sonyps4.ru

Идеальный ОУ — Неинвертирующий усилитель. Инвертирующий операционный усилитель

В неинвертирующем усилителе входной сигнал подаётся на неинвертирующий вход ОУ (+), в этом основное отличие неинвертирующего усилителя на ОУ от . При этом источник сигнала «видит» бесконечное входное сопротивление ОУ. Напряжение смещения нуля равно нулю, и поэтому инвертирующий вход ОУ должен иметь тот же потенциал, что и неинвертирующий. Ток с выхода ОУ создаёт падение напряжения на резисторе R G , которое должно быть равно входному напряжению V IN .

Рис. 1. Неинвертирующий ОУ

Для расчета выходного напряжения V OUT и коэффициента усиления воспользуется правилом расчета делителя напряжения:

После преобразования получается выражение для коэффициента усиления в следующем виде:

Важно отметить, что в выражении (2) присутствуют только номиналы пассивных элементов.
Если сопротивление резистора R G выбрать намного больше, чем R F , то отношение (R F /R G) стремится к нулю, а при нулевом сопротивлении R F выражение (2) преобразуется в

В этом случае неинвертирующий усилитель превращается в буфер (повторитель сигнала) с единичным коэффициентом передачи, с бесконечным входным и нулевым выходным сопротивлениями. Резистор R G в этом случае тоже может быть исключён из схемы. На практике некоторые ОУ могут «сгореть» при включении без резистора R F . По этой причине во многих конструкциях буферов этот резистор присутствует. Его функция - защищать инвертирующий вход от бросков напряжения путём ограничения тока на безопасном уровне. Часто используемый номинал этого резистора 20 кОм. В схемах усилителей стоковой обратной связью резистор R F определяет стабильность и требуется всегда. Впрочем, не поленитесь и полистайте datasheet на операционник. Если там описано включение как на рис. 2 — смело используйте!


Практическое применение операционных усилителей.Часть первая.

Часть первая.

Всем привет.
В этой статье мы обсудим некоторые аспекты практического применения операционных усилителей в повседневной жизни радиолюбителя.
Не растекаясь мыслею по древу и не вдаваясь в дремучие теоретические основы работы вышеозначенного усилителя, давайте все же обозначим некоторые основные термины и понятия, с которыми нам предстоит столкнуться в дальнейшем.
Итак - операционный усилитель. Далее будем называть его ОУ, а то очень лень писать каждый раз полностью.
На принципиальных схемах, чаще всего, он обозначается следующим образом:

На рисунке обозначены три самых главных вывода ОУ - два входа и выход. Разумеется, есть еще выводы питания и иногда выводы частотной коррекции, хотя последнее встречается все реже - у большинства современных ОУ она встроенная. Два входа ОУ - Инвертирующий и Неинвертирующий названы так по присущим им свойствам. Если подать сигнал на Инвертирующий вход, то на выходе мы получим инвертированный сигнал, то бишь сдвинутый по фазе на 180 градусов - зеркальный; если же подать сигнал на Неинвертирующий вход, то на выходе мы получим фазово не измененный сигнал.

Так же как и основных выводов, основных свойств ОУ тоже три - можно назвать их ТриО (или ООО - кому как нравится): Очень высокое сопротивление входа, Очень высокий коэффициент усиления (10000 и более), Очень низкое сопротивление выхода. Еще один очень важный параметр ОУ называется скорость нарастания напряжения на выходе (slew rate на буржуинском). Обозначает он фактически быстродействие данного ОУ - как быстро он сможет изменить напряжение на выходе при изменение оного на входе.
Измеряется этот параметр в вольтах в секунду (В/сек).
Этот параметр важен прежде всего для товарищей, конструирующих УЗЧ, поскольку, если ОУ недостаточно быстрый, то он не будет успевать за входным напряжением на высоких частотах и возникнут изрядные нелинейные искажения. У большинства современных ОУ общего назначения скорость нарастания сигнала от 10В/мксек и выше. У быстродействующих ОУ этот параметр может достигать значения 1000В/мксек.
Оценить - подходит ли тот или иной ОУ для ваших целей по скорости нарастания сигнала можно по формуле:

где, fmax - частота синусоидального сигнала, Vmax - скорость нарастания сигнала, Uвых - максимальное выходное напряжение.
Ну да не будем больше тянуть кота за хвост - приступим к главной задаче этого опуса - куда, собственно, эти клевые штуки можно воткнуть и что из этого можно получить.

