sonyps4.ru

Крипто защита сетевых ресурсов и данных. Что такое скзи: особенности, функции и где используется

Средства криптографической защиты информации, или сокращенно СКЗИ, используются для обеспечения всесторонней защиты данных, которые передаются по линиям связи. Для этого необходимо соблюсти авторизацию и защиту электронной подписи, аутентификацию сообщающихся сторон с использованием протоколов TLS и IPSec, а также защиту самого канала связи при необходимости.

В России использование криптографических средств защиты информации по большей части засекречено, поэтому общедоступной информации касательно этой темы мало.

Методы, применяемые в СКЗИ

  • Авторизация данных и обеспечение сохранности их юридической значимости при передаче или хранении. Для этого применяют алгоритмы создания электронной подписи и ее проверки в соответствии с установленным регламентом RFC 4357 и используют сертификаты по стандарту X.509.
  • Защита конфиденциальности данных и контроль их целостности. Используется асимметричное шифрование и имитозащита, то есть противодействие подмене данных. Соблюдается ГОСТ Р 34.12-2015.
  • Защита системного и прикладного ПО. Отслеживание несанкционированных изменений или неверного функционирования.
  • Управление наиболее важными элементами системы в строгом соответствии с принятым регламентом.
  • Аутентификация сторон, обменивающихся данными.
  • Защита соединения с использованием протокола TLS.
  • Защита IP-соединений при помощи протоколов IKE, ESP, AH.

Подробным образом методы описаны в следующих документах: RFC 4357, RFC 4490, RFC 4491.

Механизмы СКЗИ для информационной защиты

  1. Защита конфиденциальности хранимой или передаваемой информации происходит применением алгоритмов шифрования.
  2. При установлении связи идентификация обеспечивается средствами электронной подписи при их использовании во время аутентификации (по рекомендации X.509).
  3. Цифровой документооборот также защищается средствами электронной подписи совместно с защитой от навязывания или повтора, при этом осуществляется контроль достоверности ключей, используемых для проверки электронных подписей.
  4. Целостность информации обеспечивается средствами цифровой подписи.
  5. Использование функций асимметричного шифрования позволяет защитить данные. Помимо этого для проверки целостности данных могут быть использованы функции хеширования или алгоритмы имитозащиты. Однако эти способы не поддерживают определения авторства документа.
  6. Защита от повторов происходит криптографическими функциями электронной подписи для шифрования или имитозащиты. При этом к каждой сетевой сессии добавляется уникальный идентификатор, достаточно длинный, чтобы исключить его случайное совпадение, и реализуется проверка принимающей стороной.
  7. Защита от навязывания, то есть от проникновения в связь со стороны, обеспечивается средствами электронной подписи.
  8. Прочая защита - против закладок, вирусов, модификаций операционной системы и т. д. - обеспечивается с помощью различных криптографических средств, протоколов безопасности, антивирусных ПО и организационных мероприятий.

Как можно заметить, алгоритмы электронной подписи являются основополагающей частью средства криптографической защиты информации. Они будут рассмотрены ниже.

Требования при использовании СКЗИ

СКЗИ нацелено на защиту (проверкой электронной подписи) открытых данных в различных информационных системах общего использования и обеспечения их конфиденциальности (проверкой электронной подписи, имитозащитой, шифрованием, проверкой хеша) в корпоративных сетях.

Персональное средство криптографической защиты информации используется для охраны персональных данных пользователя. Однако следует особо выделить информацию, касающуюся государственной тайны. По закону СКЗИ не может быть использовано для работы с ней.

Важно: перед установкой СКЗИ первым делом следует проверить сам пакет обеспечения СКЗИ. Это первый шаг. Как правило, целостность пакета установки проверяется путем сравнения контрольных сумм, полученных от производителя.

После установки следует определиться с уровнем угрозы, исходя из чего можно определить необходимые для применения виды СКЗИ: программные, аппаратные и аппаратно-программные. Также следует учитывать, что при организации некоторых СКЗИ необходимо учитывать размещение системы.

Классы защиты

Согласно приказу ФСБ России от 10.07.14 под номером 378, регламентирующему применение криптографических средств защиты информации и персональных данных, определены шесть классов: КС1, КС2, КС3, КВ1, КВ2, КА1. Класс защиты для той или иной системы определяется из анализа данных о модели нарушителя, то есть из оценки возможных способов взлома системы. Защита при этом строится из программных и аппаратных средств криптографической защиты информации.

