sonyps4.ru

Кодеры и декодеры с линейной шкалой квантования. Последовательность работы кодера

5.3. Кодирующее и декодирующее устройства (КОДЕК). Устройство и работа ИКМ-30

5.3. Кодирующее и декодирующее устройства (КОДЕК)

Кодер аппаратуры ИКМ-30 предназначен для нелинейного кодирования (аналого-цифрового преобразования) последовательности АИМ-сигналов, поступающих от передающей части индивидуального оборудования телефонных каналов и канала вещания, в последовательность восьмиразрядных групп двоичного кода.

Декодер, аппаратуры ИКМ-30 предназначен, для нелинейного декодирования (аналого-цифрового преобразования) последовательности групп восьмиразрядного двоичного кода в последовательность АИМ-сигналов, поступающую далее на приемную часть индивидуального оборудования телефонных каналов и канала вещания.

Технические данные

Входным сигналом кодера является последовательность биполярных АИМ-сигналов с максимальной амплитудой 1,0 В и длительностью 2,0 мкс. поступающая с индивидуального оборудования.

Выходной сигнал кодера - восьмиразрядный симметричный двоичный код, получаемый следующим образом:

  • максимальный положительный сигнал кодируется как - 11111111;
  • минимальный положительный – 10000000;
  • максимальный по величине отрицательный – 01111111;
  • минимальный по величине отрицательный – 00000000.

Все кодовые комбинации на выходе кодера претерпевают дополнительное преобразование, заключающееся в инверсии четных разрядов кода. На приеме осуществляется обратное преобразование. Указанное преобразование имеет целью уменьшение вероятности появления в передаваемом по линии ИКМ-сигнале длинных последовательностей нулевых посылок.

Частота повторения кодовых групп - 256 кГц.

Входным сигналом декодера, является вышеуказанный восьмиразрядныйдвоичный код.

Выходной сигнал декодера - последовательность АИМ-сигналов с максимальной амплитудой 2,0 В.

С целью увеличения отношения сигнал/шум квантования в диапазоне малых входных сигналов в кодере осуществляется нелинейное кодирование, которое эквивалентно применению компрессированию входного сигнала на передающей стороне и экспандирования на приемной.

Закон компандирования – логарифмический, А-87,6

; ;

; .

где ; .

А=87,6 – параметр компрессирования;

Входной кодируемый сигнал;

Его максимальное амплитудное значение;

N – номер шага квантования, считая от середины характеристики;

N МАКС – число шагов в каждой половине характеристики;

Шаг квантования – интервал между двумя дискретными уровнями квантования.

Указанный закон аппроксимирован 13-сегментной характеристикой с отношением наклонов характеристики на соседних сегментах равным двум.

Полная характеристика содержит 256 шагов квантования. Отношение величин шагов на соседних сегментах равно двум. В пределах сегмента шаг является равномерным. На рисунке 16 приведена характеристика кодирующего устройства (участок, соответствующий положительным сигналам). Указанная нелинейная характеристика квантования обеспечивает по сравнению с равномерной характеристикой с таким же числом шагов расширение динамического диапазона на величину

Рабочая точка кодера находится на границе между шагами квантования.

В процессе кодирования кодер определяет шаг, в пределах которого находится данный входной сигнал, и выдает на выходе номер этого шага в виде 8-разрядного двоичного кода.

На приемной стороне декодер выполняет обратную операцию в соответствии с поступившим кодом номера шага квантования восстанавливает амплитуду АИМ - сигнала.

Каждому из 256 интервалов амплитуд (шагов), подлежащих кодированию на передающей стороне, должен соответствовать на приемной стороне такой же интервал амплитуд на шкале выходных напряжений, подлежащих воспроизведению. Всевозможные амплитуды сигнала, заключенные в пределах одного интервала, должны воспроизводится одним дискретным,уровнем декодера. Наилучшее воспроизведение обеспечивает уровень декодера, находящийся на середине этого-интервала. При таком размещении всех 256 уровней декодера погрешность воспроизведения любой амплитуды внутри интервала не превосходит половины шага квантования на сегменте. Из этого следует различие в шкалах уровней кодера и декодера, т.е. уровни декодера должны быть смещены на 1/2 шага на сегменте по отношению к уровням кодера.

