sonyps4.ru

Методы активной коррекции коэффициента мощности. Корректор коэффициента мощности

На рынке персональных компьютеров становится все больше и больше блоков питания со встроенными корректорами мощности. Они выполнены с использованием различных интегральных микросхем, и поэтому имеют разные схемы построения, хотя общие принципы схемотехники (о которых рассказывалось в предыдущей публикации), практически, одинаковы. Поэтому, рассмотрев всего лишь одну микросхему, а именно, UCC3818, мы получим хорошее представление об архитектуре большинства контроллеров коррекции мощности.

Микросхема UCC3818 относится к семейству контроллеров коррекции мощности, к которому принадлежат еще и такие контроллеры, как UCC2817, UCC2818 и UCC3817. Различие между контроллерами этого семейства заключается в разных диапазонах рабочих температур и разных значениях напряжений UVLO (напряжения включения и напряжения выключения микросхемы). Микросхемы семейства являются ШИМ-контроллерами, выполняющими все функции, необходимые для активной коррекции коэффициента мощности. Контроллеры позволяют доводить значения коэффициент мощности почти до единицы путем формирования необходимой формы входного тока, в зависимости от параметров входного переменного напряжения. Контроллеры семейства работают в режиме среднего тока, в результате чего обеспечивается стабильность входного тока и малые искажения синусоидальности сетевого тока.

Контроллеры UCC x817/x818 имеют следующие основные особенности:

- обеспечивают управление повышающим преобразователем;

- ограничивают искажения, вносимые в питающую сеть;

- обеспечивают модуляцию передней кромки импульса тока;

- позволяют работать с любым переменным напряжением, использующимся в любых странах мира;

- обеспечивают защиту от превышения напряжения;

- обеспечивают ограничение потребляемой мощности на заданном уровне;

- работают в режиме среднего тока;

- обеспечивают улучшенное подавление шумов;

- имеют улучшенный алгоритм опережающего управления;

- имеют типовое значение пускового тока, равное 150 мкА;

- созданы с использованием маломощной технологии BiCMOS.

Контролеры семейства разработаны в компании Texas Instrument"s и обладают малым значением пускового тока и низким уровнем потребляемой мощности. В контроллерах используется технология модуляции передней кромки импульса тока, т.е. длительность рабочего цикла регулируется путем изменения времени начала заряда сглаживающего конденсатора (а не временем прекращения зарядного тока). Данная технология позволяет уменьшить величину пульсаций на сглаживающем конденсаторе, устанавливаемом на выходе корректора мощности, что, в итоге, приводит к уменьшению габаритов этого конденсатора, а, следовательно, и к снижению его стоимости и стоимости всей схемы.

Усилитель тока имеет малое входное смещение (2 мВ), что позволяет уменьшать искажения тока в условиях малой нагрузки.

Рис.1 Архитектура ШИМ-контроллера семейства UCC3818

Блок-схема ШИМ-контроллеров UCCx817/x818 представлена на рис.1. Предельные значения основных параметров микросхем представлены в табл.1.

Таблица 1. Предельные значения параметров UCC3818

Параметр

Обознач.

Значение

Питающее напряжение

18 V

Ток потребления

20 mA

Выходной управляющий ток (продолжительный)

I DRVOUT

0.2 A

Выходной управляющий ток

I DRVOUT

1.2 A

CAI , MOUT , SS

Входное напряжение на контакте PKLMT

Входное напряжение на контактах VSENSE , OVP / EN

10 V

Входной ток контактов RT , IAC , PKLMT

10 mA

Максимальное отрицательное напряжение на контактах DRVOUT , PKLMT , MOUT

V NEG

0.5 V

Рассеиваемая мощность

Температура пайки (10 сек)

T SOL

300° C

Контроллеры выпускаются в 16-контактных корпусах типа SOIC, PDIP, TSSOP. Распределение сигналов по контактам микросхемы представлено на рис.2, а в табл.2 дается описание этих сигналов.

Рис.2 Цоколевка микросхемы UCC3818

Таблица 2. Назначение контактов микросхемы UCC3818

Обознач.

Описание

«Земля». Относительного это контакта измеряются все напряжения. Контакты VCC и REF должны подключаться к «земле» через конденсаторы 0.1 мкФ , или через большие керамические конденсаторы.

PKLMT

Вход ограничения пикового тока корректора мощности. Порогом для токового ограничения является уровень . Для формирования смещения сигнала ограничения тока используется внешний резистивный делитель, подключенный с одной стороны к «отрицательному» выводу токового датчика, а с другой стороны, к источнику опорного напряжения VREF . Полученное таким образом смещение соответствует пиковому значению тока. Ограничение тока осуществляется в тот момент, когда напряжение контакта PKLMT становится ниже .

CAOUT

Выход усилителя тока. Это выход операционного усилителя с широкой полосой пропускания, который измеряет величину сетевого тока и формирует команды для широтно-импульсного модулятора корректора мощности. Это позволяет устанавливать необходимого значение рабочего цикла ШИМ. Компенсационные внешние элементы устанавливаются между выходом CAOUT и входом MOUT .

