sonyps4.ru

Коммутаторы локальных сетей. Локальная сеть своими руками: Общие правила построения домашней сети и ее основные компоненты

Технология коммутации сегментов Ethernetбыла предложена фирмойKalpanaв 1990 году в ответ на растущие потребности в повышении пропускной способности связей высокопроизводительных серверов с сегментами рабочих станций.

Структурная схема коммутатора EtherSwitch, предложенного фирмойKalpana, представлена на рис. 12.6.

Рис.12. 6 Пример структуры коммутатора

Каждый из 8 портов 10Base-Tобслуживается одним процессором пакетовEthernet- ЕРР (EthernetPacketProcessor). Кроме того, коммутатор имеет системный модуль, который координирует работу всех процессоров ЕРР. Системный модуль ведет общую адресную таблицу коммутатора и обеспечивает управление коммутатором по протоколуSNMP. Для передачи кадров между портами используется коммутационная матрица, подобная тем, которые работают в телефонных коммутаторах или мультипроцессорных компьютерах, соединяя несколько процессоров с несколькими модулями памяти.

Коммутационная матрица работает по принципу коммутации каналов. Для 8 портов матрица может обеспечить 8 одновременных внутренних каналов при полудуплексном режиме работы портов и 16 - при полнодуплексном, когда передатчик и приемник каждого порта работают независимо друг от друга.

При поступлении кадра в какой-либо порт процессор ЕРР буферизует несколько первых байт кадра, чтобы прочитать адрес назначения. После получения адреса назначения процессор сразу же принимает решение о передаче пакета, не дожидаясь прихода остальных байт кадра. Для этого он просматривает свой собственный кэш адресной таблицы, а если не находит там нужного адреса, обращается к системному модулю, который работает в многозадачном режиме, параллельно обслуживая запросы всех процессоров ЕРР. Системный модуль производит просмотр общей адресной таблицы и возвращает процессору найденную строку, которую тот буферизует в своем кэше для последующего использования.

После нахождения адреса назначения процессор ЕРР знает, что нужно дальше делать с поступающим кадром (во время просмотра адресной таблицы процессор продолжал буферизацию поступающих в порт байтов кадра). Если кадр нужно отфильтровать, процессор просто прекращает записывать в буфер байты кадра, очищает буфер и ждет поступления нового кадра.

Если же кадр нужно передать на другой порт, то процессор обращается к коммутационной матрице и пытается установить в ней путь, связывающий его порт с портом, через который идет маршрут к адресу назначения. Коммутационная матрица может это сделать только в том случае, когда порт адреса назначения в этот момент свободен, то есть, не соединен с другим портом.

Если же порт занят, то, как и в любом устройстве с коммутацией каналов, матрица в соединении отказывает. В этом случае кадр полностью буферизуется процессором входного порта, после чего процессор ожидает освобождения выходного порта и образования коммутационной матрицей нужного пути.

После того как нужный путь установлен, в него направляются буферизованные байты кадра, которые принимаются процессором выходного порта. Как только процессор выходного порта получает доступ к подключенному к нему сегменту Ethernetпо алгоритмуCSMA/CD, байты кадра сразу же начинают передаваться в сеть. Процессор входного порта постоянно хранит несколько байт принимаемого кадра в своем буфере, что позволяет ему независимо и асинхронно принимать и передавать байты кадра (рис. 4.24).

При свободном в момент приема кадра состоянии выходного порта задержка между приемом первого байта кадра коммутатором и появлением этого же байта на выходе порта адреса назначения составляла у коммутатора компании Kalpanaвсего 40 мкс, что было гораздо меньше задержки кадра при его передаче мостом.

Рис.12. 7 Передача кадра через коммутационную матрицу

Описанный способ передачи кадра без его полной буферизации получил название коммутации «на лету» («on-the-fly») или «напролет» («cut-through»).Этот способ представляет, по сути, конвейерную обработку кадра, когда частично совмещаются во времени несколько этапов его передачи (рис. 12.8).

Прием первых байт кадра процессором входного порта, включая прием байт адреса назначения.

Поиск адреса назначения в адресной таблице коммутатора (в кэше процессора или в общей таблице системного модуля).

Коммутация матрицы.

Прием остальных байт кадра процессором входного порта.

Прием байт кадра (включая первые) процессором выходного порта через коммутационную матрицу.

Получение доступа к среде процессором выходного порта.

Передача байт кадра процессором выходного порта в сеть.

Этапы 2 и 3 совместить во времени нельзя, так как без знания номера выходного порта операция коммутации матрицы не имеет смысла.

П

Рис.12. 8 Экономия времени при конвейерной обработке кадра: а - конвейерная обработка; б - обычная обработка с полной буферизацией


о сравнению с режимом полной буферизации кадра, также приведенном на рис. 12.8, экономия от конвейеризации получается ощутимой.

Однако главной причиной повышения производительности сети при использовании коммутатора является параллельная обработка нескольких кадров.

Так как главное достоинство коммутатора, благодаря которому он завоевал очень хорошие позиции в локальных сетях, это его высокая производительность, то разработчики коммутаторов стараются выпускать так называемые неблокирующие ( non - blocking ) модели коммутаторов .

Неблокирующий коммутатор - это такой коммутатор, который может передавать кадры через свои порты с той же скоростью, с которой они на них поступают.Естественно, что даже неблокирующий коммутатор не может разрешить в течение долгого промежутка времени ситуации, когда блоки­ровка кадров происходит из-за ограниченной скорости выходного порта.