В отсутствии посегментного смещения уровней декодера, т.е. в случае, когда уровни кодера и декодера совпадают, на характеристике передачи вход кодера - выход декодера появляются разрывы на концах сегментов, а коэффициент передачи становится меньше единицы. При этом входные амплитуды будут воспроизводиться декодером с ошибкой большей, чем половина шага квантования.

Рисунок 16. Характеристика компандирования.

Структурная схема кодера

Кодер аппаратуры ИКМ-30 по принципу действия представляет собой аналого-цифровой преобразователь последовательного взвешивания с обратной связью.

Структурная схема кодера приведена на рисунке 17 . Она содержит следующие функциональные части:

Последовательность работы кодера

Процесс кодирования заключается в определении на характеристике кодирующего устройства шага квантования, в пределах которого находятся входной преобразуемый сигнал, и формирований двоичного кода, выражающего номер этого шага на характеристике. Кодирование по методу последовательного взвешивания можно рассматривать как последовательный поиск шага путем подбора суммы эталонов различных весов для достижения наиболее точного уравновешивания кодируемого сигнала.При этом результат каждого включения эталонов оценивается устройством сравнения (компаратором), последовательность решений которого образует код преобразуемого сигнала.

Кодируемый сигнал представлен неизменным по величине в течение цикла кодирования током Is, который пропорционален отсчету мгновенного значения напряжения на огибающей входного АИМ – сигнала. Отсчеты (выборки) мгновенных значений напряжения входного сигнала берутся с частотой временной дискретизации 256 кГц (8 кГц для телефонных каналов, 32 кГц для канала вещания). Для формирования токовогосигнала Is входной АИМ - сигнал поступает на устройствовыборки и хранения, производящее фиксацию мгновенного значения входного сигнала путем кратковременного заряда накопительной емкости до напряжения поступающего АИМ - сигнала и последующего хранения напряжения на ней. С выхода устройства выборки и хранения усиленный соответствующим образом сигнал выборки поступает на вход усилителя ввода. Усилитель ввода представляет собой управляемый напряжением генератор тока, вырабатывающий токи Is и –Is, которые затем подаются в точки суммирования А и В.

В одну из точек суммирования в зависимости от полярности входного сигнала на последующих этапах процесса кодирования подаются суммы эталонных токов I , вычитаемые из тока, кодируемого сигнала Is. Разность токов Is-I в общей точке суммирования и ток -Is в другой точке создадут на выходных сопротивлениях БЭК падения напряжения Us-U и Us соответственно. Компаратор, входы которого подключены к точкам суммирования, производит операцию вычитания:

(Us- U )-(-Us)=2Us-U

и вырабатывает сигнал “0”, если 2Us>U и сигнал “I”, если 2Us

В рассматриваемой процедуре поиска необходимой суммы эталонов, уравновешивающих входной сигнал, переход к следующему эталону производится на основании всех предыдущих решений компаратора, хранящихся в регистре памяти. На выходах 8 триггеров регистра памяти по мере записи в него решений компаратора формируется 8-резрядный параллельный код Q 1 ….Q 8 преобразуемого сигнала.

