метрологических характеристик средств измерений.
  • 34 Способы нормирования характеристик, определяющих точность измерений. Характеристики статистических распределений.
  • 35 Выявление и исключение грубых погрешностей измерений.
  • 36. Структура измерительных систем и их характеристики
  • Вопрос 20. Структура измерительных приборов сравнения

    Измерительный прибор сравнения (компаратор) - измерительный прибор, предназначенный для непосредственного сравнения измеряемой величины с величиной, значение которой известно. Примерами компараторов являются: двухчашечные весы, интерференционный компаратор мер длины, мост электрического сопротивления, электроизмерительный потенциометр, фотометрическая скамья с фотометром. Компараторы для выполнения своих функций могут не хранить единицу. Такие компараторы, строго говоря, нельзя считать средствами измерений. Тем не менее, они должны обладать рядом важных метрологических свойств, прежде всего, обеспечивать небольшую случайную погрешность и высокую чувствительность измерений.

    Приборы , построенные по схеме уравновешивающего преобразования (сравнения), имеют малую как аддитивную, так и мультипликативную погрешности. Применение обратной связи позволяет создать приборы, обладающие малой статической и динамической погрешностью. Эти приборы имеют большую выходную мощность, и их показания мало зависят от нагрузки.

    Основные характеристики такой структуры по сравнению со схемой прямого преобразования (дейтсвия) – более низкое быстродействие из-за необходимости дополнительного времени для осуществления процесса уравновешивания, но более высокая точность за счет использования общей отрицательной обратной связи и опорных мер для срав­нения.

    Рисунок выше – Структурная схема измерительного прибора уравновешивающего преобразования (сравнения)

    Где ПОС-преобразователь обратной связи, остальное смотреть в 19 вопросе под рисунком.

    Вопрос 21. Метрологические характеристики средств измерений

    Метрологические характеристики средств измерений - это характеристики свойств, оказывающие влияние на результаты и погрешности измерений. Информация о назначении метрологических характеристиках приведена в документации на средства измерений

    Все метрологические свойства (характеристики) можно разделить на две группы:

    Свойства, определяющие область применения СИ;

    Диапазон измерений - область значений величины, в пределах которых нормированы допускаемые пределы погрешности. Значение величины, ограничивающее диапазон измерений снизу или сверху (слева и справа), называют соответственно нижним или верхним пределом измерений.

    Порог чувствительности - наименьшее изменение измеряемой величины, которое вызывает заметное изменение выходного сигнала.

    Свойства, определяющие качество (точность результатов) измерения.

    Класс точности СИ - обобщенная характеристика, выражаемая пределами допускаемых погрешностей, а также другими характеристиками, влияющими на точность. Классы точности конкретного типа СИ устанавливают в нормативных документах. При этом для каждого класса точности определяют конкретные требования к метрологическим характеристикам, в совокупности отражающим уровень точности СИ данного класса. Класс точности позволяет судить о том, в каких пределах находится погрешность измерений этого класса. Это необходимо знать при выборе СИ в зависимости от заданной точности будущих измерений.

    Погрешность средства измерений - это разность между показаниями СИ и истинным (действительным)" значением измеряемой величины.

    где - погрешность поверяемого СИ; - значение той же самой величины, найденное с помощью поверяемого СИ; - значение СИ, принятое за базу для сравнения, т.е. действительное значение.

    по способу выражения - абсолютные, относительные ();

    по характеру проявления - систематические, случайные;

    по отношению к условиям применения - основные, дополнительные.

    Абсолютной погрешностью или, короче, погрешностью приближенного числа называется разность между этим числом и его точным значением (из большего числа вычитается меньшее)

    Относительной погрешностью приближенного числа называется отношение абсолютной погрешности приближенного числа к самому этому числу. (в процентах)

    Систематическая погрешность - составляющая погрешности результата измерения, остающаяся постоянной (или же закономерно изменяющейся) при повторных измерениях одной и той же величины.

    Случайная погрешность - погрешность, которая при выполнении ряда измерений одной и той же величины между отдельными результатами измерений имеются различия, которые невозможно предсказать, а какие либо присущие им закономертности проявляются лишь при значительном числе результатов.