Обычно имеют в виду устойчивый неблокирующий режим работы коммутатора, когда коммутатор передает кадры со скоростью их поступления в течение произ­вольного промежутка времени. Для обеспечения такого режима нужно, естествен­но, такое распределение потоков кадров по выходным портам, чтобы они справлялись с нагрузкой и коммутатор мог всегда в среднем передать на выходы столько кад­ров, сколько их поступило на входы. Если же входной поток кадров (просуммиро­ванный по всем портам) в среднем будет превышать выходной поток кадров (также просуммированный по всем портам), то кадры будут накапливаться в буферной памяти коммутатора, а при превышении ее объема - просто отбрасываться.Дляобеспечения неблокирующего режима коммутатора необходимо выполнение до­статочно простого условия:

,

где
- производительность коммутатора,
- максимальная производитель­ность протокола, поддерживаемого i-м портом коммутатора.

Суммарная произво­дительность портов учитывает каждый проходящий кадр дважды - как входящий кадр и как выходящий, а так как в устойчивом режиме входной трафик равен выходному, то минимально достаточная производительность коммутатора для под­держки неблокирующего режима равна половине суммарной производительности портов. Если порт работает в полудуплексном режиме, напримерEthernet10 Мбит/с, то производительность порта
равна 10 Мбит/с, а если в полнодуплексном, то его
будет составлять 20 Мбит/с.

Широкому применению коммутаторов, безусловно, способствовало то обстоятельство, что внедрение технологии коммутации не требовало замены установленного в сетях оборудования - сетевых адаптеров, концентраторов, кабельной системы. Порты коммутаторов работали в обычном полудуплексном режиме, поэтому к ним прозрачно можно было подключить как конечный узел, так и концентратор, организующий целый логический сегмент.

Так как коммутаторы и мосты прозрачны для протоколов сетевого уровня, то их появление в сети не оказало никакого влияния на маршрутизаторы сети, если они там имелись.

Удобство использования коммутатора состоит еще и в том, что это самообучающееся устройство и, если администратор не нагружает его дополнительными функциями, конфигурировать его не обязательно - нужно только правильно подключить разъемы кабелей к портам коммутатора, а дальше он будет работать самостоятельно и эффективно выполнять поставленную перед ним задачу повышения производительности сети.

Сейчас, во время всевозможных гаджетов и электронных девайсов, которые переполняют среду обитания обычного человека, актуальна проблема – как эти все интеллектуальные устройства увязать между собой. Почти в любой квартире есть телевизор, компьютер/ноутбук, принтер, сканер, звуковая система, и хочется как-то скоординировать их, а не перекидывать бесконечное количество информации флешками, и при этом не запутаться в бесконечных километрах проводов. Та же самая ситуация касается офисов – с немалым количеством компьютеров и МФУ, или других систем, где нужно увязать разных представителей электронного сообщества в одну систему. Вот тут и возникает идея построения локальной сети. А основа грамотно организованной и структурированной локальной сети – сетевой коммутатор.



ОПРЕДЕЛЕНИЕ

Коммутатор , или свитч - прибор, объединяющий несколько интеллектуальных устройств в локальную сеть для обмена данными. При получении информации на один из портов, передает ее далее на другой порт, на основании таблицы коммутации или таблицы MAC-адресов . При этом процесс заполнения таблицы идет не пользователем, а самим коммутатором, в процессе работы – при первом сеансе передачи данных таблица пуста, и изначально коммутатор ретранслирует пришедшую информацию на все свои порты. Но в процессе работы он запоминает пути следования информации, записывает их к себе в таблицу и при последующих сеансах уже отправляет информацию по определенному адресу. Размер таблицы может включать от 1000 до 16384 адресов.

Для построения локальных сетей используются и другие устройства – концентраторы (хабы) и маршрутизаторы (роутеры). Сразу, во избежание путаницы, стоит указать на различия между ними и коммутатором.

Концентратор (он же хаб) – является прародителем коммутатора. Время использования хабов фактически ушло в прошлое, из-за следующего неудобства: если информация приходила на один из портов хаба, он тут же ретранслировал ее на другие, «забивая» сеть лишним трафиком. Но изредка они еще встречаются, впрочем, среди современного сетевого оборудования выглядят, как самоходные кареты начала 20-го века среди электрокаров современности.

Маршрутизаторы – устройства, с которыми часто путают коммутаторы из-за похожего внешнего вида, но у них более обширный спектр возможностей работы, и ввиду с этим более высокая стоимость. Это своего рода сетевые микрокомпьютеры, с помощью которых можно полноценно настроить сеть, прописав все адреса устройств в ней и наложив логические алгоритмы работы – к примеру, защиту сети.

Коммутаторы и хабы чаще всего используются для организации локальных сетей, маршрутизаторы – для организации сети, связанной с выходом в интернет. Однако следует заметить, что сейчас постепенно размываются границы между коммутаторами и маршрутизаторами – выпускаются коммутаторы, которые требуют настройки и работают с прописываемыми адресами устройств локальной сети. Они могут выполнять функции маршрутизаторов, но это, как правило, дорогостоящие устройства не для домашнего использования.
Самый простой и дешевый вариант конфигурации домашней локальной сети средних размеров (с количеством объектов более 5), с подключением к интернету, будет содержать и коммутатор, и роутер:

ОСОБЕННОСТИ РАБОТЫ

При покупке коммутатора нужно четко понимать – зачем он вам, как будете им использоваться, как будете его обслуживать. Чтобы выбрать устройство, оптимально отвечающее вашим целям, и не переплатить лишних денег, рассмотрим основные параметры коммутаторов:
  • Вид коммутатора – управляемый, неуправляемый и настраиваемый.
  1. Неуправляемые коммутаторы – не поддерживают протоколы сетевого управления. Наиболее просты, не требуют особых настроек, стоят недорого: от 440 до 2990 рублей. Оптимальное решение для маленькой локальной сети. Со сборкой локальной сети на их основе справится даже человек, далекий от этих дел – требуется лишь купить сам коммутатор, кабели необходимой длины для подключения оборудования (лучше, в виде атч-корда , т.е. «с вилками» в сборе – не забудьте перед покупкой осмотреть оборудование, к которому будет подключаться кабель, и уточнить, какой именно тип разъема вам понадобится), ну и собрать саму сеть. Простейшая настройка описана в документации к устройству.
  2. Управляемые коммутаторы – поддерживают протоколы сетевого управления, обладают более сложной конструкцией, предлагают более широкий функционал – с помощью WEB-интерфейса или специализированных программ ими можно управлять, прописывая параметры подключенной к ним сети, приоритеты отдельных устройств и пр. Именно этот тип коммутаторов может заменять маршрутизаторы. Цена на такие устройства колеблется в диапазоне от 2499 до 14490 рублей. Данный вид коммутаторов представляет интерес для специализированных локальных сетей – видеонаблюдение, промышленная сеть, офисная сеть.
  3. Настраиваемые коммутаторы – устройства, которые поддерживают некоторые настройки (к примеру – конфигурирование VLAN (создание подгрупп)), но все равно во многом уступают управляемым коммутаторам. Настраиваемые коммутаторы могут быть как управляемыми, так и неуправляемыми.
  • Размещение коммутатора – может быть трех типов:
  1. Настольный – компактное устройство, которое можно просто разместить на столе;
  2. Настенный – небольшое устройство, которое, как правило, можно расположить как на столе, так и на стене – для последнего предусмотрены специальные пазы/крепления;
  3. Монтируемый на стойку – устройство с предусмотренными пазами для монтажа в стойку сетевого оборудования, но которое, как правило, также можно расположить на столе.
  • Базовая скорость передачи данных – скорость, с которой работает каждый из портов устройства. Как правило, в параметрах коммутатора указывается сразу несколько цифр, к примеру: 10/100Мбит/сек – это означает, что порт может работать и со скоростью 10Мбит/сек, и 100Мбит/сек, автоматически подстраиваясь под скорость источника данных. Представлены модели с базовой скоростью:
  • Общее количество портов коммутатора – один из основных параметров, в принципе именно он больше всего влияет конфигурацию локальной сети, т.к. от него зависит, какой количество оборудования вы сможете подключить. Диапазон лежит в пределах от 5 до 48 портов. Коммутаторы с количеством портов 5-15  наиболее интересны для построения маленькой домашней сети, устройства с количеством портов от 15 до 48  ориентированы уже на более серьезные конфигурации.

  • – порты, поддерживающие скорость 100Мбит/сек, бывает до 48 ;
  • Количество портов со скоростью 1Гбит/сек – порты, поддерживающие скорость 1Гбит/сек – что особенно актуально для высокоскоростной передачи данных, бывает до 48 ;
  • Поддержка РоЕ – если такой параметр есть , то означает, что подключенное к порту с этой опцией устройство можно питать по сетевому кабелю (витой паре), при этом никакого влияния на передающийся сигнал информации не оказывается. Функция особенно привлекательна для подключения устройств, к которым нежелательно, либо невозможно подводить дополнительный кабель питания – к примеру, для WEB-камер.
  • SFP-порты  – порты коммутатора для связи с устройствами более высокого уровня, либо с другими коммутаторами. По сравнению с обычными портами могут поддерживать передачу данных на более дальние расстояния (стандартный порт с RJ-45 разъемом и подключенным кабелем «витая пара» поддерживает передачу в пределах 100м). Такой порт не оснащен приемо-передатчиком, это только слот, к которому можно подключить SFP-модуль, представляющий из себя внешний приемо-передатчик для подключения нужного кабеля – оптического, витой пары.

  • Скорость обслуживания пакетов – характеристика, обозначающая производительность оборудования, и измеряющаяся в миллионах пакетов в секунду – Мррs. Как правило, подразумеваются пакеты размеров 64 байта (уточняется производителем). Величина этой характеристики различных устройств лежит в пределах от 1,4 до 71,4 Мррs .

ОБЛАСТЬ ПРИМЕНЕНИЯ


Область применения коммутаторов широка, самые распространенные сферы применения:
  • маленькая домашняя локальная сеть , включающая, к примеру, несколько компьютеров, принтер, телевизор и музыкальный центр (при условии, что все оборудование поддерживает сетевое подключение);

Учебное пособие:

Четвертое издание

Москва, 2006

Коммутаторы локальных сетей D-Link

ВВЕДЕНИЕ. КРАТКИЙ ОБЗОР ПРИНЦИПОВ СЕТЕВОГО

ПРОЕКТИРОВАНИЯ ...............................

Э ВОЛЮЦИЯ ЛОКАЛЬНЫХ СЕТЕЙ: ОТ РАЗДЕЛЯЕМОЙ СРЕДЫ ПЕРЕДАЧИ ДО КОММУТИРУЕМОЙ....

Компоненты коммутируемой межсетевой модели. ...............................................

К ОММУТАТОРЫ ЛОКАЛЬНОЙ СЕТИ ...

Функционирование коммутаторов локальной сети ..................................................

...................................

Методы коммутации ...............................

Технологии коммутации и модель OSI ...........

Технологическая реализация коммутаторов

Коммутаторы на основе коммутационной матрицы ...........................................

Коммутаторы с разделяемой памятью .......

Коммутаторы с общей шиной ...

Конструктивное исполнение коммутаторов ......

Технология xStack™ ..............

Виртуальный стек. Технология Single IP Management™ .....................................

Х АРАКТЕРИСТИКИ, ВЛИЯЮЩИЕ НА ПРОИЗВОДИТЕЛЬНОСТЬ КОММУТАТОРОВ............................

Скорость фильтрации и скорость продвижения ......................................................

Размер адресной таблицы .................

Объем буфера кадров ............

П РОГРАММНОЕ ОБЕСПЕЧЕНИЕ КОММУТАТОРОВ .....

Средства и программное обеспечение сетевого управления............................

О БЩИЕ ПРИНЦИПЫ СЕТЕВОГО ДИЗАЙНА ........................................................................................

Трехуровневая иерархическая модель сети ..............................................................