Неинвертирующий вход усилителя тока. Этот вход используется для контроля величины сетевого тока с помощью токового датчика, в качестве которого используется низкоомный резистор. Вход CAI соединен через резистор с той стороной токового датчика, которая подключена к «земле». Величина сетевого тока измеряется по разности потенциалов на контакте CAI и контакте MOUT (именно между двумя этими контактами и включается токовый датчик).

MOUT

Мультиплексированный контакт, являющийся выходом умножителя и одновременно инвертирующим входом усилителя тока. Такая конфигурация позволяет улучшить защиту от помех и позволяет работать в режиме модуляции переднего фронта. Совместно с контактом CAI используется для контроля величины сетевого тока.

Вход аналогового умножителя. На этом входе создается ток, пропорциональный мгновенному значению входного напряжения. Умножитель настроен таким образом, что позволяет отслеживать очень малые изменения входного тока. Рекомендуемое максимальное значение входного тока составляет 500 мкА .

VAOUT

Выход усилителя ошибки по напряжению. Этим операционным усилителем осуществляется регулировка выходного напряжения. Выход усилителя внутренне ограничивается на величине примерно 5.5 В .

Напряжение упреждающего управления. На этот контакт подается сигнал, пропорциональный среднедействующему (RMS ) значению напряжения. При отсутствии питающей сети на контакте VFF должно устанавливаться напряжение 1.4В .

VREF

Выход опорного напряжения. На этом выходе формируется постоянное стабилизированное напряжение величиной 7.5В . Выходной ток этого контакта может достигать величины 20 мА, что необходимо для питания внешних периферийных цепей. В составе микросхемы имеется внутренняя цепь ограничения тока при коротких замыканиях. Выход VREF запрещен и установлен в , если питающее напряжение Vcc ниже порога UVLO . Между контактом VREF и «землей» должен устанавливаться шунтирующий керамический конденсатор емкостью около 0.1мкФ (или больше) для обеспечения стабильности опорного напряжения.

OVP / EN

Вход внутреннего компаратора, который запрещает работу выходного драйвера микросхемы в случае, если выходное напряжение превышает заданный уровень.

VSENSE

Инвертирующий вход усилителя ошибки по напряжению. Обычно этот вход соединен с компенсационной цепью и с выходом повышающего преобразователя (подключается через делитель).

Контакт для подключения частотозадающего резистора. Внешний резистор, включенный между этим выводом и «землей» задает величину тока для заряда конденсатора, подключенного к контакту CT . Номинал резистора рекомендуется выбирать в диапазоне 10…100 кОм . Номинальное напряжение на данном контакте равно .

Контакт для программирования «мягкого старта». К этому контакту подключается внешний конденсатор. Конденсатор разряжается, если питающее напряжение Vcc становится низким. Если работа «мягкого старта» разрешена, внешний конденсатор начинает заряжаться внутренним источником тока. Напряжение контакта SS используется как сигнал ошибки во время запуска микросхемы, разрешая регулировать ширину выходных импульсов. В случае, когда питающее напряжение Vcc падает, сигнал OVP / EN быстро опускается ниже 1.9В и внешний конденсатор SS быстро разряжается и запрещает функционирование ШИМ.

Контакт для подключения частотозадающего конденсатора. Конденсатор, задающий частоту ШИМ, включается между этим контактом и «землей». Этот конденсатор должен располагаться как можно ближе к «земле».

Положительное питающее напряжение. Для нормального функционирования, этот вход должен быть подключен к стабилизированному источнику, формирующему выходной ток величиной, как минимум, 20 мА и напряжение величиной 10…17 В . К контакту Vcc напрямую должен быть подключен шунтирующий конденсатор для поглощения импульсов тока, необходимых для заряда емкости затвора внешнего MOSFET -транзистора. Чтобы предотвратить формирование выходных импульсов неправильной формы на контакте DRVOUT , выходной драйвер контроллера должен быть заблокирован до тех пор, пока напряжение на контакте Vcc превышает верхний порог UVLO и находится ниже нижнего порога UVLO .

DRVOUT

Выходной сигнал, управляющий внешним силовым ключом, в качестве которого используется полевой транзистор, т.е.на выходе формируются сигналы управления затвором полевого транзистора. Выход представляет собой тотемный выход, построенный на MOSFET -транзисторах. Между выходом DRVOUT и затвором внешнего полевого транзистора должен устанавливаться последовательный токоограничивающий резистор, который обеспечивает согласование между выходным сопротивлением микросхемы и сопротивлением затвора. Резистор позволяет избежать перегрузки выхода DRVOUT .

Рассмотрим практический вариант применения микросхемы UCC3818 в составе блока питания HPC 360-302. В этом блоке питания используется активный высокочастотный корректор мощности, устанавливаемый сразу же после диодного моста (рис.3). Входом схемы корректора мощности являются точки, обозначенные BD+ («плюс» диодного моста) и BD- («минус» диодного моста). Таким образом, на вход корректора мощности подается напряжение величиной примерно 300В. Выходом корректора мощности является напряжение Vo величиной около 400В (относительно точки GND).