Первая схема включения ОУ - инвертирующий усилитель .

Наиболее популярная и часто встречающаяся схема усилителя на ОУ. Входной сигнал подается на инвертирующий вход, а неинвертирующий вход подключается к общему проводу.
Коэффициент усиления определяется соотношением резисторов R1 и R2 и считается по формуле:

Почему "минус"? Потому что, как мы помним, в инвертирующем усилителе фаза выходного сигнала "зеркальна" фазе входного.
Входное сопротивление определяется резистором R1. Ежели его сопротивление, например 100кОм, то и входное сопротивление усилителя будет 100кОм.

Следующая схема - инвертирующий усилитель с повышенным входным сопротивлением .
Предыдущая схема всем хороша, за исключением одного нюанса - соотношение входного сопротивления и коэффициента усиления может не подойти для реализации какого-либо специфического проекта. Ведь что получается - допустим, нам нужен усилитель с К=100. Тогда, исходя из того, что значения резисторов должны быть в разумных пределах берем R2=1Мом, а R1=10кОм. То есть, входное сопротивление усилителя будет равным 10 кОм, что в некоторых случаях недостаточно.
В этих самых случая можно применить следующую схему:

В данном случае, коэффициент усиления считается по следующей формуле:

То есть, при том же коэффициенте усиление сопротивление R1 можно увеличить, а значит и повысить входное сопротивление усилителя.

Коэффициент усиления определяется так:

В данном случае, как видите, никаких минусов нет - фаза сигнала на входе и на выходе совпадает.
Основное отличие от инвертирующего усилителя заключается в повышенном входном сопротивлении, которое может достигать 10Мом и выше.
Если при реализации данной схемы в практических конструкциях, необходимо предусмотреть развязку с предыдущими каскадами по постоянному току - установить разделительный конденсатор, то нужно между входом ОУ и общим проводом включить резистор сопротивлением около 100кОм, как показано на рисунке.

Приветствую вас дорогие друзья! Вот наконец добрался я до своего компьютера, приготовил себе чайку с печеньками и понеслась…

Для тех кто впервые на моем блоге и не совсем понимает что здесь происходит спешу напомнить, меня зовут Владимир Васильев и на этих страницах я делюсь со своими читателями сакральными знаниями из области электроники и не только электроники. Так что может быть и вы здесь найдете для себя что-то полезное, по крайней мере я на это надеюсь. Обязательно подпишитесь , тогда вы ничего не пропустите.

А сегодня речь пойдет о таком электронном устройстве как операционный усилитель. Эти усилители применяются повсеместно, везде где требуется усилить сигнал по мощности найдется работенка для операционника.

Особенно распространено применение операционных усилителей в аудиотехнике. Каждый аудиофилл стремится усилить звучание своих музыкальных колонок и поэтому старается прикрутить усилитель по мощнее. Вот здесь мы и сталкиваемся с операционными усилителями, ведь многие аудиосистемы просто нашпигованы ими. Благодаря свойству операционного усилителя усиливать сигнал по мощности мы ощущаем более мощное давление на свои барабанные перепонки когда слушаем композиции на своих аудио колонках. Вот так вот в быту мы оцениваем качество работы операционного усилителя на слух.

В этой статье на слух мы оценивать ничего не будем но постараемся рассмотреть все детально и разложим все по полочкам чтобы стало понятно даже самому самоварному чайнику.

Что такое операционный усилитель?

Операционные усилители представляют собой микросхемы которые могут выглядеть по-разному.

