sonyps4.ru

Индекс модуляции и девиация частоты. Виды модуляции

К частоте модулирующего сигнала

Употребляется в документе:

ГОСТ 24375-80

Телекоммуникационный словарь . 2013 .

Смотреть что такое "Индекс частотной модуляции" в других словарях:

    индекс частотной модуляции - Отношение девиации радиочастоты к частоте модулирующего сигнала. [ГОСТ 24375 80] Тематики радиосвязь Обобщающие термины радиопередача … Справочник технического переводчика

    Индекс - 6. Индекс Кодированная импульсная последовательность, записанная на сервоповерхности вида: dddddododdo, где d означает: для сервозоны пару дибитов, для защитных зон одиночный дибит; о означает: для сервозоны отсутствующую пару дибитов, для… …

    Девиация частоты - наибольшее отклонение мгновенной частоты модулированного радиосигнала при частотной модуляции от значения его несущей частоты. Эта величина равна половине полосы качания, т. е. разности максимальной и минимальной мгновенных частот. При больших… … Википедия

    ФАЗОВАЯ МОДУЛЯЦИЯ - вид модуляции колебаний, при к ром передаваемый сигнал управляет фазой несущего ВЧ колебания. Если модулирующий сигнал синусоидальный, то спектр и форма сигналов в случае Ф. м. и частотной модуляции совпадают. Различия обнаруживаются при более… … Физическая энциклопедия

    ГОСТ 16465-70: Сигналы радиотехнические измерительные. Термины и определения - Терминология ГОСТ 16465 70: Сигналы радиотехнические измерительные. Термины и определения оригинал документа: 40. Абсолютное отклонение сигналов Максимальное значение разности мгновенных значений сигналов, взятых в один и тот же момент времени на … Словарь-справочник терминов нормативно-технической документации

    методика - 3.8 методика: Последовательность операций (действий), выполняемых с использованием инструмента и оборудования для осуществления метода. Примечание Совокупность последовательности реализации операций и правил конкретной деятельности с указанием… … Словарь-справочник терминов нормативно-технической документации

    Цветное телевидение - Телевидение, в котором осуществляется передача цветных изображений. Донося до зрителя богатство красок окружающего мира, Ц. т. позволяет сделать восприятие изображения более полным. Принцип передачи цветных изображений в… … Большая советская энциклопедия

Балансная и однополосная модуляции

Для более эффективного использования мощности спектра AM сигнала возможно исключение из спектра AM сигнала несущего колебания. Такой АМ сигнал называют балансно-модулированным (БМ). Также из спектра можно исключить одну боковую полосу час­тот (верхнюю или нижнюю), поскольку каждая из них содержит полную информацию о модулирующем сигнале .При этом получается однополосную модуляцию(ОМ), т.е. модуляцию с одной боковой полосой - ОБП.

ЧАСТОТНАЯ МОДУЛЯЦИЯ

Угловая модуляция

Воздействие модулирующего сигнала на аргумент (текущую фазу) гармонической несущей , называется угловой модуляцией (УМ). Разновидностями УМ являются частотная и фазовая.

19.2 Частотная модуляция

Частотная модуляция (ЧМ) - процесс управления частотой гармонической несущей по закону модулирующего сигнала.

Угловая частота изменяется по закону:

где - частота несущей;

Отклонение частоты модулированного сигнала от значения ;

Модулирующий сигнал. Может быть гармоническим (используется для учебных или исследовательских целей) и негармоническим (реальный сигнал);

Размерный коэффициент пропорциональности, рад/(с∙В) или рад/(с∙А). Определяется схемотехникой модулятора.

Полная фаза в момент времени t находится путем интегрирования частоты:

где - набег фазы за время от начала отсчета до рассматриваемого момента ;

Постоянная интегрирования.

Математическая модель ЧМ сигнала:

ЧМ называют интегральным видом модуляции, т.к. входит в это выражение под знаком интеграла.

Рисунок 19.1 – Временные диаграммы модулирующего, несущего и

модулированного колебаний.

Гармоническая ЧМ

Рассмотрим гармоническую ЧМ (модулирующий сигнал является гармоническим ).

Частота изменяется по закону:

где - девиация частоты при ЧМ. Девиация частоты – наибольшее отклонение частоты модулированного сигнала от значения частоты несущей. При ЧМ может принимать значения от единиц герц до сотен мегагерц.

Фаза в момент времени :

где - индекс частотной модуляции. Является девиацией фазы при ЧМ. Девиация фазы - наибольшее отклонение фазы модулированного сигнала от линейной .

Математическая модель сигнала при гармонической ЧМ:

Воспользовавшись тригонометрической формулой: , - преобразуем выражение:

Проведем анализ отдельно для малых и больших индексов модуляции.

В первом случае () имеют место приближенные равенства:

Воспользовавшись тригонометрической формулой: , -

приходим к следующему выражению для ЧМ сигнала:

Рисунок 19.2 – Спектральная диаграмма ЧМ сигнала при М ЧМ <1.

При малом индексе модуляции – узкополосной ЧМ – амплитудная спектральная диаграмма ЧМ сигнала совпадает по составу (содержит центральную составляющую с частотой несущей , нижнюю и верхнюю боковые составляющие с частотами и ) и ширине полосы частот () с АМ сигналом. Отличие заключается в фазовой спектральной диаграмме: фаза нижней боковой составляющей сдвинута на 180 0 .

При малом значении индекса модуляции не будут проявляться преимущества ЧМ (высокая помехозащищенность). Ширина спектра такая же, как и при АМ.

Во втором случае () сложные периодические функции: и - можно разложить в ряд Фурье, а ЧМ сигнал представить в виде суммы гармонических колебаний:

где - функция Бесселя 1-го рода n-го порядка от вещественного аргумента . Табулированы;

n – номер гармонической составляющей: центральная составляющая имеет n=0, боковые – n=1, 2, 3, … .

Рисунок 19.3 – Спектр ЧМ сигнала при М ЧМ =2.

При большом индексе модуляции – широкополосной ЧМ – спектр ЧМ сигнала состоит из бесконечного числа гармоник: из составляющей с частотой несущей , нижней и верхней боковых полос частот, образованных группами составляющих с частотами и . На практике учитывают только те боковые составляющие, амплитуды которых не меньше 5% амплитуды несущей, т.е. для которых . Тогда ширина спектра ЧМ сигнала: .

Данный случай представляет основной практический интерес, поскольку при больших индексах модуляции помехоустойчивость передачи сигнала существенно выше, чем при АМ. Ширина спектра ЧМ сигнала также значительно больше, чем при АМ.

При сложном модулирующем сигнале спектр модулированного сигнала оказывается сложным, содержащим различные комбинационные частоты. Общая полоса частот, занимаемая таким сигналом: , где - максимальная частота спектра модулирующего сигнала; - индекс модуляции на этой частоте.

ФАЗОВАЯ МОДУЛЯЦИЯ

Фазовая модуляция

Фазовая модуляция (ФМ) – изменение фазы гармонической несущей по закону модулирующего сигнала.

Мгновенная фаза ФМ сигнала определяется выражением:

где - отклонение (сдвиг) фазы модулированного сигнала от линейно-изменяющейся фазы гармонической несущей ;

Размерный коэффициент пропорциональности, рад/В или рад/А.