Рис.3 Положение корректора мощности в блоке питания HPC 360-302

Принципиальная схема корректора мощности блока питания HPC 360-302 представлена на рис.4.

Рис.4 Принципиальная схема корректора мощности блока питания HPC 360-302

Питающее напряжение Vcc для контроллера UCC3818 формируется интегральным стабилизатором на напряжение +12В типа 7812 (IC1). На вход этого стабилизатора подается постоянное нестабилизированное напряжение величиной 15...20 В. Это напряжение формируется дежурным преобразователем блока питания. Для его формирования задействована дополнительная обмотка импульсного трансформатора дежурного преобразователя (рис.5). Импульсы, генерируемые в этой обмотке, выпрямляются диодом D8 и сглаживаются конденсатором С10. Ограничение полученного напряжения осуществляется стабилитроном ZD1. Таким образом, контроллер UCC3818 запускается сразу же, как только блок питания включается в сеть, и начинает работать дежурный преобразователь.

Рис.5 Формирование питающего напряжения для UCC3818 в корректоре мощности блока питания HPC 360-302

Включение UCC3818 происходит в момент, когда напряжение Vcc на конт.15 превышает значение 10.2 В.

При включении контроллера на конт.9 появляется опорное напряжение VREF величиной 7.5В, на конт.14 (CT) появляется пилообразное напряжение внутреннего частотозадающего генератора, а на выходе – на конт.16 (DRVOUT) появляются прямоугольные импульсы. Выходные импульсы контроллера управляют внешним силовым ключом, который в данной схеме образован двумя параллельно включенными полевыми транзисторами QF1 и QF2. параллельное включение двух транзисторов позволяет увеличить мощность схемы.

Переключение транзисторов QF1 и QF2 приводит к созданию импульсного тока в дросселе L1. Этот дроссель является, пожалуй «главным» элементом всей схемы. Импульсы, наводимые в дросселе, имеют амплитуду, значительно превышающую 300В. Эти импульсы выпрямляются диодом D7, в результате чего создается напряжение постоянного тока величиной около 400В.

Функцию токового датчика в схеме выполняют два параллельно включенных резистора большой мощности R14/R14A. Падение напряжения на этих резисторах пропорционально току, потребляемому схемой из сети. Это падение напряжения оценивается контроллером через входные контакты CAI (конт.4) и MOUT (конт.5). Кроме того, превышение током предельного значения отслеживается через конт.2 (PKLMT). Чем больше величина потребляемого тока, тем меньше напряжение на конт.2.

Выходное напряжение корректора мощности обозначено на схеме Vo. Величина этого напряжения контролируется микросхемой UCC3813 через входы VSENSE (конт.11) и OVP/EN (конт.10). Выходное напряжение подается на эти контакты через резистивный делитель, в который входят резисторы R2/R3/R4/R5/R19. Компенсационная цепь усилителя ошибки по напряжения состоит из элементов C7/C15/R7 и включена между конт.11 (VSENSE) и конт.7 (VAOUT).

Длительность периода «мягкого старта», в течение которого длительность выходных импульсов контроллера плавно нарастает в момент его включения, задается конденсатором С4, подключенным к конт.13 (SS).

Проблемы отбора мощности классическим выпрямителем

Основной проблемой классического выпрямителя с накопительным конденсатором, работающего от синусоидального или другого непрямоугольного напряжения, является тот факт, что отбор энергии от сети происходит только в те моменты времени, когда напряжение в ней больше, чем напряжение на накопительном конденсаторе. Действительно, конденсатор может заряжаться только если к нему приложено напряжение, большее чем то, до которого он уже заряжен.

Причем в те моменты, когда напряжение сети становится больше напряжения конденсатора, ток зарядки очень велик, а все остальное время он нулевой. Получается, что, например, для синусоидального напряжения питания, наблюдаются всплески тока при достижении напряжением амплитудных значений. Если Ваше устройство потребляет небольшую мощность, то это можно стерпеть. Но для нагрузки, скажем, 1 кВт 220В всплески тока могут достигать 100 А. Что совершенно неприемлемо.

Вашему вниманию подборки материалов:

R7 - 10 Ом.

R6 - 0.1 Ом.

R4 - 300 кОм, R5 - 30 кОм.

R3 - 100 кОм, C4 - 1 нФ. Эти элементы задают частоту работы ШИМ контроллера. Подбираем их так, чтобы частота составила 30 кГц.

C3 - 0.05 мкФ. Это частотная коррекция цепи обратной связи. Если выходное напряжение начинает пульсировать или недостаточно быстро устанавливается при изменении тока нагрузки, то эту емкость надо подобрать.

VD2 - HER208.

C1 - 1000 мкФ. C2 - 4700 мкФ.

VD1 - Стабилитрон 15 В. R1 - 300 кОм 0.5 Вт.