АУ (актуальные угрозы), как видно из таблицы, бывают 3 типов:

  1. Угрозы первого типа связаны с недокументированными возможностями в системном ПО, используемом в информационной системе.
  2. Угрозы второго типа связаны с недокументированными возможностями в прикладном ПО, используемом в информационной системе.
  3. Угрозой третьего типа называются все остальные.

Недокументированные возможности - это функции и свойства программного обеспечения, которые не описаны в официальной документации или не соответствуют ей. То есть их использование может повышать риск нарушения конфиденциальности или целостности информации.

Для ясности рассмотрим модели нарушителей, для перехвата которых нужен тот или иной класс средств криптографической защиты информации:

  • КС1 - нарушитель действует извне, без помощников внутри системы.
  • КС2 - внутренний нарушитель, но не имеющий доступа к СКЗИ.
  • КС3 - внутренний нарушитель, который является пользователем СКЗИ.
  • КВ1 - нарушитель, который привлекает сторонние ресурсы, например специалистов по СКЗИ.
  • КВ2 - нарушитель, за действиями которого стоит институт или лаборатория, работающая в области изучения и разработки СКЗИ.
  • КА1 - специальные службы государств.

Таким образом, КС1 можно назвать базовым классом защиты. Соответственно, чем выше класс защиты, тем меньше специалистов, способных его обеспечивать. Например, в России, по данным за 2013 год, существовало всего 6 организаций, имеющих сертификат от ФСБ и способных обеспечивать защиту класса КА1.

Используемые алгоритмы

Рассмотрим основные алгоритмы, используемые в средствах криптографической защиты информации:

  • ГОСТ Р 34.10-2001 и обновленный ГОСТ Р 34.10-2012 - алгоритмы создания и проверки электронной подписи.
  • ГОСТ Р 34.11-94 и последний ГОСТ Р 34.11-2012 - алгоритмы создания хеш-функций.
  • ГОСТ 28147-89 и более новый ГОСТ Р 34.12-2015 - реализация алгоритмов шифрования и имитозащиты данных.
  • Дополнительные криптографические алгоритмы находятся в документе RFC 4357.

Электронная подпись

Применение средства криптографической защиты информации невозможно представить без использования алгоритмов электронной подписи, которые набирают все большую популярность.

Электронная подпись - это специальная часть документа, созданная криптографическими преобразованиями. Ее основной задачей являются выявление несанкционированного изменения и определение авторства.

Сертификат электронной подписи - это отдельный документ, который доказывает подлинность и принадлежность электронной подписи своему владельцу по открытому ключу. Выдача сертификата происходит удостоверяющими центрами.

Владелец сертификата электронной подписи - это лицо, на имя которого регистрируется сертификат. Он связан с двумя ключами: открытым и закрытым. Закрытый ключ позволяет создать электронную подпись. Открытый ключ предназначен для проверки подлинности подписи благодаря криптографической связи с закрытым ключом.

Виды электронной подписи

По Федеральному закону № 63 электронная подпись делится на 3 вида:

  • обычная электронная подпись;
  • неквалифицированная электронная подпись;
  • квалифицированная электронная подпись.

Простая ЭП создается за счет паролей, наложенных на открытие и просмотр данных, или подобных средств, косвенно подтверждающих владельца.

Неквалифицированная ЭП создается с помощью криптографических преобразований данных при помощи закрытого ключа. Благодаря этому можно подтвердить лицо, подписавшее документ, и установить факт внесения в данные несанкционированных изменений.

Квалифицированная и неквалифицированная подписи отличаются только тем, что в первом случае сертификат на ЭП должен быть выдан сертифицированным ФСБ удостоверяющим центром.

Область использования электронной подписи

В таблице ниже рассмотрены сферы применения ЭП.

Активнее всего технологии ЭП применяются в обмене документами. Во внутреннем документообороте ЭП выступает в роли утверждения документов, то есть как личная подпись или печать. В случае внешнего документооборота наличие ЭП критично, так как является юридическим подтверждением. Стоит также отметить, что документы, подписанные ЭП, способны храниться бесконечно долго и не утрачивать своей юридической значимости из-за таких факторов, как стирающиеся подписи, испорченная бумага и т. д.

Отчетность перед контролирующими органами - это еще одна сфера, в которой наращивается электронный документооборот. Многие компании и организации уже оценили удобство работы в таком формате.