Например на этой картинке изображены два операционных усилителя российского производства. Слева операционный усилитель К544УД2АР в пластмассовом DIP корпусе а справа изображен операционник в металлическом корпусе.

По началу, до знакомства с операционниками, микросхемы в таких металлических корпусах я постоянно путал с транзисторами. Думал что это такие хитромудрые многоэмиттерные транзисторы 🙂

Условное графическое обозначение (УГО)

Условное обозначение операционного усилителя выглядит следующим образом.

Итак операционный усилитель (ОУ) имеет два входа и один выход. Также имеются выводы для подключения питания но на условных графических обозначениях их обычно не указывают.

Для такого усилителя есть два правила которые помогут понять принцип работы:

  1. Выход операционника стремится к тому, чтобы разность напряжений на его входах была равна нулю
  2. Входы операционного усилителя ток не потребляют

Вход 1 обозначается знаком «+» и называется неинвертирующим а вход 2 обозначается как «-» и является инвертирующим.

Входы операционника обладают высоким входным сопротивлением или иначе говорят высоким импедансом.

Это говорит о том, что входы операционного усилителя ток почти не потребляют (буквально какие-то наноамперы). Усилитель просто оценивает величину напряжений на входах и в зависимости от этого выдает сигнал на выходе усиливая его.

Коэффициент усиления операционного усилителя имеет просто огромное значение, может достигать миллиона, а это очень большое значение! Значит это то, что если мы ко входу приложим небольшое напряжение, хотябы 1 мВ, то на выходе получим сразу максимум, напряжение почти равное напряжению источника питания ОУ. Из-за этого свойства операционники практически никогда не используют без обратной связи (ОС). Действительно какой смысл во входном сигнале если на выходе мы всегда получим максимальное напряжение, но об этом поговорим чуть позже.

Входы ОУ работают так, что если величина на неинвертирующем входе окажется больше чем на инвертирующем, то на выходе будет максимальное положительное значение +15В. Если на инвертирующем входе величина напряжения окажется более положительной то на выходе будем наблюдать максимум отрицательной величины, где-то -15В.

Действительно операционный усилитель может выдавать значения напряжений как положительной так и отрицательной полярности. У новичка может возникнуть вопрос о том как же такое возможно? Но такое действительно возможно и это связано с применением источника питания с расщепленным напряжением, так называемым двуполярным питанием. Давайте рассмотрим питание операционника чуток подробнее.

Правильное питание ОУ

Наверное не будет секретом, что для того, чтобы операционник работал, его нужно запитать, т.е. подключить его к источнику питания. Но есть интересный момент, как мы убедились чуток ранее операционный усилитель может выдавать на выход напряжения как положительной так и отрицательной полярности. Как такое может быть?

А такое быть может! Это связано с применением двуполярного источника питания, конечно возможно использование и однополярного источника но в этом случае возможности операционного усилителя будут ограничены.

Вообще в работе с источниками питания многое зависит от того что мы взяли за точку отсчета т.е. за 0 (ноль). Давайте с этим разберемся.

Пример на батарейках

Обычно примеры проще всего приводить на пальцах но в электронике думаю подойдут и пальчиковые батарейки 🙂

Допустим у нас есть обычная пальчиковая батарейка (батарейка типа АА). У нее есть два полюса плюсовой и минусовой. Когда минусовой полюс мы принимаем за ноль, считаем нулевой точкой отсчета то соответственно плюсовой полюс батарейки будет у нас показывать + 5В (значение с плюсом).

Это мы можем увидеть с помощью мультиметра (кстати в помощь), достаточно подключить минусовой черный щуп к минусу батарейки а красный щуп к плюсу и вуаля. Здесь все просто и логично.

Теперь немножко усложним задачу и возьмем точно такую же вторую батарейку. Подключим батарейки последовательно и рассмотрим как меняются показания измерительных приборов (мультиметров или вольтметров) в зависимости от различных точек приложения щупов.

Если мы за ноль приняли минусовой полюс крайней батарейки а измеряющий щуп подключим к плюсу батарейки то мультиметр нам покажет значение в +10 В.