VT1 - Высоковольтный транзистор на 400 вольт. Это схема запуска, через этот транзистор ток идет только в начале работы. После появления ЭДС на обмотке L2, транзистор закрывается. Так что рассеиваемая мощность на этом транзисторе невелика.

D2 - интегральный стабилизатор напряжения (КРЕН) на 12В.

D1 - Интегральный ШИМ контроллер. Подойдет 1156ЕУ3 или его импортный аналог UC3823 .

Добавление от 27.02.2013 Иностранный производитель контроллеров Texas Instruments преподнес нам удивительно приятный сюрприз. Появились микросхемы UC3823A и UC3823B. У этих контроллеров функции выводов немного не такие, как у UC3823. В схемах для UC3823 они работать не будут. Вывод 11 теперь приобрел совсем другие функции. Чтобы в описанной схеме применить контроллеры с буквенными индексами A и B, нужно вдвое увеличить резистор R6, исключить резисторы R4 и R5, подвесить (никуда не подключать) ножку 11. Что касается российских аналогов, то нам читатели пишут, что в разных партиях микросхем разводка разная (что особенно приятно), хотя мы пока новой разводки не встречали.

L1 - дроссель 2 мГн, рассчитанный на ток 3 А. Можно намотать на сердечнике Ш16х20 четырьмя проводами 0.5 мм, сложенными вместе, 130 витков, зазор 3 мм. L2 - 8 витков провода 0.2 мм.

Выходное напряжение формируется на конденсаторе C5.

Комментарий: В параметрах дросселя была ошибка, на которую нам указали читатели. Теперь она исправлена. Кроме того, для повышения стабильности работы схемы может быть полезно ограничить максимальное время открытия силового полевого транзистора. Для этого устанавливаем подстроечный резистор между 16 ножкой микросхемы и минусовым проводом питания, а движок соединяем с ножкой 8. (Как, например, на этой схеме .) Подстраивая этот резистор, можно регулировать максимальную скважность импульсов от ШИМ-контроллера.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. сообщений.

Здравствуйте! Можно ли обмотку l2 дополнительно использовать для питания: драйв еров ir2101 и гальванически связанного с ними контроллера инвертора трехфазного асинхронного двигателя. Питание драйверов верхних ключей бутстрепное. С уважением, Борис
Схема импульсного блока питания. Расчет на разные напряжения и токи....

Полумостовой импульсный стабилизированный преобразователь напряжения, ...
Как работает полу-мостовой стабилизатор напряжения. Где он применяется. Описание...

ШИМ, PWM контроллер. Усилитель ошибки. Частота. Инвертирующий, неинвер...
ШИМ контроллер. Синхронизация. Обратная связь. Задание частоты....

устройство для резервного, аварийного, запасного питания котла, циркул...
У меня установлен газовый отопительный турбо котел, требующий электропитания. Кр...

Режим непрерывного / прерывного (прерывистого) тока через катушку инду...
Сравнение режимов непрерывного и прерывного тока. Онлайн расчет для повышающей, ...


Понижение напряжения постоянного тока. Как работает понижающий преобразователь н...

Составной транзистор. Схемы Дарлингтона, Шиклаи. Расчет, применение...
Составной транзистор - схемы, применение, расчет параметров. Схемы Дарлингтона, ...


И.П. Сидоров Ю.А.

внимание. Высокое напряжение, опасно для жизни.

Внимание при реализации приведенной схемы корректора коэффициента мощности необходимо иметь опыт работы с опасными для жизни напряжениями и соблюдать предельную осторожность.

в схеме действует опасное для жизни напряжение 400 вольт

В случае допущения ошибок при сборке, напряжение в схеме может достигать 1000 и более вольт.

В момент включения и проверки собранной схемы необходимо пользоваться защитными очками.


Принципиальная электрическая схема (исправленная) корректора коэффициента мощности показана на рис. 1.


рис. 1. корректор коэффициента мощности - схема. открыть в большом размере
Предыдущая схема - открыть в большом размере


На схеме цветными блоками отмечены функциональные узлы:
  • Коричневый - фильтр помех;
  • Синий - модуль мягкого старта (soft-start);
  • Красный - внутренний источник питания;
  • Зеленый - корректор коэффициента мощности;
  • Голубой - модуль контроля рабочих параметров;
  • Желтый - модуль включения вентилятора принудительного охлаждения.

На исправленном варианте схемы отмечено (доступно и в большом размере):
красный прямоугольником - новые элементы схемы;
зеленым овалом - новые точки подключения конденсаторов C3 и С4.

Фильтр помех защищает питающую сеть от помех генерируемых при коммутации ключевых транзисторов. Также фильтр защищает схему от помех питающей сети и всплесков напряжения в сети.

Модуль мягкого старта ограничивает потребления тока из питающеё сети в момент первичной зарядки выходных электролитических конденсаторов. Этот модуль генерирует инвертированный сигнал KKM_SUCCESS. При появление сигнала (так как сигнал инвертированный - момент при котором напряжение упадет ниже 1В) можно включить нагрузку подключенную к выходу корректора коэффициента мощности. В случае игнорирования этого сигнала некоторые элементы схемы могут выйти из строя.