Первый разряд Q 1 кода регистра памяти содержит информацию о полярности входного сигнала. Определение полярности производится без подачи в точки суммирования эталонных токов (I ). Вторым, третьим и четвертым разрядами кода кодируются номер сегмента характеристики, которому соответствует входной сигнал. В связи с этим во время поиска сегмента посредством трех взвешиваний среди эталонных токов с весами 2 10 , 2 9 , 2 8 , 2 7 , 2 6 , 2 5 , 2 4 и 0 условных единиц отыскивается ближайший ко входному сигналу меньше его по величине (условная единица - ток соответствующий наименьшему шагу характеристики кодера). Указанные эталоны соответствуют граничным точкам сегментов. Поиск начинается со среднего по номеру сегмента - с входным сигналом сравнивается эталон 2 7 у.е. В соответствии с решением компаратора“0” или “1” производится переход к эталону 2 9 у.е. либо к эталону 2 5 у.е,; далее - обусловленный следующим решением компаратора переход к одному из эталонов – 2 10 , 2 8 , 2 6 , 2 4 у.е. и т.д.

Разрядами с 5-го по 8-й кодируется номер одного из 16 шагов на сегменте, в пределах которого находится входной сигнал. Определение номера шага на сегменте ведется начиная со старшего по весу для данного сегмента эталона к младшему.

Включение эталонных токов производится с помощью логики управления БЭК. Входными сигналами логики являются 8 разрядов кода (Q 1….. Q 8) поступающие с выходов триггеров регистра памяти. Логика преобразует 7 разрядов (0 2 ….. Q 8) этого линейного кода в II разрядов линейного кода для управления БЭК. От состояния триггера первого разряда (Q 1) зависит подключение БЭК соответствующей полярности для формирования биполярной характеристики квантования.

На каждое из 8 взвешиваний отводится время равное полупериоду частоты 2048 кГц.

Выходной сигнал кодера формируется последовательным считыванием кода (Q 1…… Q 8) с выходов триггеров регистра памяти.

Четные разряды кода считываются с инверсных выходов триггеров.

В кодирующем устройстве предусмотрена автоматическая коррекция "нуля" кодера, которая осуществляется во время 0 и 16 канальных интервалов. В эти моменты на входе кодера отсутствует АИМ-сигнал. В схеме выборки и хранения фиксируется напряжение выборки, которое принимается за “нуль”. Далее, компаратор определяет знак смещения на своих входах по отношению к "нулевому" входному сигналу. Смещение обусловлено разбросом и дрейфом параметров элементов устройства выборки и хранения, схемы ввода и компаратора. На основании решения компаратора в узле управления работой кодера определяется сигнал коррекции соответствующего знака и корректор нуля производит изменение напряжения на накопительной емкости. Напряжение на накопительной емкости определяет, в свою очередь, начальный ток схемы ввода, причем, изменение начального тока схемы ввода уменьшает смещение на входах компаратора.

Структурная схема декодера

Структурная схема декодера приведена на рисунке 18 и включает в себя следующие узлы:

  • преобразователь последовательного кода в параллельный, осуществляющий преобразование каждой 8-разрядной кодовой группы, поступающей последовательно во времени на вход декодера, в параллельную;
  • регистр памяти, запоминающий результат преобразования последовательного кода в параллельный и формирующий длительность выходного сигнала;
  • два блока эталонов кодека, формирующих сумму эталонных токов, каждая из которых соответствует определенному шагу квантования характеристики кодера; БЭК декодера аналогичны по структуре БЭК кодера, но количество источников эталонных токов в них на один больше, чем в кодере;
  • логику управления БЭК, преобразующую восьмиразрядную кодовую группу, хранящуюся в регистре памяти, в двенадцатиразрядную группу, управляющую работой БЭК;
  • дифференциальный усилитель, объединяющий однополярные последовательности сумм эталонных токов, поступающие с выходов БЭК в биполярную последовательность выходных АИМ-сигналов;
  • элемент задержки, предназначенный для коррекции временного положения группового ИКМ-сигнала относительно разрядных последовательностей.

Преобразование кодовой группы в АИМ-сигнал (декодирование) происходит следующим образом.