Если за точку отсчета будет принят положительный полюс батарейки а измеряющий щуп был подключен к минусу то любой вольтметр нам покажет -10 В.

Но если за точку отсчета будет принята точка между двумя батарейками то в результате мы сможем плучить простой источник двуполярного питания. И вы можете в этом убедиться, мультиметр нам подтвердит что так оно и есть. У нас в наличии будет напряжение как положительной полярности +5В так и напряжение отрицательной полярности -5В.

Схемы источников двуполярного питания

Примеры на батарейках я привел для примера, чтобы было более понятно. Теперь давайте рассмотрим несколько примеров простых схем источников расщепленного питания которые можно применять в своих радиолюбительских конструкциях.

Схема с трансформатором, с отводом от «средней» точки

И первая схема источника питания для ОУ перед вами. Она достаточно простая но я немножко поясню принцип ее работы.

Схема питается от привычной нам домашней сети поэтому нет ничего удивительного что на первичную обмотку трансформатора приходит переменный ток в 220В. Затем трансформатор преобразует переменный ток 220В в такой же переменный но уже в 30В. Вот такую вот нам захотелось произвести трансформацию.

Да на вторичной обмотке будет переменное напряжение в 30В но обратите внимание на отвод от средней точки вторичной обмотки. На вторичной обмотке сделано ответвление, причем количество витков до этого ответвления равно числу витков после ответвления.

Благодаря этому ответвлению мы можем получить на выходе вторичной обмотки переменное напряжение как в 30 В так и переменку в 15В. Это знание мы берем на вооружение.

Далее нам нужно переменку выпрямить и превратить в постоянку поэтому . Диодный мост с этой задачей справился и на выходе мы получили не очень стабильную постоянку в 30В. Это напряжение будет нам показывать мультиметр если мы подключим шупы к выходу диодного моста, но нам нужно помнить про ответвление на вторичной обмотке.

Мы добились нулевой точки отсчета между полюсами потенциалов положительной и отрицательной полярности. В результате на выходе мы имеем достаточно стабильное напряжение как +15В так и -15В. Эту схему конечно можно еще более улучшить если добавить стабилитроны или интегральные стабилизаторы но тем не менее приведенная схема уже вполне может справиться с задачей питания операционных усилителей.

Эта схема на мой взгляд проще, проще в том ключе, что нет необходимости искать трансформатор с ответвлением от середины или формировать вторичную обмотку самостоятельно. Но здесь придется раскошелиться на второй диодный мост.

Диодные мосты включены так, что положительный потенциал формируется с катодов диодиков первого моста, а отрицательный потенциал выходит с анодов диодов второго моста. Здесь нулевая точка отсчета выводится между двумя мостами. Упомяну также, что здесь используются разделительные конденсаторы, они оберегают один диодный мост от воздействий со стороны второго.

Эта схема также легко подвергается различным улучшениям, но самое главное она решает основную задачу — с помощью нее можно запитать операционный усилитель.

Обратная связь ОУ

Как я уже упоминал операционные усилители почти всегда используют с обратной связью (ОС). Но что представляет собой обратная связь и для чего она нужна? Попробуем с этим разобраться.

С обратной связью мы сталкиваемся постоянно: когда хотим налить в кружку чая или даже сходить в туалет по малой нужде 🙂 Когда человек управляет автомобилем или велосипедом то здесь также работает обратная связь. Ведь для того, чтобы ехать легко и непринужденно мы вынуждены постоянно контролировать управление в зависимости от различных факторов: ситуации на дороге, технического состояния средства передвижения и так далее.

Если на дороге стало скользко? Ага мы среагировали, сделали коррекцию и дальше двигаемся более осторожно.

В операционном усилителе все происходит подобным образом.

Без обратной связи при подаче на вход определенного сигнала на выходе мы всегда получим одно и тоже значение напряжения. Оно будет близко напряжению питания (так как коэффициент усиления очень большой). Мы не контролируем выходной сигнал. Но если часть сигнала с выхода мы отправим обратно на вход то что это даст?