Математическая модель ФМ сигнала:

Угловая частота – это скорость изменения (т.е. производная по времени) полной фазы колебания. Выражение для мгновенной частоты:

Таким образом, ФМ сигнал с модулирующим сигналом можно рассматривать как ЧМ сигнал с модулирующим сигналом .

Рисунок 20.1 – Модулирующий сигнал, несущее колебание, изменение фазы ФМ сигнала, изменение частоты ФМ сигнала и ФМ сигнал.

Гармоническая ФМ

Рассмотрим случай гармонического модулирующего сигнала:

Фаза сигнала с гармонической ФМ:

где - индекс фазовой модуляции или девиация фазы при ФМ. Может принимать значение от единиц до десятков тысяч радиан.

Математическая модель сигнала с гармонической ФМ:

Частота ФМ сигнала:

где - девиация частоты при ФМ.

Методология вычисления и структура спектра ФМ сигнала аналогичны ЧМ сигналу, но индекс частотной модуляции необходимо заменить индексом фазовой модуляции. Аналогичная тесная связь между спектрами ФМ и ЧМ сигналов имеет место и при негармонических модулирующих сигналах.

ФМ применяется в схемах косвенного метода получения ЧМ.

МАНИПУЛЯЦИЯ

Виды манипуляции

дискретная модуляция (манипуляция) - модуляция гармонического несущего колебания дискретным (цифровым) модулирующим сигналом. При этом модулируемые (информационные) параметры переносчика изменяются скачкообразно. Устройство, реализующее процесс манипуляции, называют манипулятором.



Дискретным модулирующим сигналом является первичный сигнал, отображающий символы кодовых комбинаций дискретных сообщений. Примеры дискретных первичных сигналов: телеграфный, передачи данных, ИКМ.

Различают следующие виды манипуляции:

В зависимости от изменяемых параметров переносчика:

Амплитудную (АМн; английский термин – amplitude shift keying, ASK),

Частотную (ЧМн; английский термин – frequency shift keying, FSK),

Фазовую (ФМн; английский термин – phase shift keying, PSK),

Амплитудно-фазовую (АФМн; английский термин – APK/PSK, или amplitude phase keying, APK).

При АМн каждому возможному значению передаваемого символа ставится в соответствие своя амплитуда гармонического несущего колебания, при ЧМн – частота, при ФМн – фаза, а при АФМн – комбинация амплитуды и начальной фазы;

В зависимости от используемых кодов:

Многопозиционную или -арную (по-английски – m-ary),

Двоичную (по-английски – binary).

Многопозиционная манипуляция используется для повышения скорости передачи информации при одной и той же скорости модуляции. - основание многопозиционного кода – число различных его символов. На практике обычно является ненулевой степенью двойки: , где - число двоичных цифр (битов), представляющих символы многопозиционного кода. Двоичная манипуляция ( , ) является частным случаем многопозиционной. Как правило, в системах передачи дискретных сообщений используются двоичные коды.

Двоичная АМн

При двоичном коде первичный сигнал принимает два значения, соответствующие кодовым символам 0 и 1:

- (-U m и, U m и) – двухполярный сигнал;

- (0, U m и) – однополярный сигнал.

При двоичной АМн (BASK) символу 1 соответствует отрезок гармонического несущего колебания (посылка), символу 0 – отсутствие колебания (пауза), поэтому часто АМн называют манипуляцией с пассивной паузой.

Примем в качестве модулирующего меандровый сигнал – сигнал, отображающий последовательность битов повторяющегося двоичного кода 1010.

Рисунок 21.1 – Временные диаграммы модулирующего и АМн сигналов.

АМн можно рассматривать как модуляцию сигналом со спектром, богатым гармониками: спектр меандрового сигнала содержит бесконечное количество нечетных гармоник. Спектр АМн сигнала содержит составляющую с частотой несущей и две боковые полосы, каждая из которых повторяет спектр первичного сигнала.

Рисунок 21.2 – Спектральные диаграммы модулирующего и АМн сигналов.

Теоретически спектр сигнала при АМн бесконечен. На практике бесконечный спектр ограничивается полосой пропускания фильтра. Соотношение для расчета ширины спектра АМн сигнала:

где - символьная скорость или скорость модуляции, Бод – число символов кода, передаваемых за единицу времени (1 с);

Символьный (тактовый) интервал – интервал времени, отведенный для передачи одного символа.

АМн была изобретена в начале 20 столетия для беспроводной телеграфии. В настоящее время АМн в системах цифровой связи уже не используется.

Двоичная ЧМн

При двоичной ЧМн (BFSK) символу 1 соответствует отрезок гармонического колебания с частотой , а символу 0 – с частотой , где - девиация частоты – изменение частоты при передаче 1 (0) относительно ее среднего значения . При ЧМн нет пассивной паузы, по этой причине ее называют манипуляцией с активной паузой.

Возможно два случая ЧМн: с разрывом фазы и без разрыва фазы (continuous-phase FSK – CPFSK).

При ЧМн с разрывом фазы назначение каждому двоичному символу своей частоты является произвольным. Полученный сигнал содержит скачки фазы.

t
t
Рисунок 21.3 – Временные сигналов: модулирующего и ЧМн с разрывом фазы.

Наличие разрывов фазы приводит к «размытию» спектра сигнала. Это снижает помехоустойчивость приема и создает помехи другим системам связи. Поэтому при выборе частот следует обеспечить условие плавного (без скачка фазы) перехода от сигнала с частотой к сигналу с частотой :

При двоичной ФМн (BPSK) передаче 1 соответствует отрезок гармонического колебания, совпадающего по фазе с несущей, а передаче 0 - отличающегося по фазе на 180°, т.е. фаза меняется на 180° при каждом переходе от 1 к 0 и наоборот.

t
Рисунок 21.6 – Временная диаграмма модулирующего и ФМн сигналов.

ФМн сигнал можно представить в виде суммы двух АМн сигналов, для получения первого из которых используется несущая , а второго - . Спектр амплитуд ФМн сигнала содержит те же составляющие, что и спектр АМн сигнала, кроме составляющей с частотой несущей (она исчезает, когда символы 1 и 0 появляются с равной вероятностью). Амплитуды боковых составляющих примерно в два раза больше. При передаче реальных кодовых слов амплитуда составляющей с частотой несущей не равна нулю, но будет значительно ослаблена.

Рисунок 21.6 – Спектр ФМн сигнала.

При ОФМн символ 0 передается отрезком гармонического колебания с начальной фазой предшествующего элемента сигнала, а символ 1 – таким же отрезком с начальной фазой, отличающейся от начальной фазы предшествующего элемента на 180° (фаза изменяется при передаче символов 1), или наоборот (фаза изменяется при передаче символов 0). При ОФМн передача начинается с посылки одного не несущего информации элемента, который служит опорным сигналом для сравнения фазы последующего элемента.

Рисунок 21.7 – Временная диаграмма модулирующего и ОФМн сигнала.

Спектр ОФМн сигнала подобен спектру ФМн сигнала.