По закону Российской Федерации каждый гражданин вправе пользоваться ЭП при использовании госуслуг (например, подписание электронного заявления для органов власти).

Онлайн-торги - еще одна интересная сфера, в которой активно применяется электронная подпись. Она является подтверждением того факта, что в торгах участвует реальный человек и его предложения могут рассматриваться как достоверные. Также важным является то, что любой заключенный контракт при помощи ЭП приобретает юридическую силу.

Алгоритмы электронной подписи

  • Full Domain Hash (FDH) и Public Key Cryptography Standards (PKCS). Последнее представляет собой целую группу стандартных алгоритмов для различных ситуаций.
  • DSA и ECDSA - стандарты создания электронной подписи в США.
  • ГОСТ Р 34.10-2012 - стандарт создания ЭП в РФ. Данный стандарт заменил собой ГОСТ Р 34.10-2001, действие которого официально прекратилось после 31 декабря 2017 года.
  • Евразийский союз пользуется стандартами, полностью аналогичными российским.
  • СТБ 34.101.45-2013 - белорусский стандарт для цифровой электронной подписи.
  • ДСТУ 4145-2002 - стандарт создания электронной подписи в Украине и множество других.

Стоит также отметить, что алгоритмы создания ЭП имеют различные назначения и цели:

  • Групповая электронная подпись.
  • Одноразовая цифровая подпись.
  • Доверенная ЭП.
  • Квалифицированная и неквалифицированная подпись и пр.

Защита информации путем преобразования, исключающего ее прочтение посторонним лицом, является одним из наиболее действенных методов обеспечения информационной безопасности, и имеет давнюю историю. Проблемой преобразования информации занимается наука криптология. Исходя из направленности практического применения, криптология разделяется на два противоположных направления: криптографию и криптоанализ.

Криптография – наука о методах защиты информации на основе ее преобразования с сохранением достоверности содержания.

Криптоанализ – наука о методах раскрытия и модификации данных без знания ключей.

Это научное направление преследует две цели. Первая – исследование закодированной информации с целью восстановления содержания исходного документа. Вторая – распознавание и изучение метода кодирования информации с целью фальсификации сообщения.

Современная криптография включает в себя четыре крупных раздела:

1. Симметричные криптосистемы.

2. Криптосистемы с открытым ключом.

3. Системы электронной подписи.

4. Управление ключами.

Основные направления использования криптографических методов:

* передача конфиденциальной информации по каналам связи;

* установление подлинности передаваемых сообщений;

* хранение информации в зашифрованном виде.

Перечислим основные понятия и определения криптографии.

Шифрование – процесс, при котором исходный (открытый) текст сообщения заменяется шифрованным текстом.

Дешифрование – процесс преобразования шифрованного текста в открытый с помощью ключа шифрования.

Ключ шифрования – информация, необходимая для беспрепятственного шифрования и дешифрования текстов.

Текст – упорядоченный набор из элементов (символов) алфавита.

Алфавит – конечное множество используемых для кодирования информации знаков.

В качестве примеров алфавитов, используемых в современных информационных системах, можно привести следующие:

* алфавит Z33 – 32 буквы русского языка и пробел;

* алфавит Z256 – стандартные символы компьютерной кодировки знаков латинского и национального алфавитов, цифры, знаки препинания и специальные символы;

* бинарный алфавит Z2 – цифры 0 и 1, восьмеричный, шестнадцатеричный и т.п. алфавиты.

Процесс криптографического преобразования информации может осуществляться аппаратным или программным способами. Аппаратная реализация характеризуется существенно большей стоимостью, высокой защищенностью и скоростью работы, простотой в использовании. Программный способ более практичен, допускает известную гибкость в использовании, но сравнительно медленнее и хуже защищен.

Все современные алгоритмы криптографического преобразования информации используют ключ для управления шифрованием и дешифрованием. Алгоритмы с использованием ключа делятся на два класса:



* Симметричные (с секретным ключом). Для шифрования и дешифрования используется один и тот же ключ, или же ключ для дешифрования вычисляется на основе ключа шифрования.

* Асимметричные (с открытым ключом). Шифрование информации осуществляется с использованием открытого ключа, который известен всем. Дешифрование производится с помощью закрытого ключа, известного только получателю сообщения.