Уровень ядра ......................

Уровень распределения ...................................................................................................

Уровень доступа .............

П РОДУКТЫ D-L INK ...........

Коммутаторы уровня доступа ...........................................................................................

Коммутаторы уровня распределения ............................................................................

Коммутаторы уровня ядра ..................................................................................................

НАСТРОЙКА КОММУТАТОРА ................................................................................................

П ОНЯТИЕ НЕУПРАВЛЯЕМЫХ, УПРАВЛЯЕМЫХ И НАСТРАИВАЕМЫХ КОММУТАТОРОВ....................

П ОДКЛЮЧЕНИЕ К КОММУТАТОРУ .....................................................................................................

П ОДКЛЮЧЕНИЕ К ЛОКАЛЬНОЙ КОНСОЛИ КОММУТАТОРА .............................................................

Н АЧАЛЬНАЯ КОНФИГУРАЦИЯ КОММУТАТОРА ..................................................................................

Вызов помощи по командам ..............................................................................................

Базовая конфигурация коммутатора .............................................................................

Подключение к Web-интерфейсу управления коммутатора..............................

ДОПОЛНИТЕЛЬНЫЕ ФУНКЦИИ КОММУТАТОРОВ ..................................................

В ИРТУАЛЬНЫЕ ЛОКАЛЬНЫЕ СЕТИ VLAN ........................................................................................

Типы VLAN ..................................................................................................................................

VLAN на базе портов .........................................................................................................

Коммутаторы локальных сетей D-Link

VLAN на базе MAC-адресов ............................................................................................

VLAN на базе меток – стандарт IEEE 802.1Q .........................................................

Определения IEEE 802.1Q ..............................................................................................

Продвижение пакетов VLAN 802.1Q ..........................................................................

Теги IEEE 802.1Q VLAN ....................................................................................................

Port VLAN ID ..........................................................................................................................

Tagged и Untagged .............................................................................................................

Фильтрация входящего трафика .................................................................................

Создание VLAN с помощью команд CLI .......................................................................

Асимметричные VLAN ............................................................................................................

Пример 1. Конфигурирование асимметричных VLAN в пределах одного

коммутатора ..........................................................................................................................

Пример 2. Конфигурирование асимметричных VLAN на двух автономных

коммутаторах ........................................................................................................................

О БЪЕДИНЕНИЕ ПОРТОВ И СОЗДАНИЕ ВЫСОКОСКОРОСТНЫХ СЕТЕВЫХ МАГИСТРАЛЕЙ..............

Создание агрегированного канала с помощью команд CLI ...........................

Пример 1. Статическое агрегирование каналов.....................................................................

Пример 2. Создание группы агрегированного канала в соответствии со

стандартом IEEE 802.3ad ................................................................................................

S PANNING T REE P ROTOCOL (IEEE 802.1 D ) .................................................................................

Понятие петель ........................................................................................................................

Широковещательный шторм .........................................................................................

Множественные копии кадров .....................................................................................

Множественные петли ......................................................................................................

Пример работы STP ................................................................................................................

Rapid Spanning Tree Protocol (IEEE 802.1w) ...............................................................

Сходимость IEEE 802.1w .................................................................................................

Последовательность предложений/соглашений ..................................................

Механизм изменения топологии ..................................................................................

Совместимость IEEE 802.1d/IEEE 802.1w ..............................................................

Максимальный диаметр сети .......................................................................................

Сравнение протоколов STP 802.1d и RSTP 802.1w ..........................................

Конфигурирование STP с помощью команд CLI .................................................

К АЧЕСТВО СЕРВИСА (Q O S) ...........................................................................................................

Приоритетная обработка кадров (IEEE 802.1р) .....................................................

Конфигурирование приоритетной обработки кадров с помощью CLI.....

Контроль полосы пропускания ......................................................................................

Конфигурирование полосы пропускания с помощью команд CLI.............

О ГРАНИЧЕНИЕ ДОСТУПА К СЕТИ ....................................................................................................

Port Security и таблица фильтрации коммутатора ................................................

Настройка Port Security с помощью CLI .................................................................

С ЕГМЕНТАЦИЯ ТРАФИКА .................................................................................................................

Конфигурирование Traffic Segmentation с помощью CLI...............................

П РОТОКОЛ IEEE 802.1 Х ..............................................................................................................

Роли устройств .......................................................................................................................

Состояние портов коммутатора .....................................................................................

Ограничения аутентификации IEEE 802.1х .........................................................

Конфигурирование IEEE 802.1х с помощью CLI ................................................

A CCESS C ONTROL L ISTS (ACL) .....................................................................................................

Алгоритм создания профиля доступа .........................................................................

Коммутаторы локальных сетей D-Link

Создание профилей доступа (с использованием Web-интерфейса) ...........

Конфигурирование Access Control Lists (ACL) с помощью CLI....................

Примеры профилей доступа ........................................................................................

МАС-адреса групповой рассылки .................................................................................

Подписка и обслуживание групп ..................................................................................

Протокол IGMP v1 .............................................................................................................

Протокол IGMP v2 .............................................................................................................

Конфигурирование IGMPsnooping с помощью CLI.........................................

ЛИТЕРАТУРА: ...............................................................................................................................

ПРИЛОЖЕНИЕ А. СИНТАКСИС КОМАНД. ....................................................................

ПРИЛОЖЕНИЕ В. ГЛОССАРИЙ ..........................................................................................

Коммутаторы локальных сетей D-Link

ВВЕДЕНИЕ. Краткий обзор принципов сетевого проектирования

Эволюция локальных сетей: от разделяемой среды передачи до коммутируемой

Еще десять лет назад для создания кампусных сетей у разработчиков имелось ограниченное количество аппаратных средств. В серверных комнатах устанавливались концентраторы, а в центрах обработки данных и на магистралях сети использовались маршрутизаторы. Увеличивающаяся мощность процессоров рабочих станций, появление мультимедийных приложений и приложений клиент-сервер требовали большей полосы пропускания, чем могла обеспечить традиционная сеть с разделяемой средой передачи. Эти требования подтолкнули проектировщиков к замене концентраторов, установленных в коммутационных отсеках на коммутаторы.