Мы сможем контролировать выходное напряжение. Это управление будет на столько эффективным, что можно просто забыть про коэффициент усиления, операционник станет послушным и предсказуемым потому что его поведение будет зависеть лишь от обратной связи. Далее я расскажу как можно эффективно управлять выходным сигналом и как его контролировать, но для этого нам нужно знать некоторые детали.

Положительная обратная связь, отрицательная обратная связь

Да, в операционных усилителях применяют обратную связь и очень широко. Но обратная связь может быть как положительной так и отрицательной. Надо бы разобраться в чем суть.

Положительная обратная связь это когда часть выходного сигнала поступает обратно на вход причем она (часть выходного) суммируется с входным.

Положительная обратная связь в операционниках применяется не так широко как отрицательная. Более того положительная обратная связь чаще бывает нежелательным побочным явлением некоторых схем и положительной связи стараются избегать. Она является нежелательной потому, что эта связь может усиливать искажения в схеме и в итоге привести к нестабильности.

С другой стороны положительная обратная связь не уменьшает коэффициент усиления операционного усилителя что бывает полезно. А нестабильность также находит свое применение в компараторах, которые используют в АЦП (Аналого-цифровых преобразователях).

Отрицательная обратная связь это такая связь когда часть выходного сигнала поступает обратно на вход но при этом она вычитается из входного

А вот отрицательная обратная связь просто создана для операционных усилителей. Несмотря на то, что она способствует некоторому ослаблению коэффициента усиления, она приносит в схему стабильность и управляемость. В результате схема становится независимой от коэффициента усиления, ее свойства полностью управляются отрицательной обратной связью.

При использовании отрицательной обратной связи операционный усилитель приобретает одно очень полезное свойство. Операционник контролирует состояния своих входов и стремится к тому, потенциалы на его входах были равны. ОУ подстраивает свое выходное напряжение так, чтобы результирующий входной потенциал (разность Вх.1 и Вх.2) был нулевым.

Подавляющая часть схем на операционниках строится с применением отрицательной обратной связи! Так что для того чтобы разобраться как работает отрицательная связь нам нужно рассмотреть схемы включения ОУ.

Схемы включения операционных усилителей

Схемы включения операционных усилителей могут быть весьма разнообразны поэтому мне врятля удастся рассказать о каждой но я постараюсь рассмотреть основные.

Компаратор на ОУ

Формулы для компараторной схемы будут следующие:

Т.е. в результате будет напряжение соответствующее логической единице.

Т.е. в результате будет напряжение соответствующее логическому нулю.

Схема компаратора обладает высоким входным сопротивлением (импедансом) и низким выходным.

Рассмотрим для начала вот такую схему включения операционника в режиме компаратора. Эта схема включения лишена обратной связи. Такие схемы применяются в цифровой схемотехнике когда нужно оценить сигналы на входе, выяснить какой больше и выдать результат в цифровой форме. В итоге на выходе будет логическая 1 или логический ноль (к примеру 5В это 1 а 0В это ноль).

Допустим напряжение стабилизации стабилитрона 5В, на вход один мы приложили 3В а к входу 2 мы приложили 1В. Далее в компараторе происходит следующее, напряжение на прямом входе 1 используется как есть (просто потому что это неинвертирующий вход) а напряжение на инверсном входе 2 инвертируется. В результате где было 3В так и остается 3В а где был 1В будет -1В.

В результате 3В-1В =2В, но благодаря коэффициенту усиления операционника на выход пойдет напряжение равное напряжению источника питания, т.е. порядка 15В. Но стабилитрон отработает и на выход пойдет 5В что соответствует логической единице.

Теперь представили, что на вход 2 мы кинули 3В а на вход 1 приложили 1В. Операционник все это прожует, прямой вход оставит без изменений, а инверсный (инвертирующий) изменит на противоположный из 3В сделает -3В.