Символы кодовой группы последовательного кода записываются в регистр преобразователя последовательного кода в параллельный. С поступлением на вход последнего символа кодовой группы на выходе преобразователя образуется полная кодовая группа параллельного кода, которая переписывается в регистр памяти. После перезаписи кодовой группы начинается формирование следующей кодовой группы параллельного кода, а регистр памяти в течении промежутка времени равного длительности выходного АИМ-импульса, декодера, хранит предыдущую кодовую группу.

Логика управления БЭК в соответствие с информацией о полярности и амплитуда закодированного данной группой сигнала включает в одном из БЭК необходимые для формирования выходного уровня эталонные точки.

Выходные токи БЭК создают на сопротивлениях нагрузок напряжения которые подаются на входы дифференциального усилителя. На выходе дифференциального усилителя воспроизводятся АИМ - импульсы, с точностью до ошибки кантования воспроизводящие закодированный сигнал. Далее АИМ - последовательность с выхода декодера поступает на приемную часть индивидуального преобразования.

Принципиальная электрическая схема кодера Хэмминга

Принципиальная электрическая схема кодера Хэмминга с поэлементным формированием проверочных элементов кода (7,4) приведена на рисунке 5. Эта схема построена в соответствии с выражениями, полученными в п. 3.6 или в соответствии с проверочной матрицей данного кода записанной в п. 3.8. Кодер включает в себя: сдвигающий регистр, осуществляющий преобразование параллельного кода в последовательный, и логические элементы сложения по модулю два, которые осуществляющие формирование проверочных символов. Количество этих элементов определяется количеством проверочных элементов кодовой комбинации.

Рисунок 5 - Принципиальная электрическая схема кодера Хэмминга (7,4)

Принципиальная электрическая схема декодера Хэмминга

Декодер Хэмминга должен не только произвести проверку на верность принятой комбинации, но и при наличии ошибки должен осуществить ее исправление, поэтому декодер содержит две части: схему определения синдрома и схему исправления ошибки. Кроме того декодер содержит регистр, который служит для преобразования последовательного кода в параллельный. Принципиальная электрическая схема декодера представлена на рисунке 6. Схема определения синдрома кода состоит из логических элементов сложения по модулю два. В них осуществляется определение проверочных символов b i ’’ в соответствии с принятыми информационными символами a i ’ и проверочной матрицей. В следующих сумматорах по модулю два осуществляется сложение принятых проверочных элементов с полученными на приеме, в результате чего получают синдром кода С i . Схема исправления ошибки состоит из логических элементов И, в которых формируется сигнал ошибки для ошибочного разряда, и логических элементов сложения по модулю два, в которых и осуществляется исправление ошибочного разряда (его инвертирование). Количество элементов И и сумматоров по модулю два определяется количеством информационных элементов кодовой комбинации, т. к. ошибка в проверочной части не приводит к искажению сообщения и в дальнейшей обработке эта часть не участвует. Элементы НЕ, на входах элементов И предотвращают формирование ложных сигналов ошибки для элементов а 1 , а 2 и а а при появлении синдрома вида 111.

Рисунок 6 - Принципиальная электрическая схема декодера Хэмминга (7,4)

Принципиальная электрическая схема кодера циклического кода

Принципиальная электрическая схема кодера циклического кода (7,4) приведена на рисунке 7.

Рисунок 7 - Принципиальная электрическая схема кодера циклического кода (7,4)

Кодер построен на многотактном фильтре (МФ) в качестве которого используется регистр. Количество D-триггеров в МФ соответствует степени порождающего полинома. Также в состав МФ входят логические элементы сложения по модулю два, их количество на один меньше ненулевых членов порождающего полинома. Данные элементы располагаются на месте нулевого члена порождающего полинома и после триггера соответствующего члену х 0 . В данной схеме МФ соответствует полиному G(x)=х 3 +х 2 +х 0 . Также в схему кодера входит два ключа в качестве которых используются логические элементы И, тактового RS-триггера и логического элемента ИЛИ.