Внутренний источник питания генерирует постоянное напряжение 15В (допустимы отклонения +/-2В). Это напряжение используется для питания внутренних схем ККМ.

Корректор коэффициента мощности - основная часть схемы. ККМ выполнен на контроллере ir1155s, рабочая частота в данной схеме 160кГц (допустимы отклонения +/-5кГц). Для усиления токов управления коммутирующих транзисторов используется одноканальный драйвер tc4420, драйвер обеспечивает силу тока управляющих сигналов до 6А.

Модуль контроля рабочих параметров контролирует уровень пониженного питающего напряжения; рабочую температуру ККМ, момент достижения номинального напряжения на выходе ККМ

Модуль включения вентилятора принудительного охлаждения выполняет включение вентиляторов при появлении соответствующего сигнала.


Таблицы номиналов элементов схемы ККМ .

При сборке корректора коэффициента мощности необходимо использовать только оригинальные комплектующие. В случае использования неоригинальных комплектующих (контрафактных, поддельных и прочее), ККМ работать не будет или будет работать не верно и пр.

Этап 1. необходимо выполнить монтаж всех элементов за исключением:
R3 - варистор;
L3 - дроссель ККМ
C25.2-C25.4 - выходные электролитические конденсаторы, установить только один.

Монтажная плата спроектирована с учетом установки в корпус из радиаторного профиля. В этом случае стенки корпуса для элементов D1, D9, Q5, Q6 выполняют роль теплоотвода, а отведение тепла от дросселя L3 будет затруднено. Температура дросселя, в этом случае, служит индикатором нагрева всего устройства и поэтому терморезистор R40 устанавливается под дросселем.

В случае использования корпуса конструкции в которой роль теплоотвода для элементов D1, D9, Q5, Q6 будет использоваться радиатор - терморезистор R40 необходимо установить на поверхность радиатора. Необходимо обеспечить электроизоляцию корпуса радиатора и терморезистора.

Затем монтажную плату необходимо очистить от остатков флюса и других загрязнений.

Монтажная плата после этого этапа сборки будет выглядеть следующим образом


рис. 2. Верхняя часть монтажной платы ККМ.

На этой монтажной плате терморезистор и отводящий провод помещены в термоусадочную изоляцию. Так как терморезистор будет прикреплен к радиатору механическим способом, для повышения прочности электроизоляции он помещен в дополнительную термоусадочную изоляцию.


рис. 3. Нижняя часть монтажной платы ККМ.

К плате ККМ нужно подключить вентилятор 12В ток не более 0,2А.


ВНИМАНИЕ!!! В устройстве действует опасное для жизни напряжение 400 вольт.


Плату ККМ необходимо подключить к регулируемому источнику переменного напряжения 220В 50 Гц с ограничением силы тока 0,05 А.

После подачи питания, светодиод D8 должен светиться, напряжение на стабилитроне D5 должно быть в пределах 14-17 вольт. В случае отсутствия напряжения, необходимо проверить напряжение на конденсаторе С12 оно должно быть около 310 вольт. Если напряжение присутствует это означает неработоспособность дежурного источника питания. Частой причиной его неработоспособности является неверная сборка импульсного трансформатора T1.

Напряжение на выводе 4 микросхемы U1 (ir1155s) должно быть около 3,62 В, напряжение на выводе 6 около 3,75 В.

С помощью осциллографа необходимо проверить работу модуля ККМ. Для этого щуп осциллографа нужно подключить к выводу 6 или 7 микросхемы U3 (tc4420). Импульсы на выводе должны соответствовать следующему изображению.


рис. 4. График сигналов на выходе микросхемы драйвера tc4420.

Частота импульсов должна быть 160кГц (+/- 5кГц). Частота импульсов задается конденсатором С10. Увеличение емкости приводит к уменьшению частоты.

Амплитуда сигналов на выводах SG силовых транзисторов будет немного ниже, чем на выводе их драйвера (рис. 5).


рис. 5. График сигналов на выходах SG силовых транзисторов.

При этом график сигнала на резисторах Rg (R17, R18) будет следующим (рис. 6).


рис. 6. График сигнала на резисторах Rg (R17, R18).

Далее, контролируя сигналы на выводе драйвера, необходимо плавно уменьшать напряжение. При входном напряжении 150-155 вольт, генерация импульсов должна прекратиться. После прекращения генерации импульсов, входное напряжение необходимо плавно увеличивать, при входном напряжении 160-165 вольт, генерация импульсов должна возобновиться.

Продолжая плавно увеличивать напряжение, при достижении 270-280 вольт (АС) должны сработать реле (определить можно по их характерному звуку). Напряжение сигнала KKM_SUCCESS должно быть не более 1 вольта. Затем напряжение необходимо плавно уменьшать, при снижении напряжения до 250-260 вольт, реле должны выключиться, сигнал на выходе KKM_SUCCESS должен быть более 5 вольт.