ФМн сигнал имеет такую же полосу частот, как АМн сигнал:

.

ФМн была разработана в начале развития программы исследования дальнего космоса и сейчас широко используется в коммерческих и военных системах связи.

Обратимся к модулированным сигналам, полученным путем изменения по закону передаваемого сообщения в несущем колебании частоты w 0 , или начальной фазы j 0 . Поскольку в обоих случаях аргумент гармонического колебания y(t ) = w 0 t + j 0 определяет мгновенное значение фазового угла, такие радиосигналы получили название сигналов с угловой модуляцией. Если в несущем колебании изменяется частота w 0 , то имеем дело с частотной модуляцией (ЧМ), если же изменяется фаза j 0 – фазовой модуляцией (ФМ).

Частотная модуляция. При частотной модуляции несущая частота w(t ) связана с модулирующим сигналом e (t ) зависимостью:

w(t ) = w 0 + k ч e (t ) (5.1)

здесь k ч - размерный коэффициент пропорциональности между частотой и напряжением, рад.

Рассмотрим однотональную частотную модуляцию, когда модулирующим сигналом является гармоническое колебание e (t ) = E 0 cosWt , у которого для упрощения начальная фаза q 0 = 0. Пусть также начальная фаза несущего колебания j 0 = 0. При необходимости начальные фазы q 0 и j 0 легко могут быть введены в окончательные соотношения. Полную фазу ЧМ – сигнала в любой момент времени t определим путем интегрирования частоты, выраженной через формулу (5.1):

где w дч = - максимальное отклонение частоты от значения w 0 , или девиация частоты при частотной модуляции.

Отношение m ч = w дч /W = k ч E 0 /W, (5.3)

являющееся девиацией фазы несущего колебания, называют индексом частотной модуляции.

С учетом (5.2) и (5.3) ЧМ – сигнал запишется в следующем виде:

На рис. 5.1 представлены временные диаграммы соответственно несущего колебания u н (t ) и модулирующего сигнала e (t ) с начальными фазами j 0 = q 0 = 90 o , и полученный в результате процесса частотной модуляции ЧМ – сигнал u чм (t ) . Нетрудно заметить, что по формуле ЧМ-сигнал напоминает сжатые и растянутые меха русской гармошки.

Фазовая модуляция. В ФМ – сигнале полная фаза несущего колебания изменяется пропорционально модулирующему напряжению

y (t ) = w 0 t + k ф e (t ), (5.5)

где k ф - размерный коэффициент пропорциональности, рад/В.

Рис. 5.1 Частотная однотональная модуляция:

а – несущее колебание; б – модулирующий сигнал; в – ЧМ – сигнал

При однотональной модуляции фаза несущего колебания:

y (t ) = w 0 t + k ф E 0 cosWt , (5.6)

Из (5.6) следует, что, как и в случае частотной модуляции, полная фаза несущего колебания изменяется по гармоническому закону. Максимальное отклонение фазы несущего колебания от начальной фазы характеризует индекс фазовой модуляции

m ф = k ф E 0 . (5.7)

Подставляя формулы (5.5) и (5.6) в (4.1), запишем ФМ - сигнал

Дифференцирование формулы (5.6) дает частоту ФМ – сигнала

w(t ) = w 0 - m ф W sinWt = w 0 - w дф sinWt , (5.9)

где w дф = m ф W = k ф E 0 W - максимальное отклонение частоты от значения несущей w 0 , т. е. девиация частоты при фазовой модуляции.

Выражения (5.4), (5.8) показывают, что при однотональной угловой модуляции нельзя определить, является ли сигнал частотно или фазо-модулированным. Различия между этими видами однотональной модуляции проявляется только при изменении амплитуды Е 0 или частоты W моду-лирующего сигнала e (t ).

В случае частотной модуляции девиации частоты w дч пропорциональна амплитуде Е 0 и не зависит от частоты W модулирующего сигнала e (t ) = E 0 cosWt . Индекс же модуляции m ч прямо пропорционален амплитуде Е 0 и обратно пропорционален частоте W модулирующего сигнала. При фазовой модуляции девиации частоты w дф изменяется пропорционально амплитуде Е 0 и частоте модулирующего сигнала. Индекс модуляции m ф пропорционален амплитуде Е 0 и нее зависит от частоты W модулирующего сигнала.

Спектр ЧМ – сигнала при однотональной модуляции. Используя тригонометрические преобразования, запишем соотношение (5.4) следующим образом:

= U н cos(m sinWt )cosw 0 t - U н sin(m sinWt )sinw 0 t . (5.10)

Проанализируем выражение (5.10) отдельно для малых (m << 1) и больших (m >1) индексов модуляции.

Спектр ЧМ – сигнала при m << 1. В этом случае имеют место приближенные равенства

cos(m sinWt ) » 1; sin(m sinWt ) » m sinWt . (5.11)

Подставив (5.11) в (5.10), получим

u ЧМ (t ) = U н cosw 0 t - U н m sinW sinw 0 t =

+ U н cosw 0 t + (mU н /2)cos(w 0 + W)t - (mU н /2) cos(w 0 - W)t . (5.12)

Рис.5.2. Диаграммы ЧМ – сигнала при m << 1:

а – спектральная; б - векторная

Сравнение соотношений (5.12) и (4.6) показывает, что спектр ЧМ – сигнала аналогичен спектру АМП – сигнала и также состоит из несущего колебания и двух боковых составляющих с частотами (w 0 + W) и (w 0 - W). Индекс модуляции m играет здесь ту же роль, что и коэффициент амплитудной модуляции М . Единственное и принципиальное отличие - знак минус перед нижней боковой составляющей в формуле для ЧМ – сигнала, который характеризирует поворот ее фазы на 180 0 , что аналитически приводит к превращению АМП – сигнала в ЧМ – сигнал.

На рис.5.2,а представлена спектральная диаграмма для ЧМ – сигнала при индексе модуляции m << 1. Отметим, что ширина спектра в данном случае равна 2W, как и при амплитудной модуляции.

На векторной диаграмме рис.5.2, б показано, как изменение фазы нижней боковой составляющей на 180 0 (вектор АД) влияет на вектор результирующего колебания ОВ. Направление вектора АД нижней боковой составляющей при АМ – сигнале обозначено штриховой линией. Изменение направления этого вектора на 180 0 не влияет на вектор модуляции АВ, который всегда перпендикулярен вектору несущей ОА. Вектор результирующего колебания ОВ изменяется как по фазе, так и по амплитуде, т.е. с течением времени «качается» вокруг центрального положения. Однако при m<< 1 изменения амплитуды настолько малы, что ими можно пренебречь и модуляцию рассматривать как чисто фазовую.

Теоретический спектр ЧМ – сигнала (аналогично и ФМ – сигнала) бесконечен по полосе частот, однако в реальных случаях он ограничен. Дело в том, что начиная с номера порядка n > m+1 , значения функций Бесселя становится весьма малыми. Поэтому считается, что практическая ширина спектра радиосигналов с угловой модуляцией

Dw ум = 2(m +1)W.

Рис. 5.3. Спектр ЧМ – сигнала.

ЧМ – и ФМ – сигналы, применяемые на практике, имеют индекс модуляции m >>1, поэтому

Dw ум = 2m W = 2w д.