    НСХ- метрологические характеристики, нормируемые согласно настоящему стандарту, распространяются на ЧЭ ТС при подключении непосредственно к их выводам и на ТС при подключении к клеммам головки в соответствии с указанной изготовителем схемой. Если на корпусе ТС с двухпроводной схемой указано значение сопротивления внутренних проводов, то оно должно быть вычтено из значения измеренного сопротивления ТС.

    Чувствительность измерительного прибора

    свойство измерительного прибора, выражаемое отношениемлинейного (Δ l ) или углового (Δα) перемещения указателя по шкале прибора (сигнала на выходе прибора) квызвавшему его изменению измеряемой величины. Различают абсолютную Ч. и. п.

    где Δ x - изменение измеряемой величины х , выраженное в её единицах, и относительную Ч. и. п.

    Порог чувствительности измерительного прибора это такое изменение измеряемой величины, которое вызывает наименьшее изменение его показаний, обнаруживаемое при способе отсчета, нормальном для данного прибора.

      Метрологические характеристики, связанные со шкалой измерительного прибора.

    Диапазон показаний - область значений шкалы, ограниченная начальным и конечным значениями шкалы. Наибольшее и наименьшее значения измеряемой величины, отмеченные на шкале, называют начальным и конечным значениями шкалы прибора. Например, для оптиметра типа ИКВ - 3 диапазон показаний по шкале составляет ±0,1 мм, для длиномера типа ИЗВ диапазон показаний по шкале составляет 0 - 100 мм.

    Цена деления шкалы - разность значений величины, соответствующих двум соседним отметкам шкалы. Например, для оптиметра и длиномера это - 0,001 мм, а для микрометра - 0,01 мм.

    Длина деления шкалы - расстояние между осями (центрами) двух соседних отметок шкалы, изме-ренное вдоль воображаемой линии, проходящей через середины малых отметок шкалы. Очевидно, чем больше длина деления шкалы, тем выше усиление и тем комфортнее воспринимается наблюдателем измерительная информация.

      Класс точности измерительных устройств.

    Класс точности – это обобщенная характеристика средств измерений, определяемая пределами допускаемых основных и дополнительных погрешностей, а также рядом других свойств, влияющих на точность осуществляемых с их помощью измерений. Классы точности регламентируются стандартами на отдельные виды средств измерения с использованием метрологических характеристик и способов их нормирования

      Динамические характеристики средств измерений: переходная и импульсная характеристики.

    Динамические характеристики – характеристики инерционных свойств, которые опред зависимость выходного сигнала ср измерения от меняющийся во времени величин а именно параметров входного сигнала внешних влияющих величин.Динамические свойства влияют на динамич погрешность.

    Переходной характеристикой h(t) называется реакция цепи на воздействие в виде единичной ступенчатой функции 1 (t ). Импульсной характеристикой g(t) называется реакция цепи на воздействие в виде единичной импульсной функции d (t ). Обе характеристики определяются при нулевых начальных условиях.

    Переходная и импульсная функции характеризуют цепь в переходном режиме, так как они являются реакциями на скачкообразные, т.е. довольно тяжелые для любой системы воздействия. Кроме того, как будет показано ниже с помощью переходной и импульсной характеристик может быть определена реакция цепи на произвольное воздействие. Переходная и импульсная характеристики связаны между собой также как связаны между собой соответствующие воздействия. Единичная импульсная функция является производной от единичной ступенчатой функции (см. (2.2)), поэтому импульсная характеристика является производной от переходной характеристики и при h (0)= 0

    Измерительный прибор – это средство измерения, посредством которого получается значение физической величины, принадлежащее фиксированному диапазону. В конструкции прибора обычно присутствует устройство, преобразующее измеряемую величину с ее индикациями в оптимально удобную для понимания форму.

    В соответствии с методом определения значения измеряемой величины выделяют:

    1. измерительные приборы прямого действия;
    2. измерительные приборы сравнения.