Формирование кодовой комбинации на выходе схемы происходит за 7 тактов. За первые четыре такта на выход поступают информационные разряды: тактовые импульсы подаются на установочный вход единицы «S» RS-триггера, в результате чего открывается ключ К1 и входные информационные разряды через элемент ИЛИ поступают на выход. Одновременно информационные разряды поступают в МФ где осуществляется вычисление проверочных разрядов. С пятого по седьмой такты формируются проверочные разряды. При этом тактовые импульсы подаются на установочный вход нуля «R» RS-триггера. Ключ К1 закрывается а К2 открывается и проверочные разряды из МФ через К2 и элемент ИЛИ поступают на выход.

Принципиальная электрическая схема декодера циклического кода

Принципиальная электрическая схема декодера циклического кода (7,4) представлена на рисунке 8.

Рисунок 8 - Принципиальная электрическая схема декодера циклического кода (7,4)

Данный декодер способен только обнаруживать ошибки и не способен их исправлять. В его состав входят так же как и в кодер тактовый RS-триггер, два ключа К1 и К2, элемент формирования ошибки ИЛИ и декодирующий регистр, принцип построения которого аналогичен построения МФ кодера. Кроме того устройство содержит буферный регистр состоящий из D-триггеров и логических элементов И у которых один из входов инверсный.

За первые четыре такта информационные разряды поступающей кодовой комбинации, через К1, записываются в буферный регистр: Тактовые импульсы поступают на установочный вход единицы «S» RS-триггера и К1 открывается. Одновременно разряды кодовой комбинации поступают в декодирующий регистр, где вычисляется синдром. Если синдром кода не равен нулю, то схема или формирует сигнал ошибки «1», который поступает на вход К2. За 5 -7 такты открывается К2 и закрывается К1. В случае ошибки на входе и выходе К2 действуют единицы, а следовательно логические элементы И в схеме буферного регистра закрыты и информация хранимая в регистре стирается. Если же комбинация принята верно, т. е. синдром равен нулю, то информационные разряды поступают на выход декодера и используются для дальнейшей обработки.

Принципиальная электрическая схема декодера мажоритарного циклического кода

Принципиальная электрическая схема декодера мажоритарного кода (7,3) представлена на рисунке 9.

Рисунок 9 - Принципиальная электрическая схема декодера циклического мажоритарного кода (7,4)

Декодер включает в себя буферный регистр и схему вычисления линейных выражений. Количество ячеек буферного регистра соответствует разрядности кодовой комбинации Bip(x). Схема вычисления линейных выражений содержит логические элементы сложения по модулю два и мажоритарные элементы (М). Количество логических элементов соответствует количеству линейных выражений кода, а количество мажоритарных элементов соответствует разрядности информационной части комбинации, т. е. разрядности Ai(x).

В начале цикла вся кодовая комбинация Bip(x)’ через ключ (К) записывается в ячейки буферного регистра, причем, старший разряд а 1 ’ записывается в триггер Т1, а 2 ’ в Т2, а 3 ’ в Т3, а 4 ’ в Т4, b 1 ’ в Т5, b 2 ’ в Т6, b 3 ’ в Т7. Затем ключ размыкается и происходит вычисление линейных выражений для всех информационных символов. Результаты вычисления поступают в мажоритарные элементы. Кроме этих выражений в соответствующие мажоритарные элементы поступают символы тех разрядов, для которых определяются линейные выражения. Мажоритарные элементы выносят решения о принятых символах а i . Затем информационная комбинация Аi(х) поступает на выход декодера.