Таким образом, полоса частот, занимаемая сигналами с однотональной частоты модуляцией, равна удвоенной величине девиации частоты и не зависит от частоты модуляции. Спектр сигналов с угловой модуляцией при негармоническом модулирующем сигнале определить достаточно трудно. Но он всегда сложнее, чем спектр АМ – сигнала при том же модулирующем сигнале. Ширина его спектра также значительно больше, чем при амплитудной модуляции.

Примерная структура спектра ЧМ– сигнала при индексе модуляции m =3 показана на рис. 5.3.

Следует отметить, что радиосигналы с частотой и фазовой модуляцией имеют ряд важных преимуществ перед амплитудно-модулированными колебаниями.

1.Поскольку при угловой модуляции амплитуда модулированных колебании не несет в себе никакой информации и не требуется ее постоянства (в отличие от амплитуды модуляции), то практически любые вредные нелинейные изменения амплитуды радиосигнала в процессе осуществления связи не приводят к искажению передаваемого сообщения.

2.Постоянство амплитуды радиосигнала при угловой модуляции позволяет полностью использовать энергетические возможности генератора несущей частоты, который работает в этом случае при неизменной колебательной мощности.

Литература: 1, 2; 6[ 46-61].

Контрольные вопросы:

1.Как осуществляется частотная модуляция?

2.Покажите индекс частотной модуляции.

3.Что такое девиация частоты?

4. Покажите индекс фазавой модуляции.

5. Нарисуйте вид колебания однотональной частотной модуляции.

6. Как изменяется индекс модуляции с ростом частоты?

7. Покажите спектр частотной модуляции.

Общие сведения о модуляции

Модуляция это процесс преобразования одного или нескольких информационных параметров несущего сигнала в соответствии с мгновенными значениями информационного сигнала.

В результате модуляции сигналы переносятся в область более высоких частот.

Использование модуляции позволяет:

  • согласовать параметры сигнала с параметрами линии;
  • повысить помехоустойчивость сигналов;
  • увеличить дальность передачи сигналов;
  • организовать многоканальные системы передачи (МСП с ЧРК).

Модуляция осуществляется в устройствах модуляторах . Условное графическое обозначение модулятора имеет вид:

Рисунок 1 - Условное графическое обозначение модулятора

При модуляции на вход модулятора подаются сигналы:

u(t) — модулирующий , данный сигнал является информационным и низкочастотным (его частоту обозначают W или F);

S(t) — модулируемый (несущий) , данный сигнал является неинформационным и высокочастотным (его частота обозначается w 0 или f 0);

Sм(t) — модулированный сигнал , данный сигнал является информационным и высокочастотным.

В качестве несущего сигнала может использоваться:

  • гармоническое колебание, при этом модуляция называется аналоговой или непрерывной ;
  • периодическая последовательность импульсов, при этом модуляция называется импульсной ;
  • постоянный ток, при этом модуляция называется шумоподобной .

Так как в процессе модуляции изменяются информационные параметры несущего колебания, то название вида модуляции зависит от изменяемого параметра этого колебания.

1. Виды аналоговой модуляции:

  • амплитудная модуляция (АМ), происходит изменение амплитуды несущего колебания;
  • частотная модуляция (ЧМ), происходит изменение частоты несущего колебания;
  • фазовая модуляция (ФМ), происходит изменение фазы несущего колебания.

2. Виды импульсной модуляции:

  • амплитудно-импульсная модуляция (АИМ) , происходит изменение амплитуды импульсов несущего сигнала;
  • частотно-импульсная модуляция (ЧИМ) , происходит изменение частоты следования импульсов несущего сигнала;
  • Фазо-импульсная модуляция (ФИМ) , происходит изменение фазы импульсов несущего сигнала;
  • Широтно-импульсная модуляция (ШИМ) , происходит изменение длительности импульсов несущего сигнала.

Амплитудная модуляция

Амплитудная модуляция — процесс изменения амплитуды несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

амплитудно-модулированного (АМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

u (t )= Um u sin ? t (1)

на несущее колебание

S (t )= Um sin (? 0 t + ? ) (2)

происходит изменение амплитуды несущего сигнала по закону:

Uам(t)=Um+ а ам Um u sin ? t (3)

где а ам — коэффициент пропорциональности амплитудной модуляции.

Подставив (3) в математическую модель (2) получим:

Sам(t)=(Um+ а ам Um u sin ? t) sin(? 0 t+ ? ). (4)

Вынесем Um за скобки:

Sам(t)=Um(1+ а ам Um u /Um sin ? t) sin (? 0 t+ ? ) (5)

Отношение а ам Um u /Um = m ам называется коэффициентом амплитудной модуляции . Данный коэффициент не должен превышать единицу, т. к. в этом случае появляются искажения огибающей модулированного сигнала называемые перемодуляцией . С учетом m ам математическая модель АМ сигнала при гармоническом модулирующем сигнале будет иметь вид:

Sам(t)=Um(1+m ам sin ? t) sin(? 0 t+ ? ). (6)

Если модулирующий сигнал u(t) является негармоническим, то математическая модель АМ сигнала в этом случае будет иметь вид:

Sам(t)=(Um+ а ам u(t)) sin (? 0 t+ ? ) . (7)

Рассмотрим спектр АМ сигнала для гармонического модулирующего сигнала. Для этого раскроем скобки математической модели модулированного сигнала, т. е. представим его в виде суммы гармонических составляющих.

Sам(t)=Um(1+m ам sin ? t) sin (? 0 t+ ? ) = Um sin (? 0 t+ ? ) +

+m ам Um/2 sin((? 0 ? ) t+ j ) m ам Um/2 sin((? 0 + ? )t+ j ). (8)

Как видно из выражения в спектре АМ сигнала присутствует три составляющих: составляющая несущего сигнала и две составляющих на комбинационных частотах. Причем составляющая на частоте ? 0 —? называется нижней боковой составляющей , а на частоте ? 0 + ? верхней боковой составляющей. Спектральные и временные диаграммы модулирующего, несущего и амплитудно-модулированного сигналов имеют вид (рисунок 2).

Рисунок 2 - Временные и спектральные диаграммы модулирующего (а), несущего (б) и ампдтудно-модулированного (в) сигналов

D? ам =(? 0 + ? ) (? 0 ? )=2 ? (9)

Если же модулирующий сигнал является случайным, то в этом случае в спектре составляющие модулирующего сигнала обозначают символически треугольниками (рисунок 3).