Симметричные алгоритмы работают быстрее, чем асимметри чные. На практике оба типа алгоритмов часто используются совместно.

Электронная цифровая подпись – присоединяемое к тексту его криптографическое преобразование с использованием закрытого ключа.

Электронная цифровая подпись позволяет идентифицировать владельца подписи, а также установить отсутствие искажения информации в электронном документе.

Процесс использования электронной цифровой подписи в общем виде выглядит следующим образом:

1. Отправитель рассчитывает хэш-функцию текста – идентификатор, полученный путем сжатия информации с помощью математического алгоритма.

2. Отправитель, используя свой секретный ключ, зашифровывает хэш-функцию. В результате получается определенная цифровая последовательность – цифровая подпись.

3. Отправитель формирует пересылаемое сообщение, включающее в себя исходный текст и его цифровую подпись

4. Отправитель по открытому каналу связи передает пересылаемое сообщение.

5. Получатель выделяет из принятого сообщения текст и его цифровую подпись.

6. Получатель вычисляет хэш-функцию полученного текста.

7. Получатель сообщения с помощью открытого ключа расшифровывает цифровую подпись.

8. Получатель сравнивает результат расшифровки с рассчитанной им хэш-функцией. Если вычисленная и расшифрованная хэш-функции совпадают, то сообщение считается подтвержденным.

Важной проблемой всей криптографии с открытым ключом, в том числе и систем ЭЦП, является управление ключами. Необходимо обеспечить доступ любого пользователя к подлинному открытому ключу любого другого пользователя, защитить эти ключи от подмены злоумышленником, а также организовать отзыв ключа в случае его компрометации. Управлением ключами занимаются удостоверяющие центры.

Программно-аппаратные средства защиты с электронными ключами в последнее время приобретают все большую популярность. Под программно-аппаратными средствами защиты в данном случае понимаются средства, основанные на использовании так называемых «аппаратных (электронных) ключей». Электронный ключ - это аппаратная часть системы защиты, представляющая собой плату с микросхемами памяти и, в некоторых случаях, микропроцессором, помещенную в корпус и предназначенную для установки в один из стандартных портов ПК (СОММ, LPT, PCMCIA, USB...) или слот расширения материнской платы. Также в качестве такого устройства могут использоваться СМАРТ-карты. По результатам проведенного анализа, программно-аппаратные средства защиты в настоящий момент являются одними из самых стойких систем защиты от НСД.

Электронные ключи по архитектуре можно подразделить на ключи с памятью (без микропроцессора) и ключи с микропроцессором (и памятью).

Наименее стойкими (в зависимости от типа программной части) являются системы с аппаратной частью первого типа. В таких системах критическая информация (ключ дешифрации, таблица переходов) хранится в памяти электронного ключа. Для дезактивации таких защит в большинстве случаев необходимо наличие у злоумышленника аппаратной части системы защиты (основная методика: перехват диалога между программной и аппаратной частями для доступа к критической информации).

Самыми стойкими являются системы с аппаратной частью второго типа. Такие комплексы содержат в аппаратной части не только ключ дешифрации, но и блоки шифрации/дешифрации данных, таким образом, при работе защиты в электронный ключ передаются блоки зашифрованной информации, а принимаются оттуда расшифрованные данные. В системах этого типа достаточно сложно перехватить ключ дешифрации, так как все процедуры выполняются аппаратной частью, но остается возможность принудительного сохранения защищенной программы в открытом виде после отработки системы защиты. Кроме того, к ним применимы методы криптоанализа.

Информация о пользователе, полученная системой защиты на этапе идентификации/аутентификации, используется ею в дальнейшем для наделения пользователя правами доступа в рамках модели безопасности, организованной в данной информационной системе.

Наряду с обычным шифрованием, используется и такой способ сокрытия данных, как стеганография.

Стеганография – совокупность методов, обеспечивающих сокрытие факта существования информации в той или иной среде, а также средства реализации таких методов.

К стеганографии можно отнести огромное множество секретных средств связи, таких как невидимые чернила, микрофотоснимки, условное расположение знаков и т.д.

В настоящее время активно развивается компьютерная стеганография. Она рассматривает вопросы, связанные с сокрытием информации, хранящейся на цифровых носителях или передаваемой по телекоммуникационным каналам связи.

Для стеганографического преобразования необходимы:

* скрываемая информация;

* контейнер данных;

* программное обеспечение для добавления информации в файл-контейнер и ее извлечения.