В результате 1В-3В=-2В, но согласно логике работы на выход пойдет минус источника питания т.е. -15В. Но у нас стоит стабилитрон и он это не пропустит и на выходе у нас будет величина близкая нулю. Это и будет логический ноль для цифровой схемы.

Триггер Шмитта на ОУ

Чуть ранее мы рассматривали такую схему включения ОУ как компаратор. В компараторе сравниваются два напряжения на входе и выдается результат на выходе. Но чтобы сравнивать входное напряжение с нулем нужно воспользоваться схемой представленной чуть выше.

Здесь сигнал подается на инвертирующий вход а прямой вход посажен на землю, на ноль.

Если на входе у нас напряжение больше нуля то на выходе будем иметь -15В. Если напряжение меньше нуля то на выходе будет+15В.

Но что случится если мы захотим подать напряжение равное нулю? Такое напряжение никогда не получится сделать, ведь идеального нуля не бывает и сигнал на входе хоть на доли микровольт но обязательно будет меняться в ту или другую сторону. В результате на выходе будут полный хаос, выходное напряжение будет многократно скакать максимума до минимума что на практике совершенно не удобно.

Для избавления от подобного хаоса вводит гистерезист — это некий зазор в пределах которого сигнал на выходе не будет меняться.

Этот зазор позволяет реализовать данная схема посредством положительной обратной связи.

Представим, что на вход мы подали 5В, на выходе в первое мгновение получится сигнал напряжением в -15В. Далее начинает отрабатывать положительная обратная связь. Обратная связь образует делитель напряжения в результате чего на прямом входе операционника появится напряжение -1,36В.

На инверсном входе у нас сигнал более положительный поэтому операционный усилитель отработает следующим образом. Внутри него сигнал в 5В инвертируется и становится -5В, далее два сигнала складываются и получается отрицательное значение. Отрицательное значение благодаря коэффициенту усиления станет -15В. Сигнал на выходе не изменится пока сигнал на входе не опустится менее -1,36В.

Пусть сигнал на входе изменился и стал -2В. В нутрях это -2В инвертируется и станет +2В, а -1,36В как был так и останется. Далее все это складывается и получается положительное значение которое на выходе превратится в +15В. На прямом входе значение -1,36В благодаря обратной связи превратится в +1,36В. Теперь чтобы изменить значение на выходе на противоположное нужно подать сигнал более 1,36В.

Таким образом у нас появилась зона с нулевой чувствительностью с диапазоном от -1,36В до +1,36В. Такая зона нечувствительности носит название гистерезис.

Повторитель

Наиболее простой обладатель отрицательной обратной связи это повторитель.

Повторитель выдает на выходе то напряжение, которое было подано на его вход. Казалось бы для чего это нужно ведь от этого ничего не меняется. Но в этом есть смысл, ведь вспомним свойство операционника, он обладает высоким входным сопротивлением и низким выходным. В схемах повторители выступают в роли буфера, который оберегает от перегрузок хилые выходы.

Чтобы понять как он работает отмотаете чуток назад, там где мы обсуждали отрицательную обратную связь. Там я упоминал, что в случае с отрицательной обратной связью операционник всеми возможными способами стремится к равному потенциалу по своим входам. Для этого он подстраивает напряжение на своем выходе так, чтобы разность потенциалов на его входах равнялась нулю.

Так допустим на входе у нас 1В. Чтобы потенциалы на входах были раны на инвертирующем входе должен быть также 1В. На то он и повторитель.

Схема неинвертирующего усилителя очень похожа на схему повторителя, только здесь обратная связь представлена делителем напряжения и посажена на землю.

Посмотрим как все это работает. Допустим на вход подано 5В, резистор R1 = 10Ом, резистор R2 = 10Ом. Чтобы напряжение на входах были равны, операционник вынужден поднять напряжение на выходе так, чтобы потенциал на инверсном входе сравнялся с прямым. В данном случае делитель напряжения делит пополам, получается, что напряжение на выходе должно быть в два раза больше напряжения на входе.