Составляющие в диапазоне частот (? 0 — ? max) ? (? 0 — ? min) образуют нижнюю боковую полосу (НБП), а составляющие в диапазоне частот (? 0 + ? min) ? (? 0 + ? max) образуют верхнюю боковую полосу (ВБП)

Рисунок 3 - Временные и спектральные диаграммы сигналов при случайном модулирующем сигнале

Ширина спектра для данного сигнала будет определятся

D ? ам =(? 0 + ? max ) (? 0 ? min )=2 ? max (10)

На рисунке 4 приведены временные и спектральные диаграммы АМ сигналов при различных индексах m ам. Как видно при m ам =0 модуляция отсутствует, сигнал представляет собой немодулированную несущую, соответственно и спектр этого сигнала имеет только составляющую несущего сигнала (рисунок 4,

Рисунок 4 - Временные и спектральные диаграммы АМ сигналов при различных mам: а) при mам=0, б) при mам=0,5, в) при mам=1, г) при mам>1

а), при индексе модуляции m ам =1 происходит глубокая модуляция, в спектре АМ сигнала амплитуды боковых составляющих равны половине амплитуды составляющей несущего сигнала (рисунок 4в), данный вариант является оптимальным, т. к. энергия в большей степени приходится на информационные составляющие. На практике добиться коэффициента равного едините тяжело, поэтому добиваются соотношения 01 происходит перемодуляция, что, как отмечалось выше, приводит к искажению огибающей АМ сигнала, в спектре такого сигнала амплитуды боковых составляющих превышают половину амплитуды составляющей несущего сигнала (рисунок 4г).

Основными достоинствами амплитудной модуляции являются:

  • узкая ширина спектра АМ сигнала;
  • простота получения модулированных сигналов.

Недостатками этой модуляции являются:

  • низкая помехоустойчивость (т. к. при воздействии помехи на сигнал искажается его форма — огибающая, которая и содержит передаваемое сообщение);
  • неэффективное использование мощности передатчика (т. к. наибольшая часть энергии модулированного сигнала содержится в составляющей несущего сигнала до 64%, а на информационные боковые полосы приходится по 18%).

Амплитудная модуляция нашла широкое применение:

  • в системах телевизионного вещания (для передачи телевизионных сигналов);
  • в системах звукового радиовещания и радиосвязи на длинных и средних волнах;
  • в системе трехпрограммного проводного вещания.

Балансная и однополосная модуляция

Как отмечалось выше, одним из недостатков амплитудной модуляции является наличие составляющей несущего сигнала в спектре модулированного сигнала. Для устранения этого недостатка применяют балансную модуляцию. При балансной модуляции происходит формирование модулированного сигнала без составляющей несущего сигнала. В основном это осуществляется путем использования специальных модуляторов: балансного или кольцевого. Временная диаграмма и спектр балансно-модулированного (БМ) сигнала представлен на рисунке 5.

Рисунок 5 - Временные и спектральные диаграммы модулирующего (а), несущего (б) и балансно-модулированного (в) сигналов

Также особенностью модулированного сигнала является наличие в спектре двух боковых полос несущих одинаковую информацию. Подавление одной из полос позволяет уменьшить спектр модулированного сигнала и, соответственно, увеличить число каналов в линии связи. Модуляция при которой формируется модулированный сигнал с одной боковой полосой (верхней или нижней) называется однополосной. Формирование однополосно-модулированного (ОМ) сигнала осуществляется из БМ сигнала специальными методами, которые рассматриваются ниже. Спектры ОМ сигнала представлены на рисунке 6.

Рисунок 6 - Спектральные диаграммы однополосно-модулированных сигналов: а) с верхней боковой полосой (ВБП), б) с нижней боковой полосой (НБП)

Частотная модуляция

Частотная модуляция — процесс изменения частоты несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

Рассмотрим математическую модель частотно-модулированного (ЧМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

u (t ) = Um u sin ? t

на несущее колебание

S (t ) = Um sin (? 0 t + ? )

происходит изменение частоты несущего сигнала по закону:

w чм (t) = ? 0 + а чм Um u sin ? t (9)

где а чм — коэффициент пропорциональности частотной модуляции.

Поскольку значение sin ? t может изменятся в диапазоне от -1 до 1, то наибольшее отклонение частоты ЧМ сигнала от частоты несущего сигнала составляет

? ? m = а чм Um u (10)

Величина Dw m называется девиацией частоты. Следовательно, девиация частоты показывает наибольшее отклонение частоты модулированного сигнала от частоты несущего сигнала.

Значение ? чм (t) непосредственно подставить в S(t) нельзя, т. к. аргумент синуса ? t+j является мгновенной фазой сигнала?(t) которая связана с частотой выражением

? = d ? (t )/ dt (11)

Отсюда следует что, чтобы определить? чм (t) необходимо проинтегрировать ? чм (t)

Причем в выражении (12) ? является начальной фазой несущего сигнала.

Отношение

Мчм = ?? m / ? (13)

называется индексом частотной модуляции .

Учитывая (12) и (13) математическая модель ЧМ сигнала при гармоническом модулирующем сигнале будет иметь вид:

S чм (t)=Um sin(? 0 t Мчм cos ? t+ ? ) (14)

Временные диаграммы, поясняющие процесс формирования частотно-модулированного сигнала приведены на рисунке 7. На первых диаграммах а) и б) представлены соответственно несущий и модулирующий сигналы, на рисунке в) представлена диаграмма показывающая закон изменения частоты ЧМ сигнала. На диаграмме г) представлен частогтно-модулированный сигнал соответствующий заданному модулирующему сигналу, как видно из диаграммы любое изменение амплитуды модулирующего сигнала вызывает пропорциональное изменение частоты несущего сигнала.

Рисунок 7 - Формирование ЧМ сигнала

Для построения спектра ЧМ сигнала необходимо разложить его математическую модель на гармонические составляющие. В результате разложения получим

S чм (t)= Um J 0 (M чм ) sin(? 0 t+ ? )

Um J 1 (M чм ) {cos[(? 0 ? )t+ j ]+ cos[(? 0 + ? )t+ ? ]}

Um J 2 (M чм ) {sin[(? 0 2 ? )t+ j ]+ sin[(? 0 +2 ? )t+ ? ]}+

+ Um J 3 (M чм ) {cos[(? 0 — 3 ? )t+ j ]+ cos[(? 0 +3 ? )t+ ? ]}

Um J 4 (M чм ) {sin[(? 0 4 ? )t+ j ]+ sin[(? 0 +4 ? )t+ ? ]} (15)

где J k (Mчм) — коэффициенты пропорциональности.

J k (Mчм) определяются по функциям Бесселя и зависят от индекса частотной модуляции. На рисунке 8 представлен график содержащий восемь функций Бесселя. Для определения амплитуд составляющих спектра ЧМ сигнала необходимо определить значение функций Бесселя для заданного индекса. Причем как

Рисунок 8 - Функции Бесселя

видно из рисунка различные функции имеют начало в различных значениях Мчм, а следовательно, количество составляющих в спектре будет определятся Мчм (с увеличивается индекса увеличивается и количество составляющих спектра). Например необходимо определить коэффициенты J k (Мчм) при Мчм=2. По графику видно, что при заданном индексе можно определить коэффициенты для пяти функций (J 0 , J 1 , J 2 , J 3 , J 4) Их значение при заданном индексе будет равно: J 0 =0,21; J 1 =0,58; J 2 =0,36; J 3 =0,12; J 4 =0,02. Все остальные функции начинаются после значения Мчм=2 и равны, соответственно, нулю. Для приведенного примера количество составляющих в спектре ЧМ сигнала будет равно 9: одна составляющая несущего сигнала (Um J 0) и по четыре составляющих в каждой боковой полосе (Um J 1 ; Um J 2 ; Um J 3 ; Um J 4).