В качестве контейнера для скрываемого сообщения могут выступать графические, аудио- или видеофайлы.

Основная идея стеганографического сокрытия информации заключается в том, что добавление «секретного» сообщения в файл-контейнер должно вызывать лишь незначительные изменения последнего, не улавливаемые органами чувств человека. Поэтому файл-контейнер должен быть достаточно большого размера. Стеганографические технологии используются для решения следующих задач:

* защита информации от несанкционированного доступа;

* противодействие системам мониторинга передаваемых данных;

* создание скрытых каналов утечки информации.

Стеганография позволяет внедрить в компьютерные графические изображения, аудио- и видеопродукцию, литературные тексты, программы специальную цифровую метку, незаметную при обычном использовании файла, но распознаваемую специальным программным обеспечением. Такие специальные сведения могут рассматриваться в качестве подтверждения авторства

В этой статье вы узнаете, что такое СКЗИ и для чего это нужно. Это определение относится к криптографии - защите и хранению данных. Защиту информации в электронном виде можно сделать любым способом - даже путем отключения компьютера от сети и установки возле него вооруженной охраны с собаками. Но намного проще это осуществить, используя средства криптозащиты. Давайте разберемся, что это и как реализуется на практике.

Основные цели криптографии

Расшифровка СКЗИ звучит как «система криптографической защиты информации». В криптографии канал передачи информации может быть полностью доступен злоумышленникам. Но все данные конфиденциальны и очень хорошо зашифрованы. Поэтому, невзирая на открытость каналов, информацию злоумышленники получить не могут.

Современные средства СКЗИ состоят из программно-компьютерного комплекса. С его помощью обеспечивается защита информации по самым важным параметрам, которые мы и рассмотрим далее.

Конфиденциальность

Прочесть информацию невозможно, если нет на это прав доступа. А что такое СКЗИ и как он шифрует данные? Главный компонент системы - это электронный ключ. Он представляет собой комбинацию из букв и чисел. Только при вводе этого ключа можно попасть в нужный раздел, на котором установлена защита.

Целостность и аутентификация

Это важный параметр, который определяет возможность несанкционированного изменения данных. Если нет ключа, то редактировать или удалить информацию нельзя.

Аутентификация - это процедура проверки подлинности информации, которая записана на ключевом носителе. Ключ должен соответствовать той машине, на которой производится расшифровка информации.

Авторство

Это подтверждение действий пользователя и невозможность отказа от них. Самый распространенный тип подтверждения - это ЭЦП (электронная цифровая подпись). Она содержит в себе два алгоритма - один создает подпись, второй ее проверяет.

Обратите внимание на то, что все операции, которые производятся с электронными подписями, проходят обработку сертифицированными центрами (независимыми). По этой причине подделать авторство невозможно.

Основные алгоритмы шифрования данных

На сегодняшний день распространено немало сертификатов СКЗИ, ключи при шифровании используются различные - как симметричные, так и ассиметричные. И длина ключей достаточна для того, чтобы обеспечить необходимую криптографическую сложность.

Самые популярные алгоритмы, которые используются в криптозащите:

  1. Симметричный ключ - DES, AES, RC4, российский Р-28147.89.
  2. С хеш-функциями - например, SHA-1/2, MD4/5/6, Р-34.11.94.
  3. Асимметричный ключ - RSA.

Во многих странах имеются свои стандарты для шифровальных алгоритмов. Например, в Соединенных Штатах применяют модифицированное AES-шифрование, ключ может быть длиной от 128 до 256 бит.

В Российской Федерации существует свой алгоритм - Р-34.10.2001 и Р-28147.89, в котором применяется ключ размером 256 бит. Обратите внимание на то, что существуют элементы в национальных криптографических системах, которые запрещено экспортировать в другие страны. Вся деятельность, связанная с разработкой СКЗИ, нуждается в обязательном лицензировании.

Аппаратная криптозащита

При установке тахографов СКЗИ можно обеспечить максимальную защиту информации, которая хранится в приборе. Все это реализуется как на программном, так и на аппаратном уровнях.

Аппаратный тип СКЗИ - это устройства, которые содержат специальные программы, обеспечивающие надежное шифрование данных. Также с их помощью происходит хранение информации, ее запись и передача.