Вообще чтобы применять эту схему включения даже не нужно ничего ворошить в голове, достаточно воспользоваться формулой, где достаточно узнать коэффициент К.

И сейчас мы рассмотрим работу такой схемы включения как инвертирующий усилитель. Для инвертирующего усилителя есть такие формулы:

Инвертирующий усилитель позволяет усиливать сигнал одновременно инвертируя (меняя знак) его. Причем коэффициент усиления мы можем задать любой. Этот коэффициент усиления мы формируем посредством отрицательной обратной связи, которая представляет собой делитель напряжения.

Теперь попробуем его в работе, допустим на входе у нас сигнал в 1В, резистор R2 = 100Ом, резистор R1 = 10Ом. Сигнал со входа идет через R1, затем R2 и на выход. Допустим сигнал на выходе невероятным образом стал 0В. Рассчитаем делитель напряжения.

1В/110=Х/100, отсюда Х = 0,91В

Получается что в точке А потенциал равен 0,91В, но это противоречит правилу операционного усилителя. Ведь операционник стремится уравнять потенциалы на своих входах. Поэтому потенциал в точке А будет равен нулю и равен потенциалу в точке B.

Как сделать так чтобы на входе был 1В а в точке А был 0В?

Для этого нужно уменьшать напряжение на выходе. И в результате мы получаем

К сожалению инвертирующий усилитель обладает одним явным недостатком — низким входным сопротивлением, которое равняется резистору R1.

А эта схема включения позволяет складывать множество входных напряжений. Причем напряжения могут быть как положительными так и отрицательными. По истине на операционниках можно строить аналоговые компьютеры. Так чтож давайте разбираться.

Основой сумматора служит все тот же инвертирующий усилитель только с одним отличием, вместо одного входа он может иметь этих входов сколько угодно. Вспомним формулку и инвертирующего усилка.Потенциал точки Х будет равен нулю поэтому сумма токов входящих с каждого входа будет выглядеть вот так:Если нашей целью является чистое сложение входных напряжений то все резисторы в этой схеме выбираются одного номинала. Это приводит также что коэффициент усиления для каждого входа будет равен 1. Тогда формула для инвертирующего усилителя принимает вид:

Ну чтож, я думаю что с работой сумматора и других схем включения на операционниках разобраться не трудно. Достаточно немножко попрактиковаться и попробовать собрать эти схемы и посмотреть что происходит с входными и выходными сигналами.

А я на этом пожалуй остановлюсь ведь в работе с операционными усилителями применяются очень много различных схем включения, это различные преобразователи ток-напряжение, сумматоры, интеграторы и логарифмирующие усилители и все их рассматривать можно очень долго.

Если вас заинтересовали другие схемы включения и хотите с ними разобраться то советую полистать , все обязательно встанет на свои места.

А на этом я буду завершать, тем более статья получилась достаточно объемной и после написания ее нужно чутка подшлифовать и навести марафет.

Друзья, не забывайте подписываться на обновления блога, ведь чем больше читателей подписано на обновления тем больше я понимаю что делаю что-то важное и полезное и это чертовски мотивирует на новые статьи и материалы.

Кстати друзья, у меня возникла одна классная идея и мне очень важно слышать ваше мнение. Я подумываю выпустить обучающий материал по операционным усилителям, этот материал будет в виде обычной pdf книжки или видеокурса, еще не решил. Мне кажется что несмотря на большое обилие информации в интернете и в литературе все=таки не хватает наглядной практической информации, такой, которую сможет понять каждый.

Так вот, напишите пожалуйста в комментариях какую информацию вы хотели бы видеть в этом обучающем материале чтобы я мог выдавать не просто полезную информацию а информацию которая действительно востребована.

А на этом у меня все, поэтому я желаю вам удачи, успехов и прекрасного настроения, даже не смотря на то что за окном зима!

С н/п Владимир Васильев.

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

Как уже отмечалось, операционные усилители в настоящее время используются в самых различных электронных устройствах. Их широко применяют как в аналоговых, так и в импульсных устройствах электроники. В то же время существуют и часто используются типовые линейные схемы на основе операционных усилителей. Такие типовые схемы должен знать каждый инженер, использующий электронные устройства. Именно такие схемы рассматриваются ниже.