Еще одной важной особенностью спектра ЧМ сигнала является то, что можно добиться отсутствия составляющей несущего сигнала или сделать ее амплитуду значительно меньше амплитуд информационных составляющих без дополнительных технических усложнений модулятора. Для этого необходимо подобрать такой индекс модуляции Мчм, при котором J 0 (Мчм) будет равно нулю (в месте пересечения функции J 0 с осью Мчм), например Мчм=2,4.

Поскольку увеличение составляющих приводит к увеличению ширины спектра ЧМ сигнала, то значит, ширина спектра зависит от Мчм (рисунок 9). Как видно из рисунка, при Мчм?0,5 ширина спектра ЧМ сигнала соответствует ширине спектра АМ сигнала и в этом случае частотная модуляция является узкополосной , при увеличении Мчм ширина спектра увеличивается, и модуляция в этом случае является широкополосной . Для ЧМ сигнала ширина спектра определяется

D ? чм =2(1+Мчм) ? (16)

Достоинством частотной модуляции являются:

  • высокая помехоустойчивость;
  • более эффективное использование мощности передатчика;
  • сравнительная простота получения модулированных сигналов.

Основным недостатком данной модуляции является большая ширина спектра модулированного сигнала.

Частотная модуляция используется:

  • в системах телевизионного вещания (для передачи сигналов звукового сопровождения);
  • системах спутникового теле- и радиовещания;
  • системах высококачественного стереофонического вещания (FM диапазон);
  • радиорелейных линиях (РРЛ);
  • сотовой телефонной связи.

Рисунок 9 - Спектры ЧМ сигнала при гармоническом модулирующем сигнале и при различных индексах Мчм: а) при Мчм=0,5, б) при Мчм=1, в) при Мчм=5

Фазовая модуляция

Фазовая модуляция — процесс изменения фазы несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

Рассмотрим математическую модель фазо-модулированного (ФМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

u (t ) = Um u sin ? t

на несущее колебание

S (t ) = Um sin (? 0 t + ? )

происходит изменение мгновенной фазы несущего сигнала по закону:

? фм(t) = ? 0 t+ ? + а фм Um u sin ? t (17)

где а фм — коэффициент пропорциональности частотной модуляции.

Подставляя ? фм(t) в S(t) получаем математическую модель ФМ сигнала при гармоническом модулирующем сигнале:

Sфм(t) = Um sin(? 0 t+ а фм Um u sin ? t+ ? ) (18)

Произведение а фм Um u =Dj m называется индексом фазовой модуляции или девиацией фазы .

Поскольку изменение фазы вызывает изменение частоты, то используя (11) определяем закон изменения частоты ФМ сигнала:

? фм (t )= d ? фм(t )/ dt = w 0 +а фм Um u ? cos ? t (19)

Произведение а фм Um u ? =?? m является девиацией частоты фазовой модуляции. Сравнивая девиацию частоты при частотной и фазовой модуляциях можно сделать вывод, что и при ЧМ и при ФМ девиация частоты зависит от коэффициента пропорциональности и амплитуды модулирующего сигнала, но при ФМ девиация частоты также зависит и от частоты модулирующего сигнала.

Временные диаграммы поясняющие процесс формирования ФМ сигнала приведены на рисунке 10.

При разложении математической модели ФМ сигнала на гармонические составляющие получится такой же ряд, как и при частотной модуляции (15), с той лишь разницей, что коэффициенты J k будут зависеть от индекса фазовой модуляции? ? m (J k (? ? m)). Определятся эти коэффициенты будут аналогично, как и при ЧМ, т. е. по функциям Бесселя, с той лишь разницей, что по оси абсцисс необходимо заменить Мчм на? ? m . Поскольку спектр ФМ сигнала строится аналогично спектру ЧМ сигнала, то для него характерны те же выводы что и для ЧМ сигнала (пункт 1.4).

Рисунок 10 - Формирование ФМ сигнала

Ширина спектра ФМ сигнала определяется выражением:

? ? фм =2(1+ ? j m ) ? (20).

Достоинствами фазовой модуляции являются:

  • высокая помехоустойчивость;
  • более эффективное использование мощности передатчика.
  • недостатками фазовой модуляции являются:
  • большая ширина спектра;
  • сравнительная трудность получения модулированных сигналов и их детектирование

Дискретная двоичная модуляция (манипуляция гармонической несущей)

Дискретная двоичная модуляция (манипуляция) — частный случай аналоговой модуляции, при которой в качестве несущего сигнала используется гармоническая несущая, а в качестве модулирующего сигнала используется дискретный, двоичный сигнал.

Различают четыре вида манипуляции:

  • амплитудную манипуляцию (АМн или АМТ);
  • частотную манипуляцию (ЧМн или ЧМТ);
  • фазовую манипуляцию (ФМн или ФМТ);
  • относительно-фазовую манипуляцию (ОФМн или ОФМ).

Временные и спектральные диаграммы модулированных сигналов при различных видах манипуляции представлены на рисунке 11.

При амплитудной манипуляции , также как и при любом другом модулирующем сигнале огибающая S АМн (t) повторяет форму модулирующего сигнала (рисунок 11, в).

При частотной манипуляции используются две частоты? 1 и? 2 . При наличии импульса в модулирующем сигнале (посылке) используется более высокая частота? 2 , при отсутствии импульса (активной паузе) используется более низкая частота w 1 соответствующая немодулированной несущей (рисунок 11, г)). Спектр частотно-манипулированного сигнала S ЧМн (t) имеет две полосы возле частот? 1 и? 2 .

При фазовой манипуляции фаза несущего сигнала изменяется на 180° в момент изменения амплитуды модулирующего сигнала. Если следует серия из нескольких импульсов, то фаза несущего сигнала на этом интервале не изменяется (рисунок 11, д).

Рисунок 11 - Временные и спектральные диаграммы модулированных сигналов различных видов дискретной двоичной модуляции

При относительно-фазовой манипуляции фаза несущего сигнала изменяется на 180° лишь в момент подачи импульса, т. е. при переходе от активной паузы к посылке (0?1) или от посылке к посылке (1?1). При уменьшении амплитуды модулирующего сигнала фаза несущего сигнала не изменяется (рисунок 11, е). Спектры сигналов при ФМн и ОФМн имеют одинаковый вид (рисунок 9, е).

Сравнивая спектры всех модулированных сигналов можно отметить, что наибольшую ширину имеет спектр ЧМн сигнала, наименьшую — АМн, ФМн, ОФМн, но в спектрах ФМн и ОФМн сигналов отсутствует составляющая несущего сигнала.

В виду большей помехоустойчивости наибольшее распространение получили частотная, фазовая и относительно-фазовая манипуляции. Различные их виды используются в телеграфии, при передаче данных, в системах подвижной радиосвязи (телефонной, транкинговой, пейджинговой).

Импульсная модуляция

Импульсная модуляция — это модуляция, при которой в качестве несущего сигнала используется периодическая последовательность импульсов, а в качестве модулирующего может использоваться аналоговый или дискретный сигнал.