Рисунок 1 Эволюция ЛВС

Эта стратегия позволила защитить инвестиции, вложенные в кабельную систему и увеличить производительность сети, благодаря предоставлению каждому пользователю выделенной полосы пропускания.

Создание таких технологий, как коммутация 3-го уровня, виртуальные локальные сети VLAN и др. сделало построение кампусных сетей более сложным процессом, чем ранее.

Большинство проектировщиков сетей начали интегрировать коммутирующие устройства в сети с разделяемой средой передачи для достижения следующих целей:

Увеличения полосы пропускания доступной каждому пользователю сети, уменьшая при этом перегрузку в сетях с разделяемой полосой пропускания.

Создания виртуальных локальных сетей VLAN (Virtual Local Area Network) путем организации пользователей в логические группы,

Коммутаторы локальных сетей D-Link

независимые от физической топологии с целью уменьшения расходов на перемещение, добавление и изменение и повышения гибкости сети.

Развертывания новых мультимедийных приложений на коммутаторах различных платформ и технологий, делая их доступными различным пользователям.

Обеспечения простого перехода к новым высокоскоростным технологиям, таким как Fast Ethernet, Gigabit Ethernet.

В 1990-х годах традиционные кампусные сети появлялись в виде единой локальной вычислительной сети и разрастались до тех пор, пока для поддержания их функциональности не понадобиласьсегментация . Сегментация позволила делить пользователей сети на несколько групп (сегментов) в соответствии с их физическим размещением, уменьшая количество клиентов соперничающих за полосу пропускания в каждой из них. Сегменты локальной сети объединялись с помощью межсетевых устройств, которые передавали межсегментный трафик и блокировали весь остальной.

Коммутаторы локальных сетей разрабатывались с учетом этой тенденции. Они используют микросегментацию , которая позволяет создать частные или выделенные сегменты локальной сети – по одной рабочей станции на сегмент (к порту коммутатора подключается не сегмент, а только рабочая станция). При этом каждая рабочая станция получает доступ сразу ко всей полосе пропускания, и ей не приходится конкурировать с другими станциями.

Коммутаторы объединяют различные сегменты локальной сети и выполняют интеллектуальное управление трафиком. Помимо этого коммутаторы обычно обеспечивают неблокирующие сервисы, что позволяет выполнять одновременную передачу потока данных от всех портов устройства.

Технология коммутации быстро стала предпочтительным решением для повышения гибкости управления трафиком локальной сети по следующим причинам:

В отличие от концентраторов и повторителей, коммутаторы позволяют одновременную передачу множества потоков данных.

Благодаря микросегментации коммутаторы поддерживают высокую скорость передачи и имеют возможность предоставлять выделенную полосу пропускания приложениям, чувствительным к задержкам.

Коммутаторы обеспечивают пользователям выделенную полосу пропускания.

Компоненты коммутируемой межсетевой модели.

Коммутируемая сеть состоит из следующих основных компонентов:

Коммутаторов локальной сети;

Программного обеспечения коммутаторов;

Средств сетевого управления.

Компания D-Link предоставляет сетевым проектировщикам полный набор средств для создания и управления масштабируемой, надежной коммутируемой сети.

Коммутаторы локальных сетей D-Link

Коммутаторы локальной сети

Первым компонентом коммутируемой межсетевой модели являются коммутаторы локальной сети.

Функционирование коммутаторов локальной сети

Коммутаторы – это устройства канального уровня, которые позволяют соединить несколько физических сегментов локальной сети в одну большую сеть. Коммутация локальных сетей обеспечивает взаимодействие сетевых устройств по выделенной линии без возникновения коллизий, с параллельной передачей нескольких потоков данных.

Коммутаторы локальных сетей обрабатывают кадры на основе алгоритма прозрачного моста (transparent bridge) IEEE 802.1, который применяется в основном в сетях Ethernet. При включении питания коммутатор начинает изучать расположение рабочих станций всех присоединенных к нему сетей путем анализа МАС-адресов источников входящих кадров. Например, если на порт 1 коммутатора поступает кадр от узла 1, то он запоминает номер порта, на который этот кадр пришел и добавляет эту информацию втаблицу коммутации (forwarding database). Адреса изучаютсядинамически . Это означает, что, как только будет прочитан новый адрес, то он сразу будет занесен в контентно-адресуемую память (content-addressable memory, CAM). Каждый раз, при занесении адреса в таблицу коммутации, ему присваивается временной штамп. Это позволяет хранить адреса в таблице в течение определенного времени. Каждый раз, когда идет обращение по этому адресу, он получает новый временной штамп. Адреса, по которым не обращались долгое время, из таблицы удаляются.

Рисунок 2 Построение таблицы коммутации

Коммутаторы локальных сетей D-Link

Коммутатор использует таблицу коммутации для пересылки трафика. Когда на один из его портов поступает пакет данных, он извлекает из него информацию о МАС-адресе приемника и ищет этот МАС-адрес в своей таблице коммутации. Если в таблице есть запись, ассоциирующая МАС-адрес приемника с одним из портов коммутатора, за исключением того, на который поступил кадр, то кадр пересылается через этот порт. Если такой ассоциации нет, кадр передается через все порты, за исключением того, на который он поступил. Это называетсялавинным распространением (flooding).

Широковещательная и многоадресная рассылка выполняется также путем лавинного распространения. С этим связана одна из проблем, ограничивающая применение коммутаторов. Наличие коммутаторов в сети не препятствует распространению широковещательных кадров (broadcast) по всем сегментам сети, сохраняя ее прозрачность. В случае если в результате каких-либо программных или аппаратных сбоев протокол верхнего уровня или сам сетевой адаптер начнет работать не правильно, и будет постоянно генерировать широковещательные кадры, коммутатор в этом случае будет передавать кадры во все сегменты, затапливая сеть ошибочным трафиком.