Аппарат шифрации выполняется в виде шифратора, подключаемого к портам USB. Существуют также аппараты, которые устанавливаются на материнские платы ПК. Даже специализированные коммутаторы и сетевые карты с криптозащитой можно использовать для работы с данными.

Аппаратные типы СКЗИ устанавливаются довольно быстро и способны с большой скоростью обмениваться информацией. Но недостаток - это достаточно высокая стоимость, а также ограниченная возможность модернизации.

Программная криптозащита

Это комплекс программ, позволяющий осуществлять шифрование информации, которая хранится на различных носителях (флешках, жестких и оптических дисках, и т. д.). Также, если имеется лицензия на СКЗИ такого типа, можно производить шифрование данных при передаче их по сети Интернет (например, посредством электронной почты или чата).

Программ для защиты большое количество, причем существуют даже бесплатные - к таким можно отнести DiskCryptor. Программный тип СКЗИ - это еще и виртуальные сети, позволяющие осуществлять обмен информацией «поверх Интернет». Это известные многим VPN-сети. К такому типу защиты можно отнести и протокол HTTP, поддерживающий шифрование SSL и HTTPS.

Программные средства СКЗИ по большей части используются при работе в Интернете, а также на домашних ПК. Другими словами, исключительно в тех областях, где нет серьезных требований к стойкости и функциональности системы.

Программно-аппаратный тип криптозащиты

Теперь вы знаете, что такое СКЗИ, как работает и где используется. Нужно еще выделить один тип - программно-аппаратный, в котором собраны все самые лучшие свойства обоих видов систем. Такой способ обработки информации на сегодняшний день является самым надежным и защищенным. Причем идентифицировать пользователя можно различными способами - как аппаратными (путем установки флеш-носителя или дискеты), так и стандартным (путем введения пары логин/пароль).

Программно-аппаратными системами поддерживаются все алгоритмы шифрования, которые существуют на сегодняшний день. Обратите внимание на то, что установку СКЗИ должен производить только квалифицированный персонал разработчика комплекса. Понятно, что такое СКЗИ не должно устанавливаться на компьютеры, на которых не осуществляется обработка конфиденциальной информации.

Основными задачами защиты информации при ее хранении, обработке и передаче по каналам связи и на различных носителях, решаемыми с помощью СКЗИ, являются: 1.

Обеспечение секретности (конфиденциальности) информации. 2.

Обеспечение целостности информации. 3.

Подтверждение подлинности информации (документов). Для решения этих задач необходима реализация следующих

процессов: 1.

Реализация собственно функций защиты информации, включая:

шифрование/расшифрование; создание/проверка ЭЦП; создание/проверка имитовставки. 2.

Контроль состояния и управление функционированием средств КЗИ (в системе):

контроль состояния: обнаружение и регистрация случаев нарушения работоспособности средств КЗИ, попыток НСД, случаев компрометации ключей;

управление функционированием: принятие мер в случае перечисленных отклонений от нормального функционирования средств КЗИ. 3.

Проведение обслуживания средств КЗИ: осуществление ключевого управления;

выполнение процедур, связанных с подключением новых абонентов сети и/или исключением выбывших абонентов; устранение выявленных недостатков СКЗИ; ввод в действие новых версий программного обеспечения СКЗИ;

модернизация и замена технических средств СКЗИ на более совершенные и/или замена средств, ресурс которых выработан.

Ключевое управление является одной из важнейших функций криптографической защиты информации и заключается в реализации следующих основных функций:

генерация ключей: определяет механизм выработки ключей или пар ключей с гарантией их криптографических качеств;

распределение ключей: определяет механизм, по которому ключи надежно и безопасно доставляются абонентам;

сохранение ключей: определяет механизм, по которому ключи надежно и безопасно сохраняются для дальнейшего их использования;

восстановление ключей: определяет механизм восстановления одного из ключей (замена на новый ключ);

уничтожение ключей: определяет механизм, по которому производится надежное уничтожение вышедших из употребления ключей;

ключевой архив: механизм, по которому ключи могут надежно сохраняться для их дальнейшего нотаризованного восстановления в конфликтных ситуациях.

В целом для реализации перечисленных функций криптографической защиты информации необходимо создание системы криптографической защиты информации, объединяющей собственно средства КЗИ, обслуживающий персонал, помещения, оргтехнику, различную документацию (техническую, нормативно-распорядительную) и т.д.

Как уже отмечалось, для получения гарантий защиты информации необходимо применение сертифицированных средств КЗИ.