    Измерительные приборы прямого действия - это приборы, посредством которых можно получить значение измеряемой величины непосредственно на отсчетном устройстве.

    Измерительный прибор сравнения – это прибор, посредством которого значение измеряемой величины получается при помощи сравнения с известной величиной, соответствующей ее мере.

    Измерительные приборы могут осуществлять индикацию измеряемой величины по-разному. Выделяют:

    1. показывающие измерительные приборы;
    2. регистрирующие измерительные приборы.

    Отсчетное устройство – конструктивно обособленная часть средства измерений, которая предназначена для отсчета показаний. Отсчетное устройство может быть представлено шкалой, указателем, дисплеем и др.

    Измерительная установка – это средство измерения, представляющее собой комплекс мер, ИП, измерительных приборов и прочее, выполняющих схожие функции, используемые для измерения фиксированного количества физических величин и собранные в одном месте. В случае, если измерительная установка используется для испытаний изделий, она является испытательным стендом.

    Измерительная система – это средство измерения, представляющее собой объединение мер, Ип, измерительных приборов и прочее, выполняющих схожие функции, находящихся в разных частях определенного пространства и предназначенных для измерения определенного числа физических величин в данном пространстве.

    Рабочие средства измерения (РСИ) – это средства измерения, используемые для осуществления технических измерений. Рабочие средства измерения могут использоваться в разных условиях.

    Эталоны – это средства измерения с высокой степенью точности, применяющиеся в метрологических исследованиях для передачи сведений о размере единицы. Более точные средства измерения передают сведения о размере единицы и так далее, таким образом образуется своеобразная цепочка, в каждом следующем звене которой точность этих сведений чуть меньше, чем в предыдущем.

    Сведения о размере единицы предаются во время проверки средств измерения. Проверка средств измерения осуществляется с целью утверждения их пригодности.

    ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ И ПРИБОРЫ

    3.1. Роль измерений в электротехнике

    В любой области знаний измерения имеют исключительно боль­шое значение, но особенно важны они в электротехнике.

    Механические, тепловые, световые явления человек ощущает при помощи своих органов чувств. Мы, хотя и приблизительно, можем оценить размеры предметов, скорость их движения, яркость светящихся тел. Долгое время именно так люди изучали звездное небо.

    Но мы с вами совершенно одинаково реагируем на проводник, ток которого равен 10 мА или 1 А (т. е. в 100 раз больше).

    Мы видим форму проводника, его цвет, но наши органы чувств не позволяют оценить величину тока. Точно так же мы совершенно равнодушны к магнитному полю, созданному катушкой, электри­ческому полю между обкладками конденсатора. Медицина устано­вила определенное влияние электрических и магнитных полей на организм человека, но это влияние мы не ощущаем, и величину электромагнитного поля оценить не можем.

    Исключение составляют только очень сильные поля. Но и здесь неприятное покалывание, которое можно заметить, гуляя око высоковольтной линии передачи, не позволит нам даже приблизительно оценить величину электрического напряжения в линии.

    Все это заставило физиков и инженеров с первых шагов исследования и применения электричества пользоваться электроизмерительными приборами.

    Приборы - глаза и уши инженера-электрика. Без них он глух и слеп и совершенно беспомощен. Миллионы электроизмерительных приборов установлены на заводах, в научно-исследовательских ла­бораториях. В каждой квартире тоже есть измерительный прибор - электрический счетчик.

    Показания (сигналы) электроизмерительных приборов исполь­зуют для оценки работы различных электротехнических устройств и состояния электрооборудования, в частности состояния изоляции. Электроизмерительные приборы отличаются высокой чувствительностью, точностью измерений, надежностью и простотой исполне­ния.

    Успехи электроприборостроения привели к тому что его услугами стали пользоваться и другие отрасли. Электрические методы стали при­менять для определения размеров, скоростей, массы, температуры. Появилась даже самостоятельная дисциплина “Электрические изме­рения неэлектрических величин ”.

    Показания электроизмерительных приборов можно передавать на дальние расстояния (телеизмерение), они могут использоваться для непосредственного воздействия на производственные процессы (ав­томатическое регулирование); с их помощью регистрируют ход кон­тролируемых процессов, например путем записи на ленте и т.д.