Используя термофен, необходимо нагреть терморезистор, при достижении температуры 45-50 С° должен включиться вентилятор, при достижении температуры 75-85 С° генерация импульсов должна прекратиться. Во время остывания терморезистора последовательно должны возобновиться генерация импульсов и выключиться вентилятор.

Отключите питание.


ВНИМАНИЕ!!! после отключения питания в схеме некоторое время (несколько минут) будет сохраняться опасное для жизни напряжение.


Этап 3. Необходимо установить оставшиеся элементы схемы: R3, L3, C25.2-C25.4 и теплотвод для элементов D1, D9, Q5, Q6. На теплоотвод необходимо установить терморезистор обеспечив низкое тепловое сопротивление между ними. Также необходимо обеспечить низкое тепловое сопротивление между D1, D9, Q5, Q6 и радиатором. В случае затрудненной передачи тепла к радиатору эти элементы выйдут из строя.

Качество установки радиатора, с точки зрения теплоотведения, удобно проконтролировать с помощью тепловизора.

Теплоотвод нужно соединить с шиной Earth (на монтажной плате рядом с Y конденсаторами имеются необходимые для этого монтажные отверстия).

Крайне важно проверить электроизоляцию между шинами Earth и N или L (шины N-L используются для подачи электропитания). Напряжение пробоя электроизоляции должно быть не менее 1000 Вольт. Проверять напряжение пробоя изоляции свыше 1000 Вольт не следут. Эту процедуру можно выполнить с помощью специального прибора - тестера электроизоляции.

ВНИМАНИЕ!!!. В случае нарушения проверяемой электроизояции, при проверке некоторые элементы схемы могут выйти из строя.


Пример сборки корректора коэффициента мощности показан на следующих изображениях.



Этап 4. Подключите ККМ к питающий сети ограничив потребляемую силу тока 10А. После включения напряжение на выходе ККМ должно быть около 385-400 В. Также должен быть слышен звук включения реле. Подключите к выходу ККМ резистивную нагрузку 300 Ом. Напряжение на выходе ККМ должно остаться в техже пределах. PF должен быть не ниже 0,7.

Подключите ККМ к питающей сети без ограничителя тока. Увеличивая нагрузку до 2000 ватт PF должен также возрастать до значения не ниже 0,95. График PF в зависимости от нагрузки показан на рис. 7.


рис. 7. График зависимости PF от нагрузки.

Если значение PF не увеличивается до значения 0,95 при увеличении нагрузки это свидетельствует о некорректной работе ККМ. Вероятными причинами такой некорректной могут быть: резистивный датчик тока, дроссель, ошибки при изготовлении монтажной платы, контрафактные элементы D9, Q5, Q6, С18.1, C18.2, внутренний источник питания недостаточной мощности.


Осциллограммы потребляемых токов и выходных пульсаций.

В ходе нагрузочных тестов был определен КПД (рис. 8). Если принять во внимание погрешность измерительных приборов, вероятно, реальный КПД будет на 1-2% ниже. КПД был измерен при подключении ККМ к питающей сети с помощью двух дополнительных фильтров синфазных помех.


рис. 8. КПД корректора коэффициента мощности.

Данные для обоих графиков были получены при напряжениях питающей сети 200 и 240 вольт.

Этап 5. После всех проверок, разрядный резистор R23 можно удалить. Сборку и проверку ККМ на этом этапе можно считать завершенной.

Вопросы и предложения пишите на адрес электронной почты с пометкой ККМ или PFC.

Содержимое корзины

Корректор коэффициента мощности

Основные понятия

Развитие и широкое распространение импульсных методов преобразования электрической энергии привело к появлению маломощных бытовых и промышленных электроприборов с искажённой формой или не нулевым фазовым сдвигом потребляемого от сети тока (лампы дневного света, электродвигатели, телевизоры, компьютеры, микроволновые печи и пр.). Резкое увеличение числа таких потребителей сказывается на их электромагнитной совместимости и энергосистемах в целом . В 2001году МЭК приняла стандарт IEC–1000–3–2, согласно которому любая электротехническая продукция мощностью более 200 ватт, подключаемая к сети переменного тока, должна иметь активный характер входного сопротивления, то есть коэффициент мощности () должен быть равен единице.

Для повышения в настоящее время используют пассивные и активные корректоры коэффициента мощности (ККМ). Первые применяют при неизменных нагрузках, путём введения компенсирующих реактивностей (например, конденсаторы для ламп дневного света), вторые обладают более широким спектром применения. Рассмотрим упрощенную схему активного корректора, которая приведена на рис.6.1.