В настоящее время наиболее массовым является вопрос защиты конфиденциальной информации. Для решения этого вопроса под эгидой ФАПСИ разработан функционально полный комплекс средств криптографической защиты конфиденциальной информации, который позволяет решить перечисленные задачи по защите информации для самых разнообразных приложений и условий применения.

В основу этого комплекса положены криптографические ядра "Верба" (система несимметричных ключей) и "Верба-О" (система симметричных ключей). Эти криптоядра обеспечивают процедуры шифрования данных в соответствии с требованиями ГОСТ 28147-89 "Системы обработки информации. Защита криптографическая" и цифровой подписи в соответствии с требованиями ГОСТ Р34.10-94 "Информационная технология. Криптографическая защита информации. Процедуры выработки и проверки электронной цифровой подписи на базе асимметричного криптографического алгоритма".

Средства, входящие в комплекс СКЗИ, позволяют защищать электронные документы и информационные потоки с использованием сертифицированных механизмов шифрования и электронной подписи практически во всех современных информационных технологиях, в том числе позволяют осуществлять: использование СКЗИ в автономном режиме;

защищенный информационный обмен в режиме off-line; защищенный информационный обмен в режиме on-line; защищенный гетерогенный, т.е. смешанный, информационный обмен.

Для решения системных вопросов применения СКЗИ под руководством Д. А. Старовойтова разработана технология комплексной криптографической защиты информации "Витязь", которая предусматривает криптографическую защиту данных сразу во всех частях системы: не только в каналах связи и узлах системы, но и непосредственно на рабочих местах пользователей в процессе создания документа, когда защищается и сам документ.

Кроме того, в рамках общей технологии "Витязь" предусмотрена упрощенная, легко доступная пользователям технология встраивания лицензированных СКЗИ в различные прикладные системы, что делает весьма широким круг использования этих СКЗИ.

Ниже следует описание средств и способов защиты для каждого из перечисленных режимов.

Использование СКЗИ в автономном режиме.

При автономной работе с СКЗИ могут быть реализованы следующие виды криптографической защиты информации: создание защищенного документа; защита файлов;

создание защищенной файловой системы; создание защищенного логического диска. По желанию пользователя могут быть реализованы следующие виды криптографической защиты документов (файлов):

шифрование документа (файла), что делает недоступным его содержание как при хранении документа (файла), так и при его передаче по каналам связи либо нарочным;

выработка имитовставки, что обеспечивает контроль целостности документа (файла);

формирование ЭЦП, что обеспечивает контроль целостности документа (файла) и аутентификацию лица, подписавшего документ (файл).

В результате защищаемый документ (файл) превращается в зашифрованный файл, содержащий, при необходимости, ЭЦП. ЭЦП, в зависимости от организации процесса обработки информации, может быть представлена и отдельным от подписываемого документа файлом. Далее этот файл может быть выведен на дискету или иной носитель, для доставки нарочным, либо отправлен по любой доступной электронной почте, например по Интернет.

Соответственно по получению зашифрованного файла по электронной почте либо на том или ином носителе выполненные действия по криптографической защите производятся в обратном порядке (расшифрование, проверка имитовставки, проверка ЭЦП).

Для осуществления автономной работы с СКЗИ могут быть использованы следующие сертифицированные средства:

текстовый редактор "Лексикон-Верба", реализованный на основе СКЗИ "Верба-О" и СКЗИ "Верба";

программный комплекс СКЗИ "Автономное рабочее место", реализованный на основе СКЗИ "Верба" и "Верба-О" для ОС Windows 95/98/NT;

криптографический дисковый драйвер PTS "DiskGuard".

Защищенный текстовый процессор "Лексикон-Верба".

Система "Лексикон-Верба" - это полнофункциональный текстовый редактор с поддержкой шифрования документов и электронной цифровой подписи. Для защиты документов в нем используются криптографические системы "Верба" и "Верба-О". Уникальность этого продукта состоит в том, что функции шифрования и подписи текста просто включены в состав функций современного текстового редактора. Шифрование и подпись документа в этом случае из специальных процессов превращаются просто в стандартные действия при работе с документом.