Такая ситуация называется широковещательным штормом (broadcast storm).

Коммутаторы надежно изолируют межсегментный трафик, уменьшая таким образом трафик отдельных сегментов. Этот процесс называется фильтрацией (filtering) и выполняется в случаях, когда МАС-адреса источника и приемника принадлежат одному сегменту. Обычно фильтрация повышает скорость отклика сети, ощущаемую пользователем.

Дуплексный и полудуплексный режим работы коммутатора

Коммутаторы локальных сетей поддерживают два режима работы:

полудуплексный режим и дуплексныйрежим.

Полудуплексный режим - это режим, при котором, только одно устройство может передавать данные в любой момент времени в одном домене коллизий1 .

Дуплексный режим – это режим работы, который обеспечивает одновременную двухстороннюю передачу данных между станциейотправителем и станцией-получателем на МАС - подуровне. При работе в дуплексном режиме, между сетевыми устройствами повышается количество передаваемой информации. Это связано с тем, что дуплексная передача не вызывает в среде передачи коллизий, не требует составления расписания повторных передач и добавления битов расширения в конец коротких кадров. В результате не только увеличивается время, доступное для передачи данных, но иудваивается полезная полоса пропускания канала, поскольку каждый канал обеспечивает полноскоростную одновременную двустороннюю передачу2 .

1 Доменом коллизий (collision domain) называется часть сети Ethernet, все узлы которой распознают коллизию независимо от того, в какой части сети эта коллизия возникла.

2 Дуплексный режим работы поддерживают коммутаторы и практически все современные адаптеры. Концентраторы не поддерживают работу в этом режиме.

Коммутаторы локальных сетей D-Link

Управление потоком IEEE 802.3x в дуплексном режиме

Дуплексный режим работы требует наличия такой дополнительной функции, как управление потоком. Она позволяет принимающему узлу (например, порту сетевого коммутатора) в случае переполнения дать узлуисточнику команду (например, файловому серверу) приостановить передачу кадров на некоторый короткий промежуток времени. Управление осуществляется между МАС-уровнями с помощью кадра-паузы, который автоматически формируется принимающим МАС уровнем. Если переполнение будет ликвидировано до истечения периода ожидания, то для того, чтобы восстановить передачу, отправляется второй кадр-пауза с нулевым значением времени ожидания (см.Рисунок 3 ).

Рисунок 3 Последовательность управления потоком IEEE 802.3x

Дуплексный режим работы и сопутствующее ему управление потоком являются дополнительными режимами для всех МАС-уровней Ethernet независимо от скорости передачи. Кадры-паузы идентифицируются как управляющие МАС-кадры по индивидуальным (зарезервированным) значениям поля длины/типа. Им также присваивается зарезервированное значение адреса приемника, чтобы исключить возможность передачи входящего кадра-паузы протоколам верхних уровней или на другие порты коммутатора.

Методы коммутации

В коммутаторах локальных сетей могут быть реализованы различные методы передачи кадров.

При коммутации с промежуточным хранением (store-and-forward) –

коммутатор копирует весь принимаемый кадр в буфер и производит его проверку на наличие ошибок. Если кадр содержит ошибки (не совпадает контрольная сумма, или кадр меньше 64 байт или больше 1518 байт), то он отбрасывается. Если кадр не содержит ошибок, то коммутатор находит адрес приемника в своей таблице коммутации и определяет исходящий интерфейс. Затем, если не определены никакие фильтры, он передает этот кадр приемнику.

Этот способ передачи связан с задержками - чем больше размер кадра, тем больше времени требуется на его прием и проверку на наличие ошибок.

Коммутаторы локальных сетей D-Link

Коммутация без буферизации (cut-through) – коммутатор локальной сети копирует во внутренние буферы только адрес приемника (первые 6 байт после префикса) и сразу начинает передавать кадр, не дожидаясь его полного приема. Это режим уменьшает задержку, но проверка на ошибки в нем не выполняется. Существует две формы коммутации без буферизации:

Коммутация с быстрой передачей (fast-forward switching)– эта форма коммутации предлагает низкую задержку за счет того, что кадр начинает передаваться немедленно, как только будет прочитан адрес назначения. Передаваемый кадр может содержать ошибки. В этом случае сетевой адаптер, которому предназначен этот кадр, отбросит его, что вызовет необходимость повторной передачи этого кадра.

Коммутация с исключением фрагментов (fragment-free switching)–

коммутатор фильтрует коллизионные кадры, перед их передачей. В правильно работающей сети, коллизия может произойти во время передачи первых 64 байт. Поэтому, все кадры, с длиной больше 64 байт считаются правильными. Этот метод коммутации ждет, пока полученный кадр не будет проверен на предмет коллизии, и только после этого, начнет его передачу. Такой метод коммутации уменьшает количество пакетов передаваемых с ошибками.

Технологии коммутации и модель OSI

Коммутаторы локальных сетей можно классифицировать в соответствии с уровнями модели OSI, на которых они передают, фильтруют и коммутируют кадры. Различают коммутаторы уровня 2 (Layer 2 Switch), коммутаторы уровня 2 со свойствами уровня 3 (Layer 3 Switch) и многоуровневые коммутаторы.

Коммутаторы уровня 2 анализируют входящие кадры, принимают решение об их дальнейшей передаче и передают их пунктам назначения на основе МАС – адресов канального уровня модели OSI. Основное преимущество коммутаторов уровня 2 – прозрачность для протоколов верхнего уровня. Поскольку коммутатор функционирует на 2-м уровне, ему нет необходимости анализировать информацию верхних уровней модели OSI.