Поскольку периодическая последовательность характеризуется четырьмя информационными параметрами (амплитудой, частотой, фазой и длительностью импульса), то различают четыре основных вида импульсной модуляции:

  • амплитудно-импульсная модуляция (АИМ); происходит изменение амплитуды импульсов несущего сигнала;
  • частотно-импульсная модуляция (ЧИМ), происходит изменение частоты следования импульсов несущего сигнала;
  • фазо-импульсная модуляция (ФИМ), происходит изменение фазы импульсов несущего сигнала;
  • широтно-импульсная модуляция (ШИМ), происходит изменение длительности импульсов несущего сигнала.

Временные диаграммы импульсно-модулированных сигналов представлены на рисунке 12.

При АИМ происходит изменение амплитуды несущего сигнала S(t) в соответствии с мгновенными значениями модулирующего сигнала u(t), т. е. огибающая импульсов повторяет форму модулирующего сигнала (рисунок 12, в).

При ШИМ происходит изменение длительности импульсов S(t) в соответствии с мгновенными значениями u(t) (рисунок 12, г).

Рисунок 12 - Временные диаграммы сигналов при импульсной модуляции

При ЧИМ происходит изменение периода, а соответственно и частоты, несущего сигнала S(t) в соответствии с мгновенными значениями u(t) (рисунок 12, д).

При ФИМ происходит смещение импульсов несущего сигнала относительно их тактового (временного) положения в немодулированной несущей (тактовые моменты обозначены на диаграммах точками Т, 2Т, 3Т и т. д.). ФИМ сигнал представлен на рисунке 12, е.

Поскольку при импульсной модуляции переносчиком сообщения является периодическая последовательность импульсов, то спектр импульсно-модулированных сигналов является дискретным и содержит множество спектральных составляющих. Этот спектр представляет собой спектр периодической последовательности импульсов в котором возле каждой гармонической составляющей несущего сигнала находятся составляющие модулирующего сигнала (рисунок 13). Структура боковых полос возле каждой составляющей несущего сигнала зависит от вида модуляции.

Рисунок 13 - Спектр импульсно-модулированного сигнала

Также важной особенностью спектра импульсно-модулированных сигналов является то, что ширина спектра модулированного сигнала, кроме ШИМ, не зависит от модулирующего сигнала. Она полностью определяется длительностью импульса несущего сигнала. Поскольку при ШИМ длительность импульса изменяется и зависит от модулирующего сигнала, то при этом виде модуляции и ширина спектра также зависти от модулирующего сигнала.

Частоту следования импульсов несущего сигнала может быть определена по теореме В. А. Котельникова как f 0 =2Fmax. При этом Fmax это верхняя частота спектра модулирующего сигнала.

Передача импульсно модулированных сигналов по высокочастотным линиям связи невозможна, т. к. спектр этих сигналов содержит низкочастотные составляющий. Поэтому для передачи осуществляют повторную модуляцию . Это модуляция, при которой в качестве модулирующего сигнала используют импульсно-модулированный сигнал, а в качестве несущего гармоническое колебание. При повторной модуляции спектр импульсно-модулированного сигнала переносится в область несущей частоты. Для повторной модуляции может использоваться любой из видов аналоговой модуляции: АМ, ЧС, ФМ. Полученная модуляция обозначается двумя аббревиатурами: первая указывает на вид импульсной модуляции а вторая — на вид аналоговой модуляции, например АИМ-АМ (рисунок 14, а) или ШИМ-ФМ (рисунок 14, б) и т. д.

Рисунок 14 - Временные диаграммы сигналов при импульсной повторной модуляции

Как известно, источником электромагнитного поля является переменный электрический ток, текущий по проводнику. А устройство, создающее электромагнитное поле в пространстве, представляет собой генератор переменного тока, соединенный с антенной. Антенна излучает электромагнитные волны в окружающее пространство. Такое устройство принято называть радиопередающим.
Мы знаем, что в окружающем нас пространстве имеются электромагнитные волны, излучаемые этими устройствами, знаем частоту передачи, знаем, что волны несут для нас информацию. Поэтому нам важно получить техническое средство, с помощью которого мы сможем преобразовать информацию, содержащуюся в электромагнитной волне, к такому виду, который возможен для восприятия нашими органами чувств. В данном случае мы хотим преобразовать ее в звуковые колебания. Так вот, устройство, перехватывающее электромагнитную волну и преобразующее ее в удобный для восприятия вид, называется радиоприемным устройством.
Вопрос второй. Каким образом «насытить» электромагнитную волну необходимой информацией? Самый простой способ — поступить по принципу: есть волна — нет волны. Первые радиопередающие и радиоприемные устройства были спроектированы именно по такому принципу, а для передачи информации приняли азбуку Морзе. К слову сказать, столь примитивный способ передачи информации оказался настолько надежным и помехоустойчивым, что его используют до сих пор, называя «телеграфным» способом.
В начале XX века телеграфная радиосвязь изумила многих, но в дальнейшем, когда к ней привыкли, появилось желание передавать не только точки-тире, но еще и голос. Задача оказалась не слишком простой — ведь диапазон частот, слышимый человеческим ухом, лежит в низкочастотной области, а именно от 16 Гц до 10 кГц. В то же время для получения эффективного излучения электромагнитной энергии необходимы высокочастотные колебания. Как же быть?
Задачу решили наложением низкочастотного сигнала на высокочастотные колебания, а сам процесс наложения назвали модуляцией. Математически процесс модуляции иллюстрируется очень просто. К примеру, периодическое электрическое колебание можно записать так:

где U m -амплитуда колебания

ω 0 - частота колебания

φ 0 - фаза колебания

Процесс модуляции представляет собой изменения одного из параметров колебания высокой частоты по закону управляющего низкочастотного сигнала. В зависимости от того, какой параметр (амплитуда, частота, фаза) подвергается изменению, различают амплитудную, частотную и фазовую модуляции.
Колебания высокой частоты, используемые для передачи сигналов, носят название несущей частоты.
Исторически первой появилась амплитудная модуляция. Она до сих пор используется на радиовещательных диапазонах длинных, средних и коротких волн несмотря на то, что обладает низкой помехозащищенностью и крайне неэффективна. Причин тому несколько. Во-первых, коротковолновый диапазон — это единственный диапазон, в котором сравнительно просто обеспечивается радиовещание по всему миру. Для коротких волн не нужны ретрансляторы — они сами достигают нужных точек за счет отражения. Во-вторых, конструктивные особенности радиоприемников, имеющихся в эксплуатации, не позволяют перейти на более эффективные способы радиовещания.
Давайте кратко рассмотрим особенности амплитудной модуляции. Для простоты будем считать, что управляющим сигналом служит гармоническое (синусоидальное) колебание. Выражение для амплитудно-модулированной несущей запишется следующим образом:

где Ω- частота управляющего сигнала

Кривая, соединяющая точки, соответствующие амплитудным значениям несущей, называется огибающей. Базовый параметр, характеризующий AM колебание, — это коэффициент модуляции. В других источниках может встретиться понятие глубины модуляции, что по сути одно и то же.