При этом система "Лексикон-Верба" выглядит как обычный текстовый редактор. Возможности форматирования текста включают полную настройку шрифтов и параграфов документа; таблицы и списки; колонтитулы, сноски, врезки; использование стилей и многие другие функции текстового редактора, отвечающего современным требованиям. "Лексикон-Верба" позволяет создавать и редактировать документы в форматах Лексикон, RTF, MS Word 6/95/97, MS Write.

Автономное рабочее место.

СКЗИ "Автономное рабочее место" реализовано на основе СКЗИ "Верба" и "Верба-О" для ОС Windows 95/98/NT и позволяет пользователю в диалоговом режиме выполнять следующие функции:

шифрование /расшифрование файлов на ключах; шифрование/расшифрование файлов на пароле; проставление/снятие/проверка электронно-цифровых подписей (ЭЦП) под файлами;

проверку шифрованных файлов;

проставление ЭЦП + шифрование (за одно действие) файлов; расшифрование + снятие ЭЦП (за одно действие) под файлами;

вычисление хэш-файла.

СКЗИ "Автономное рабочее место" целесообразно применять для повседневной работы сотрудников, которым необходимо обеспечить:

передачу конфиденциальной информации в электронном виде нарочным или курьером;

отправку конфиденциальной информации по сети общего пользования, включая Интернет;

защиту от несанкционированного доступа к конфиденциальной информации на персональных компьютерах сотрудников.

Криптографическая защита информации - защита информации с помощью ее криптографического преобразования.

Криптографические методы в настоящее время являются базовыми для обеспечения надежной аутентификации сторон информационного обмена, защиты.

К средствам криптографической защиты информации (СКЗИ) относятся аппаратные, программно-аппаратные и программные средства, реализующие криптографические алгоритмы преобразования информации с целью:

Защиты информации при ее обработке, хранении и передаче;

Обеспечения достоверности и целостности информации (в том числе с использованием алгоритмов цифровой подписи) при ее обработке, хранении и передаче;

Выработки информации, используемой для идентификации и аутентификации субъектов, пользователей и устройств;

Выработки информации, используемой для защиты аутентифицирующих элементов защищенной АС при их выработке, хранении, обработке и передаче.

Криптографические методы предусматривают шифрование и кодирование информации . Различают два основных метода шифрования: симметричный и асимметричный. В первом из них один и тот же ключ (хранящийся в секрете) используется и для зашифрования, и для расшифрования данных.

Разработаны весьма эффективные (быстрые и надежные) методы симметричного шифрования. Существует и национальный стандарт на подобные методы - ГОСТ 28147-89 «Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования».

В асимметричных методах используются два ключа. Один из них, несекретный (он может публиковаться вместе с другими открытыми сведениями о пользователе), применяется для шифрования, другой (секретный, известный только получателю) - для расшифрования. Самым популярным из асимметричных является метод RSA, основанный на операциях с большими (100-значными) простыми числами и их произведениями.

Криптографические методы позволяют надежно контролировать целостность как отдельных порций данных, так и их наборов (таких как поток сообщений); определять подлинность источника данных; гарантировать невозможность отказаться от совершенных действий ("неотказуемость").

В основе криптографического контроля целостности лежат два понятия:

Электронная подпись (ЭП).

Хэш-функция - это труднообратимое преобразование данных (односторонняя функция), реализуемое, как правило, средствами симметричного шифрования со связыванием блоков. Результат шифрования последнего блока (зависящий от всех предыдущих) и служит результатом хэш-функции.

Криптография как средство защиты (закрытия) информации приобретает все более важное значение в коммерческой деятельности.


Для преобразования информации используются различные шифровальные средства: средства шифрования документов, в том числе и портативного исполнения, средства шифрования речи (телефонных и радиопереговоров), средства шифрова-ния телеграфных сообщений и передачи данных.

Для защиты коммерческой тайны на международном и отечественном рынке предлагаются различные технические устройства и комплекты профессиональной аппаратуры шифрова-ния и криптозащиты телефонных и радиопереговоров, деловой переписки и пр.

Широкое распространение получили скремблеры и маскираторы, заменяющие речевой сигнал цифровой передачей данных. Производятся средства защиты те-летайпов, телексов и факсов. Для этих целей использу-ются шифраторы, выполняемые в виде отдельных уст-ройств, в виде приставок к аппаратам или встраивае-мые в конструкцию телефонов, факс-модемов и других аппаратов связи (радиостанции и другие). Для обеспечения достоверности передаваемых электронных сообщений широко применяется электронная цифровая подпись.



Загрузка...