Коммутация 2-го уровня – аппаратная. Она обладает высокой производительностью, поскольку пакет данных не претерпевает изменений. Передача кадра в коммутаторе может осуществляться специализированным контроллером, называемым Application-Specific Integrated Circuits (ASIC). Эта технология, разработанная для коммутаторов, позволяет обеспечивать высокие скорости коммутации с минимальными задержками.

Существуют 2 основные причины использования коммутаторов 2-го уровня – сегментация сети и объединение рабочих групп. Высокая производительность коммутаторов позволяет разработчикам сетей значительно уменьшить количество узлов в физическом сегменте. Деление крупной сети на логические сегменты повышает производительность сети (за счет уменьшения объема передаваемых данных в отдельных сегментах), а также гибкость построения сети, увеличивая степень защиты данных, и облегчает управление сетью.

Несмотря на преимущества коммутации 2-го уровня, она все же имеет некоторые ограничения. Наличие коммутаторов в сети не препятствует

Казалось бы, что может быть легче, чем объединение компьютеров в информационных сетях? Но не всё так просто: для их работоспособности необходимо, чтобы функционировало достаточно много аппаратуры. Она весьма разнообразна. В данной статье будут рассмотрены представители второго уровня. Итак, что такое коммутатор? Зачем он необходим и как функционирует?

Для чего он необходим? Коммутатор сети - это устройство, которое используется, чтобы соединять несколько узлов компьютерной сети. Он работает на канальном уровне. Технология коммутаторов была разработана с использованием мостового принципа. Особенностью данного прибора является то, что он направляет данные исключительно получателю. Это позитивно сказывается на производительности сети и её безопасности, ведь в таком случае данные не могут попасть не в те руки.

Сколько же стоит коммутатор? Цена на самый дешевый составляет 800 рублей, самый дорогой - 24000.

Принцип работы

У данного прибора существует так называемая ассоциативная память, где хранится таблица коммутации. В ней указывается соответствие узла компьютера определённому порту. Когда сетевой коммутатор только включается, таблица пустая. Сам прибор в таком случае работает только в режиме обучения. Так, если ему передать какие-то данные, то он поочередно передаст их на все свои порты. Во время этого процесса осуществляется анализ полученной информации, а адрес отправителя заносится в таблицу. И если будут получены данные, которые необходимо передать уже идентифицированному пользователю, то всё придёт через указанный ранее порт. Со временем сетевой коммутатор создаст таблицу, в которой будет информация обо всех активных адресах. Также следует выделить то, что данный прибор отличается малой задержкой и высокой скоростью пересылки данных на каждый порт.

Режимы коммутации

Что такое коммутатор, вам уже известно. Но работают ли они по одному принципу или существует несколько подходов их реализации? Ясное дело, что такой сложный механизм может иметь несколько особенных режимов своей работы. Всего их существует три. Каждый из них является комбинацией двух параметров: надёжность передачи данных и время ожидания.

  1. С промежуточным хранением. Прибор читает всю информацию, которая есть в пакете. Затем она проверяется на отсутствие ошибок, выбирается порт коммутации, и только после этого осуществляется пересылка данных.
  2. Сквозной. Коммутатор читает только адрес, куда необходимо отправить данные, и после этого сразу же коммутирует их. Это очень быстрый режим передачи, но существенным недостатком является то, что может быть отправлен пакет, в котором есть ошибки.
  3. Гибридный. В этом режиме анализируются только первые 64 байта пакета данных на наличие ошибок. Если они здесь отсутствуют, то данные отправляются.

Асимметрическая и симметрическая коммутация

Что такое коммутатор, и какой функционал он исполняет, вы уже знаете. Давайте поговорим про передачу данных. Симметрия при коммутации необходима, чтобы дать характеристику самому прибору с точки зрения полосы пропуска, её возможностей для каждого порта устройства. Он позволяет обеспечить одинаковую ширину, когда все порты могут передавать 100 Мб/с или 10 Мб/с.

Асимметричный коммутатор может обеспечить соединение, если у портов различная пропускная способность. Так он спокойно обработает данные, которые идут со скоростью 10, 100 и 1000 Мб/с. Асимметричную коммутацию можно использовать при наличии больших потоков сетевых данных, которые устроены по принципу «клиент-сервер». Чтобы направлять данные с порта, на котором существенно крупнее массив информации, на меньший, используют буфер памяти. Он необходим для того, чтобы не возникало опасности переполнения, и, соответственно, потери данных. Также асимметричные коммутаторы необходимы для поддержания работоспособности вертикальных кросс-соединений и каналов между отдельными сегментами магистралей.

Заключение

Развитие не стоит на месте, и уже на момент написания этой статьи коммутаторы считаются устаревшими устройствами. Конечно, применять их с чисто технической стороны вопроса ещё можно, но сейчас, когда существуют роутеры, которые вобрали в себя их функционал и дополнительно могут обеспечивать передачу данных по беспроводной сети, коммутаторы выглядят довольно бледно.

IGMP и многих других, а также знание того, как данные технологии можно применить на практике наиболее эффективно.

Книга "Построение коммутируемых компьютерных сетей" появилась благодаря многолетнему сотрудничеству компании D-Link и ведущего технического университета страны - МГТУ им. Н. Э. Баумана. Книга направлена на глубокое изложение теории и формирование практических знаний. В ее основу легли учебные материалы компании D-Link, а также практические занятия, проводимые в учебном центре D-Link - МГТУ им. Н. Э. Баумана – D-Link и кафедры "Компьютерные системы и сети".

Книга содержит полное описание фундаментальных технологий коммутации локальных сетей, примеры их использования, а также настройки на коммутаторах D-Link. Она будет полезна студентам, обучающимся по направлению " Информатика и вычислительная техника", аспирантам, сетевым администраторам, специалистам предприятий, внедряющим новые информационные технологии , а также всем, кто интересуется современными сетевыми технологиями и принципами построения коммутируемых сетей.