    Применение полупроводниковой техники существенно расши­рило применение электроизмерительных приборов.

    Измерить какую-либо физическую величину - значит найти ее значение опытным путем с помощью специальных технических средств.

    Стендовые испытания новейшего оборудования немыслимы без электрических измерений.Так, при испытании турбогенератора мощностью 1200 МВт на заводе “Электросила” измерения производились в 1500 его точках.

    Развитие электроизмерительных приборов привело к использо­ванию в них микроэлектроники, что позволяет измерять физичес­кие величины с погрешностью не более 0,005-0,0005 %.

    3.2. Основные понятия, термины и определения

    Результаты теоретической деятельности без проверки экспери­ментом недостоверны. Измерительная техника при эксперименте дает результаты, которые указывают на качество и количество про­дукции, правильность ведения технологических процессов, распре­деления, потребления и изготовления. При этом электрические из­мерения за счет малого потребления энергии, возможности передачи измерительных величин на расстояние, большой скорости измере­ний и передачи, а также высокой точности и чувствительности ока­зались предпочтительнее.

    Электрические измерения и приборы, методы и средства обес­печения их единства, способы достижения требуемой точности - все это относится к метрологии, а принципы и методы установления оптимальных норм и правил взаимодействия - к стандартизации .

    В Российской Федерации стандартизация и метрология объедине­ны в единой государственной службе - Государственном комитете стандартов. В 1963 г. ГОСТ 9867-61 ввел Международную систему единиц (СИ) на базе метра (м ), килограмма (кг ), секунды (с ), ам­пера (А ), кельвина (К ) и канделы (кд ).

    Вопросы электрических измерений и приборов проще воспри­нимаются, если известны содержание терминов и определений.

    Метрология - наука об измерениях, методах и средствах обеспе­чения их единства, способах достижения требуемой точности.

    Измерение - нахождение значения физической величины опыт­ным путем с помощью специальных технических средств.

    Результат измерения - значение физической величины, найден­ной путем измерения.

    Мера - средство измерений, предназначенное для воспроизве­дения физической величины заданного размера (например, едини­цы измерения света - кд).

    Измерительный преобразователь - средство измерений для выра­ботки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки (или хранения), но не поддающейся непосредственному восприятию наблюдателем. Первичный измерительный преобразователь - датчик.

    Измерительный прибор - средство измерений, предназначенное для выработки сигнала измерительной информации в форме, дос­тупной для непосредственного восприятия наблюдателем.

    3.3. Методы измерений. Погрешность измерений

    Для различных измеряемых электрических величин существуют свои средства измерений , так называемые меры. Например, мерами ЭДС служат нормальные элементы, мерами электрического сопротивления - измерительные резисторы, мерами индуктивности измерительные катушки индуктивности, мерами электрической емкости - конденсаторы постоянной емкости и т. д.

    На практике для измерения различных физических величин применяют различные методы. Последние в зависимости от способа получения результата делятся на прямые и косвенные . При прямом измерении значение величины получают непосредственно из опыт­ных данных. При косвенном измерении искомое значение величины находят путем подсчета с использованием известной зависимости между этой величиной и величинами, получаемыми на основании прямых измерений. Так, определить сопротивление участка цепи можно путем измерения протекающего по нему тока и приложенно­го напряжения с последующим подсчетом этого сопротивления из закона Ома. Наибольшее распространение в электроизмерительной технике получили методы прямого измерения, так как они обычно проще и требуют меньших затрат времени.

    В электроизмерительной технике используют также метод срав­нения , в основе которого лежит сравнение измеряемой величины с воспроизводимой мерой. Метод сравнения может быть компенса­ционным и мостовым. Примером применения компенсационного метода служит измерение напряжения путем сравнения его значе­ния со значением ЭДС нормального элемента. Примером мостово­го метода является измерение сопротивления с помощью четырех-плечной мостовой схемы. Измерения компенсационным и мостовым методами очень точные, но для их проведения требуется более сложная измерительная техника.



    Загрузка...