Рисунок 6.1 – Упрощенная схема активного ККМ

На этом рисунке R 1 , R 2 – датчик входного напряжения (ДН), R 3 – датчик тока (ДТ). Индуктивность L, ключ VT1, диод VD1 и конденсатор С 1 образуют импульсный повышающий стабилизатор напряжения. Работа ККМ поясняется эпюрами рис.6.1б. Замыкание транзистора VТ1 происходит в момент времени, когда напряжение на выходе датчика тока ДТ становится равным нулю (т. е. при нулевом токе в индуктивности L). Размыкание транзистора VТ1 происходит в момент времени, когда линейно нарастающее напряжение с датчика тока становится равным изменяющемуся по синусоидальному закону напряжению с датчика напряжения ДН. После размыкания транзистора ток в индуктивности начинает спадать, индуктивность разряжается на нагрузку через диод VD1, ДТ и сеть. При нулевом значении тока транзистор вновь замыкается. Далее процесс повторяется. Частота коммутации ключа превышает частоту сети и составляет десятки…сотни килогерц. Усредненный ток i ср в индуктивности и потребляемый от сети, повторяет форму напряжения сети. По высокой частоте работы ключа сеть шунтируют конденсатором С 2 (обычно это доли мкФ). Можно дополнительно ввести обратную связь по выходному напряжению и обеспечить предварительную стабилизацию. Очевидно, что работа ККМ возможна, если амплитуда входного напряжения меньше напряжения на конденсаторе С 1 (с учётом отклонений). Для напряжения сети 220В (амплитуда 311В), выходное напряжение ККМ принимают равным 380…400В.

Разновидности ККМ

В рассмотренной выше схеме ККМ используется, так называемый, метод граничного управления. Он наиболее прост в реализации, но размыкание ключа производится при значительном токе, что связано с существенными потерями мощности.

Известны и другие методы управления ключом в ККМ :

· управление по пиковому значению тока

· метод разрывных токов с ШИМ.

· управление по среднему значению тока.

Сущность этих методов поясняется эпюрами рис.6.2 а, б, в соответственно.

Рисунок 6.2 – Управление ключом в ККМ

Управление по пиковому значению тока (рис. 6.2.а) привлекательно по малым обратным помехам (в сеть) и малым броскам тока через ключ, но имеет место изменение частоты и жесткая коммутация силового диода.

Управление методом разрывных токов с ШИМ (рис. 6.2.б). Реализация этого метода близка к методу граничного управления, но отличается постоянной частотой коммутации. Достоинством является простая схема управления, но разрывные токи дросселя становятся дополнительным источником помех. Управление по среднему значению тока (рис. 6.2.в) производится при неизменной частоте, а наличие интегратора для усреднения тока повышает помехозащищённость системы управления. Обычно пиковое значение пульсаций тока дросселя находится в пределах 20% от среднего значения и именно этот метод управления применяют в корректорах на мощности более 300 ватт.

Cуществуют не только однофазные, но и трёхфазные корректоры коэффициента мощности. Силовой контур трёхфазного ККМ с одним управляемым ключом приведен на рис. 6.3 , а на рис. 6.4 и 6.5 показаны эпюры, поясняющие работу.

Рисунок 6.3 – Силовой контур трёхфазного ККМ

Рисунок 6.4 – Эпюры токов реакторов L1,L2,L3 трёхфазного ККМ

Рисунок 6.5 – Эпюры основных процессов трёхфазного ККМ

Управление ключом производится аналогично однофазному корректору.

В рассмотренных схемах ККМ, последний пропускает всю мощность нагрузки. Это последовательный корректор и его элементная база сдерживает увеличение выходной мощности. ККМ может быть построен и по ампердобавочной (рис.1.19) схеме – включение активного фильтра тока параллельно нагрузке. В этом случае, установленная мощность элементов активного фильтра, предназначенного для компенсации только мощности искажений от высших гармоник входного тока, будет на уровне, определяемом коэффициентом гармоник этого тока (например, 0,3 для трёхфазной мостовой схемы и 0,15 для двенадцатифазной схемы выпрямления) . Структурная схема такого ККМ приведена на рис. 6.6. Принцип компенсации высших гармоник в кривой тока, потребляемого от сети, поясняется эпюрами рис. 6.7. Для наглядности форма тока нагрузки принята прямоугольной. Корректор формирует разность между гармоникой тока сети и фактическим током нагрузки

Развитие и широкое распространение импульсных методов преобразования электрической энергии привело к появлению маломощных бытовых и промышленных электроприборов с искажённой формой или не нулевым фазовым сдвигом потребляемого от сети тока (лампы дневного света, электродвигатели, телевизоры, компьютеры, микроволновые печи и пр.). Резкое увеличение числа таких потребителей сказывается на их электромагнитной совместимости и энергосистемах в целом . В 2001году МЭК приняла стандарт IEC–1000–3–2, согласно которому любая электротехническая продукция мощностью более 200 ватт, подключаемая к сети переменного тока, должна иметь активный характер входного сопротивления, то есть коэффициент мощности () должен быть равен единице.

Для повышения в настоящее время используют пассивные и активные корректоры коэффициента мощности (ККМ). Первые применяют при неизменных нагрузках, путём введения компенсирующих реактивностей (например, конденсаторы для ламп дневного света), вторые обладают более широким спектром применения. Рассмотрим упрощенную схему активного корректора, которая приведена на рис.6.1.