Кодер: Кодер программист, специализирующийся на кодировании написании исходного кода по заданным спецификациям. Кодер одна из двух компонент кодека (пары кодер декодер). «Кодер» фантастический фильм режиссёра Винченцо Натали. «Кодеры»… … Википедия

кодер - КОДЕР, а, м. Программист, занимающийся написанием программного кода, а также пренебр. о посредственном, бездарном программисте. Типичный совковый кодер. Из речи программистов … Словарь русского арго

Сущ., кол во синонимов: 6 it шник (6) айтишник (10) информатик (6) … Словарь синонимов

кодер - Устройство, осуществляющее кодирование. [Сборник рекомендуемых терминов. Выпуск 94. Теория передачи информации. Академия наук СССР. Комитет технической терминологии. 1979 г.] Тематики теория передачи информации EN coder …

кодер - kodavimo įtaisas statusas T sritis automatika atitikmenys: angl. code device; coder; coding device; encoder vok. Codierer, m; Kodierer, m; Kodierungseinrichtung, f; Kodierungsgerät, n; Verschlüßler, m; Verschlüsseler, m rus. кодер, m; кодирующее… … Automatikos terminų žodynas

кодер - к одер, а … Русский орфографический словарь

кодер - Syn: шифратор … Тезаурус русской деловой лексики

кодер - а, ч., спец. Пристрій, який виконує кодування … Український тлумачний словник

кодер - Устройство, осуществляющее кодирование … Политехнический терминологический толковый словарь

кодер ИКМ - кодер Устройство, предназначенное для осуществления квантования и кодирования отсчетов сигнала электросвязи при ИКМ. Примечание Аналогично кодеру ИКМ получают свои названия и определения другие кодеры, например кодер ДИКМ. [ГОСТ 22670 77]… … Справочник технического переводчика

Книги

  • Электроника: логические микросхемы, усилители и датчики для начинающих , Платт Чарльз. Обучение в ходе экспериментов. В книге "Электроника для начинающих" был представлен мир электроники и изложены его основные понятия. Теперь вы готовы перейти к следующему этапу - разработке…
  • Электроника. Логические микросхемы, усилители и датчики для начинающих , Платт Ч.. Обучение в ходе экспериментов. . В книге "Электроника для начинающих" был представлен мир электроники и изложены его основные понятия. Теперь вы готовы перейти к следующему этапу -…

Глоссарий

Отсутствие импульса в цифровом сигнале соответствует передаче

Наличие импульса в цифровом сигнале соответствует передаче

Ошибка квантования это

Назначение операции квантования

В системах передачи ЦСП на оконечных станциях при кодировании применяют

Для восстановления непрерывного сигнала из дисрктных отсчетов в пункте приема его необходимо пропустить

А) через АИМ преобразователь В) через дискретизатор С) через полосовой фильтр

Д) через кодер Е) через фильтр низких частот

А) 8-разрядный код В) 9-разрядный код С) 6-разрядный код

Д) 7-разрядный код Е) 12-разрядный код

А) преобразование непрерывного сигнала в дискретный

В) округление сигнала до ближайшего разрешенного уровня

С) представление сигнала в цифровом виде Д) преобразования АИМ-1 в АИМ-П

Е) восстановления искаженного сигнала

4.Что называется шагом квантования?

Д) разность между истинным значением сигнала и квантованным

А) разность между амплитудами токов кодируемого отсчета и эталонов

В) разность между двумя соседними разрешенными уровнями

С) преобразованные кодовые группы ИКМ сигнала

Д) разность между истинным значением сигнала и квантованным значением

Е) промежуток между дискретными отсчетами

А) нуля В) изменении фазы С) пробела Д) единицы Е) изменении частоты

СРУ: Виды квантования, ДИКМ, Дельта- модуляция. (конспект) Л1 21 – 47 стр.

СРУП: П реобразование десятичного числа в двоичное Л1 6-8 стр, 23.

Используемая литература

Основная:

1. Ю.В. Скалин «Цифровые системы передачи» М, Радио и связь, 1988г. Л1 21 – 47 бет

2. В.И. Иванова «Цифровые и аналоговые системы передачи», Горячая линия – Телеком, 2005г. Л2 78 – 94, 104-108 бет.