Коэффициент модуляции не должен быть слишком маленьким, в противном случае мы не сможем различить полезную информацию на фоне несущей. Однако, если его значение будет больше 1, это вызовет перемодуляцию и, как следствие, искажение информации. Поэтому стандартное значение m в радиовещательной технике равно 0,3. В этом случае при наиболее громких звуках не наступает перемодуляция.
Здесь уместно рассказать о таком понятии, как спектр радиосигнала. Уже знакомая нам гармоническая функция изображается синусоидой во временной области, то есть в такой, где по горизонтальной оси графика откладывается время. Но существует еще одна широко используемая область — частотная, в которой гармоническое колебание выглядит так, как показано на рисунке, то есть вертикальной черточкой. Обратите внимание: по горизонтальной оси откладывается уже не время, а частота.

Важно отметить, что спектр периодического, но несинусоидального колебания представляет собой набор синусоидальных «дискрет», вертикальных черточек.

Французским математиком Ж. Фурье (1768—1830) было доказано, что любой несинусоидальный сигнал можно по определенному правилу составить из суммы гармонических функций. Как показала практика, производить расчеты в частотной области намного проще и нагляднее, чем заниматься тем же делом в области временной. Таким образом, анализ Фурье занял в радиотехнике одно из ведущих мест.
Следует также сказать, что непериодические сигналы, к которым относится речь человека и музыка, тоже подчиняются анализу Фурье, только их спектр уже не дискретный, а сплошной, что и отражено на рисунке.


Амплитудно-модулированное колебание это периодический сигнал, который уже не имеет гармонического характера. Спектральный состав AM сигнала легко оценить, если преобразовать его аналитическое выражение с помощью известной формулы произведения синусов. В результате получим

Хорошо видно, что спектр AM колебания содержит, кроме несущей, две боковые частоты: (ω 0 - Ω) и (ω 0 + Ω) .
Для передачи разборчивой речи необходимо, чтобы передатчик имел возможность модулировать несущую на любой из частот, лежащих в полосе от 250 Гц (Ω H) до 3 кГц (Ω В) . Спектр AM колебания в этом случае будет иметь, кроме несущей, две зеркально-симметричные боковые полосы, в точности повторяющие форму спектра низкочастотного сигнала.

В заключение краткого рассказа об AM сигналах предлагаю оценить эффективность такого вида радиовещания с точки зрения использования мощности передатчика. Действительно, как уже было сказано, коэффициент модуляции в стандартных условиях радиовещания не превосходит 0,3. Амплитуда каждой из боковых полос составляет m /2, то есть 0,15 амплитуды несущей. Мощность, квадратично зависящая от амплитуды сигнала, в данном случае составляет 0,0225 от мощности несущей. Представьте себе: менее 5% сигнала несет полезную информацию, которая содержится в боковых полосах и более нигде! Осознали этот факт достаточно поздно, когда радиовещание на основе классической AM модуляции стало стандартом.
Поиски более удачных, более эффективных и более помехозащищенных способов радиовещания привели к тому, что в 1935 году была предложена система с угловой модуляцией. Угловая модуляция — это модуляция посредством частоты несущей или ее фазы при постоянстве амплитуды. Данный вид модуляции лежит в основе радиовещания на УКВ. В начале рассказ о фазовой модуляции (ФМ). Предположим, что модуляцию несущей осуществляет гармоническое колебание. Тогда закон изменения фазы несущей

Где φ о — начальная фаза колебания.

Подставляя выражение для фазы в аналитическое выражение несущей, получаем

Важно заметить, что величина ΔφsinΩt характеризует опережение (отставание) по фазе модулированного сигнала от фазы, которую имел бы немодулированный сигнал.


Мгновенное значение фазового угла модулированного ФМ колебания определяется из выражения

Угловая частота колебания является производной фазового угла по времени:

Где ΔφΩ = Δω — амплитуда отклонения частоты ω от частоты Θ .

Физический смысл полученного соотношения таков: меняя фазу колебания, мы неизбежно меняем и его частоту, причем величина отклонения частоты зависит как от амплитуды модулирующего сигнала, так и от его частоты. Величина максимального фазового отклонения весьма просто связана с максимальным частотным отклонением — девиацией:

Где Δω — девиация частоты; β — индекс модуляции
На практике девиацию обычно выражают не в рад/с, а в Гц, что в 2π раз меньше.

Теперь настало время рассмотреть частотную модуляцию (ЧМ) при воздействии синусоидального управляющего сигнала. Обозначим амплитуду отклонения частоты через Δω :

После преобразований получим аналитическое выражение ЧМ
колебания:

Обозначим:

Хорошо видно, что при изменении частоты несущей меняется и ее фаза. Более того, мы пришли к выражению, которое было выведено в рассказе об ФМ. Может сложиться впечатление, что ЧМ и ФМ одно и то же. Действительно, рассматривая частный случай (модулирование синусоидальным сигналом), мы получим идентичные спектры и не заметим разницы. Однако разница проявится, как только управляющий сигнал перестанет быть гармоническим. Причина в индексе модуляции и его зависимости от входного воздействия.

Нетрудно заметить, что ФМ обеспечивает постоянный индекс модуляции при любой модулирующей частоте. Для ЧМ индекс модуляции понятие менее определенное, поскольку он меняется с изменением модулирующей частоты. Отсюда можно сделать заключение, что спектры колебаний ЧМ и ФМ вида будут несколько отличаться друг от друга. Но как быть с индексом модуляции для ЧМ, как определить его? В радиотехнике принято оценивать индекс модуляции для максимальной модулирующей частоты. Для более низких частот индекс модуляции становится больше.
Осталось оценить вид и ширину спектра сигнала с угловой модуляцией. При небольших индексах модуляции (β < 0,5 ) выражение для модулированного ЧМ и ФМ сигнала может быть приведено к виду:

He правда ли, знакомое выражение? Давайте взглянем на такое же точно выражение для AM сигнала, чтобы убедиться — память нас не подвела. При малых фазовых отклонениях амплитудные спектры АМ, ФМ и ЧМ сигналов идентичны. Различие наблюдается лишь в фазовых спектрах, но это более тонкий анализ, и мы не будем на нем заострять внимание.
Если индекс модуляции таков, что уже более нельзя пользоваться простыми соотношениями, на помощь приходит анализ Бесселя, позволяющий представить сигнал с угловой модуляцией более наглядно:

Видно, что в спектре сигнала появляются боковые частоты с индексами «к». При возрастании β амплитуды боковых частот высших порядков начинают быстро расти, а амплитуда несущей — уменьшаться. Возможен даже такой вариант, когда амплитуда несущей и боковых полос первого порядка станут равными нулю!
Угловая модуляция, при которой наблюдается заметное появление боковых полос высших порядков, называется широкополосной.

Точно определить ее спектр при воздействии непериодического сигнала - задача намного более трудоемкая, чем такая же задача исследования АМ. Приближенно считают, что ширина спектра радиовещательного широкополосного ЧМ сигнала

Где В - ширина спектра модулированного сигнала

Ω в - верхняя модулирующая частота сигнала.

Можно также определить ширину спектра и через девиацию частоты

Итак, чтобы принять радиопередачу без заметных на слух частотных искажений, необходимо учитывать наличие не только боковых полос первого порядка, но еще и полос высших порядков.



Загрузка...