Рисунок 6.1 – Упрощенная схема активного ККМ

На этом рисунке R 1 , R 2 – датчик входного напряжения (ДН), R 3 – датчик тока (ДТ). Индуктивность L, ключ VT1, диод VD1 и конденсатор С 1 образуют импульсный повышающий стабилизатор напряжения. Работа ККМ поясняется эпюрами рис.6.1б. Замыкание транзистора VТ1 происходит в момент времени, когда напряжение на выходе датчика тока ДТ становится равным нулю (т. е. при нулевом токе в индуктивности L). Размыкание транзистора VТ1 происходит в момент времени, когда линейно нарастающее напряжение с датчика тока становится равным изменяющемуся по синусоидальному закону напряжению с датчика напряжения ДН. После размыкания транзистора ток в индуктивности начинает спадать, индуктивность разряжается на нагрузку через диод VD1, ДТ и сеть. При нулевом значении тока транзистор вновь замыкается. Далее процесс повторяется. Частота коммутации ключа превышает частоту сети и составляет десятки…сотни килогерц. Усредненный ток i ср в индуктивности и потребляемый от сети, повторяет форму напряжения сети. По высокой частоте работы ключа сеть шунтируют конденсатором С 2 (обычно это доли мкФ). Можно дополнительно ввести обратную связь по выходному напряжению и обеспечить предварительную стабилизацию. Очевидно, что работа ККМ возможна, если амплитуда входного напряжения меньше напряжения на конденсаторе С 1 (с учётом отклонений). Для напряжения сети 220В (амплитуда 311В), выходное напряжение ККМ принимают равным 380…400В.

6.2 Разновидности ккм

В рассмотренной выше схеме ККМ используется, так называемый, метод граничного управления. Он наиболее прост в реализации, но размыкание ключа производится при значительном токе, что связано с существенными потерями мощности.

Известны и другие методы управления ключом в ККМ :

    управление по пиковому значению тока

    метод разрывных токов с ШИМ.

    управление по среднему значению тока.

Сущность этих методов поясняется эпюрами рис.6.2 а, б, в соответственно.

Рисунок 6.2 – Управление ключом в ККМ

Управление по пиковому значению тока (рис. 6.2.а) привлекательно по малым обратным помехам (в сеть) и малым броскам тока через ключ, но имеет место изменение частоты и жесткая коммутация силового диода.

Управление методом разрывных токов с ШИМ (рис. 6.2.б). Реализация этого метода близка к методу граничного управления, но отличается постоянной частотой коммутации. Достоинством является простая схема управления, но разрывные токи дросселя становятся дополнительным источником помех. Управление по среднему значению тока (рис. 6.2.в) производится при неизменной частоте, а наличие интегратора для усреднения тока повышает помехозащищённость системы управления. Обычно пиковое значение пульсаций тока дросселя находится в пределах 20% от среднего значения и именно этот метод управления применяют в корректорах на мощности более 300 ватт.

Cуществуют не только однофазные, но и трёхфазные корректоры коэффициента мощности. Силовой контур трёхфазного ККМ с одним управляемым ключом приведен на рис. 6.3 , а на рис. 6.4 и 6.5 показаны эпюры, поясняющие работу.

Рисунок 6.3 – Силовой контур трёхфазного ККМ

Рисунок 6.4 – Эпюры токов реакторов L1,L2,L3 трёхфазного ККМ

Рисунок 6.5 – Эпюры основных процессов трёхфазного ККМ

Управление ключом производится аналогично однофазному корректору.

В рассмотренных схемах ККМ, последний пропускает всю мощность нагрузки. Это последовательный корректор и его элементная база сдерживает увеличение выходной мощности. ККМ может быть построен и по ампердобавочной (рис.1.19) схеме – включение активного фильтра тока параллельно нагрузке. В этом случае, установленная мощность элементов активного фильтра, предназначенного для компенсации только мощности искажений от высших гармоник входного тока, будет на уровне, определяемом коэффициентом гармоник этого тока (например, 0,3 для трёхфазной мостовой схемы и 0,15 для двенадцатифазной схемы выпрямления) . Структурная схема такого ККМ приведена на рис. 6.6. Принцип компенсации высших гармоник в кривой тока, потребляемого от сети, поясняется эпюрами рис. 6.7. Для наглядности форма тока нагрузки принята прямоугольной. Корректор формирует разность между гармоникой тока сети и фактическим током нагрузки

(6.1)

где j – индекс фазы (A,B или C);

i J 1 – первая гармоника тока фазы j .

Схема управления корректором обычно базируется на широтно-импульсной модуляции.

Рисунок 6.6 – Структурная схема параллельного трёхфазного ККМ

Рисунок 6.7 – Компенсация высших гармоник тока

Как отдельные элементы электронной техники, схемы управления корректорами впервые были выпущены в 1989 г. фирмой Mikro Linear (LM 4812). Затем разработками занялись Siemens, Motorola и др. В настоящее время имеется обширное семейство ИМС для управления импульсными источниками, совмещёнными с ККМ и реализующие тот или иной метод управления.



Загрузка...