Авторы хотят поблагодарить всех людей, вовлеченных в процесс консультирования, редактирования и подготовки рисунков для курса. Авторы выражают благодарность руководителям Представительства компании "Д- Линк Интернешнл ПТЕ Лтд" и МГТУ им. Н. Э. Баумана, специалистам компании D-Link Павлу Козику, Руслану Бигарову, Александру Зайцеву, Евгению Рыжову и Денису Евграфову, Александру Щадневу за технические консультации; Ольге Кузьминой за редактирование книги; Алесе Дунаевой за помощь в подготовке иллюстраций. Большую помощь в подготовке рукописи и тестировании практических занятий оказали преподаватели МГТУ им. Н. Э. Баумана Михаил Калинов, Дмитрий Чирков.

Обозначения, используемые в курсе

В тексте курса используются следующие пиктограммы для обозначения сетевых устройств различных типов:

Синтаксис команд

Следующие символы используются для описания ввода команд, ожидаемых значений и аргументов при настройке коммутатора через интерфейс командной строки ( CLI ).

Символ Назначение
< угловые скобки > Содержат ожидаемую переменную или значение, которое должно быть указано
[ квадратные скобки ] Содержат требуемое значение или набор требуемых аргументов. Может быть указано одно значение или аргумент
| вертикальная черта Отделяет два или более взаимно исключающих пунктов из списка, один из которых должен быть введен/указан
{ фигурные скобки } Содержит необязательное значение или набор необязательных аргументов

Эволюция локальных сетей

Эволюция локальных сетей неразрывно связана с историей развития технологии Ethernet , которая по сей день остается самой распространенной технологией локальных сетей.

Первоначально технология локальных сетей рассматривалась как времясберегающая и экономичная технология, обеспечивающая совместное использование данных, дискового пространства и дорогостоящих периферийных устройств. Снижение стоимости персональных компьютеров и периферии привело к их широкому распространению в бизнесе, и количество сетевых пользователей резко возросло. Одновременно изменились архитектура приложений (" клиент-сервер ") и их требования к вычислительным ресурсам, а также архитектура вычислений ( распределенные вычисления ). Стал популярным downsizing (разукрупнение) - перенос информационных систем и приложений с мэйнфреймов на сетевые платформы. Все это привело к смещению акцентов в использовании сетей: они стали обязательным инструментом в бизнесе, обеспечив наиболее эффективную обработку информации.

В первых сетях Ethernet ( 10Base -2 и 10Base -5) использовалась шинная топология , когда каждый компьютер соединялся с другими устройствами с помощью единого коаксиального кабеля, используемого в качестве среды передачи данных . Сетевая среда была разделяемой и устройства, прежде чем начать передавать пакеты данных, должны были убедиться, что она свободна. Несмотря на то, что такие сети были простыми в установке, они обладали существенными недостатками, заключающимися в ограничениях по размеру, функциональности и расширяемости, недостаточной надежности, а также неспособностью справляться с экспоненциальным увеличением сетевого трафика. Для повышения эффективности работы локальных сетей требовались новые решения.

Следующим шагом стала разработка стандарта 10Base -T с топологией типа " звезда ", в которой каждый узел подключался отдельным кабелем к центральному устройству - концентратору (hub) . Концентратор работал на физическом уровне модели OSI и повторял сигналы, поступавшие с одного из его портов на все остальные активные порты, предварительно восстанавливая их. Использование концентраторов позволило повысить надежность сети, т.к. обрыв какого-нибудь кабеля не влек за собой сбой в работе всей сети. Однако, несмотря на то, что использование концентраторов в сети упростило задачи ее управления и сопровождения, среда передачи оставалась разделяемой (все устройства находились в одном домене коллизий). Помимо этого, общее количество концентраторов и соединяемых ими сегментов сети было ограничено из-за временных задержек и других причин.

Задача сегментации сети , т.е. разделения пользователей на группы ( сегменты ) в соответствии с их физическим размещением с целью уменьшения количества клиентов, соперничающих за полосу пропускания, была решена с помощью устройства, называемого мостом (bridge) . Мост был разработан компанией Digital Equipment Corporation ( DEC ) в начале 1980-х годов и представлял собой устройство канального уровня модели OSI (обычно двухпортовое), предназначенное для объединения сегментов сети. В отличие от концентратора, мост не просто пересылал пакеты данных из одного сегмента в другой, а анализировал и передавал их только в том случае, если такая передача действительно была необходима, то есть адрес рабочей станции назначения принадлежал другому сегменту. Таким образом, мост изолировал трафик одного сегмента от трафика другого, уменьшая домен коллизий и повышая общую производительность сети.

Однако мосты были эффективны лишь до тех пор, пока количество рабочих станций в сегменте оставалось относительно невелико. Как только оно увеличивалось, в сетях возникала перегрузка ( переполнение приемных буферов сетевых устройств), которая приводила к потере пакетов.

Увеличение количества устройств, объединяемых в сети, повышение мощности процессоров рабочих станций, появление мультимедийных приложений и приложений " клиент-сервер " требовали большей полосы пропускания. В ответ на эти растущие требования фирмой Kalpana в 1990 г. на рынок был выпущен первый коммутатор (switch) , получивший название EtherSwitch.


Рис. 1.1.

Коммутатор представлял собой многопортовый мост и также функционировал на канальном уровне модели OSI . Основное отличие коммутатора от моста заключалось в том, что он мог устанавливать одновременно несколько соединений между разными парами портов. При передаче пакета через коммутатор в нем создавался отдельный виртуальный (либо реальный, в зависимости от архитектуры) канал, по которому данные пересылались напрямую от порта-источника к порту-получателю с максимально возможной для используемой технологии скоростью. Такой принцип работы получил название "микросегментация" . Благодаря микросегментации коммутаторы получили возможность функционировать в режиме полного дуплекса (



Загрузка...