Линейные и нелинейные кодеры и декодеры. Виды линейных кодеров: - счетного типа, взвешивающего типа, матричные. Структурные схемы линейного кодера взвешивающего типа для однополярного и двухполярного сигналов. Структурные схемы нелинейного кодера идекодера. Характеристика компрессии типа А-87,6/13.



Кодер с линейной шкалой квантования называется линейным, а с нелинейной шкалой квантования – нелинейным.


Вх АИМ сигн.

Рисунок 2. Структурная схема линейного кодера взвешивающего типа для вдух-полярного сигнала.

Для примера рассмотрим работу кодера при кодировании отсчета с отрицательной амплитудой - 105.3 Δ. Кодируемый отсчет подается на первый вход (I) компаратора, а цикл начинается с установки первого выхода ЛУ в состояние 1. В этом случае за--мыкается ключ Кл + источника положительных эталонных токов (напомним, что выходы 2,..8 ЛУ при этом находятся в состоянии. О, т, е. Кл(- Кл? и Кл[-Кл-/ разомкнуты, на втором входе компаратора, Iэт = 0). Поскольку отсчет имеет отрицательную поляр--ность, т. е. Iс<0, то в первом такте кодирования на выходе компаратора будет сформирована 1 и состояние первого выхода ЛУ ста­нет 0, Тогда Кл+ будет разомкнут, а через инвертор DD 2 будет включен Кл - . Единица на выходе инвертора DD 2 изменит и положение ключа КлК на выходе компаратора и к нему подключится. инвертор. Необходимость такой операции пояснялась ранее. Таким образом, согласно полярности амплитуды входного сигнала включен ГЭТ отрицательных эталонных токов и схема готова к следующим этапам кодирования, для чего переводятся в состояние 1 второй выход ЛУ. Перевод в состояние 1 второго выхода ЛУ обеспечивает подключение через Кл - , эталонного тока-64Δ в точку суммирования этапов Вх2 компаратора и т.д..

Рисунок 3. Характеристика компрессии типа А-87,6/13

В системах ИКМ-ВРК вместо плавной амплитудной характе­ристики, которую имеют аналоговые_компандеры, применяются сегментные характеристики. Они представляют собой кусочно-ломаную аппроксимацию плавных характеристик, при которой изменение крутизны происходит дискретными ступенями. Два в положительной и два в отрицательной областях объединяются в один центральный сегмент, поэтому общее число сегментов на двухполярной характеристике равно 13. Каждый из 16 сегментов характеристики содержит по 16 шагов (уровней), квантования, а общее число уровней равно 256, из них 128 поло­жительных и 128 отрицательных.

Каждый сегмент начинается с определенного эталона, назы­ваемого основным – 16, 32, 64, 128, 256, 512, 1024, 2048.

Кодирование осуществляется за восемь тактов и включает три основных этапа:

1 - определение и кодирование полярности вход­ного сигнала;

2 - определение и кодщювание номера сегмента узла, в котором заключен кодируемый отсчет;

3 - определение и кодирование номера уровня квантования сегмента, в зоне кото­рого заключена амплитуда кодируемого отсчета. Первый этап кодирования осуществляется за 1-й такт, второй этап - за 2...4-й такты, третий этап - за 5.,.8-й такты кодирования.

Вх АИМ
Вых ИКМ
ГО
ГО
ГО
ПК
ЦР
ГЭТ1
ГЭТ2
БКЭ

Рисунок 4. Структурная схема нелинейного декодера

Пример: -252.

1 этап: (–) 1 разряд 0 так полярность отрицательный.

2 этап: 252 > 128 0 1

252 < 512 1 0

252 < 256 1 0

3 этап: 252 > 128+64 0 1

252 > 128+64+32 0 1

252 > 128+64+32+16 0 1



Загрузка...