Очень полезно овладеть достаточно простыми приемами ручного анализа электронных схем на основе операционных усилителей. Это значительно облегчит понимание принципа действия конкретных устройств электроники и будет способствовать получению достоверных результатов машинного анализа. Указанные приемы анализа основаны на ряде допущений, принимаемых в предположении, что используемые операционные усилители достаточно близки к идеальным. Практика расчетов показывает, что результаты, получаемые на основе допущений, имеют вполне приемлемую погрешность.

Примем следующие допущения:

● Входное сопротивление операционного усилителя равно бесконечности, токи входных электродов равны нулю (R вх → ∞, i + = i −).

● Выходное сопротивление операционного усилителя равно нулю, т. е. операционный усилитель со стороны выхода является идеальным источником (R вых = 0).

● Коэффициент усиления по напряжению (коэффициент усиления дифференциального сигнала) равен бесконечности, а дифференциальный сигнал в режиме усиления равен нулю (при этом не допускается закорачивания выводов операционного усилителя).

● В режиме насыщения на выходе равно по модулю напряжению питания, а знак определяется полярностью входного напряжения. Полезно обратить внимание на тот факт, что в режиме насыщения дифференциальный сигнал нельзя всегда считать равным нулю.

● Синфазный сигнал не действует на операционный усилитель.

● смещения нуля равно нулю.

Рассмотрим схему инвертирующего усилителя (рис. 2.25), из которой видно, что в ней действует параллельная обратная связь по напряжению.

Так как i − = 0, то в соответствии с первым законом Кирхгофа i 1 = i 2 .

Предположим, что операционный усилитель работает в режиме усиления, тогда uдиф = 0. В соответствии с этим на основании второго закона Кирхгофа получим i 1 = uвх/ R 1 i 2 = − uвых/ R 2

Учитывая, что i 1 = i 2 , получаем uвых= −uвх· R 2 / R 1

Таким образом, инвертирующий усилитель характеризуется коэффициентом усиления по напряжению, равным Кu= −R2/R1

Например, если R1= 1кОм,R2=10 кОм, тогда uвых= − 10 ·uвх

Для уменьшения влияния входных токов операционного усилителя на выходное в цепь неинвертирующего входа включают резистор с сопротивлением R 3 (рис. 2.26), которое определяется из выражения R3=R1//R2=R1·R2/ (R1+R2)

Входное сопротивление инвертирующего усилителя на низких частотах значительно ниже собственного входного сопротивления операционного усилителя. Это полностью соответствует сделанному раннее выводу о том, что параллельная отрицательная обратная связь, имеющая место в схеме, уменьшает входное сопротивление. Учитывая, что uдиф~ 0, легко заметить, что иходное сопротивление усилителя на низких частотах приблизительно равно R 1 .

Выходное сопротивление инвертирующего усилителя на низких частотах R вых.ос существенно меньше выходного сопротивления на низких частотах R вых собственно операционного усилителя. Это является следствием действия отрицательной обратной связи по напряжению.

Можно показать, что R вых.ос = R вых / (1 + К ·R1/R2) где К - коэффициент усиления по напряжению операционного усилителя.

Усилители мощности. Линейные схемы на ОУ.

ОУ широко применяется в аналоговых устройствах электроники. Функции, реализуемые ОУ с ООС, удобно рассматривать, если представить ОУ в виде идеальной модели, у которой:

  1. Входное сопротивление операционного усилителя равно бесконечности, токи входных электродов равны нулю (Rвх > ∞, i+ = i- = 0).
  2. Выходное сопротивление операционного усилителя равно нулю, т.е. операционный усилитель со стороны входа является идеальным источником напряжения (Rвых = 0).
  3. Коэффициент усиления по напряжению (коэффициент напряжения дифференциального сигнала) равен бесконечности, а дифференциальный сигнал в режиме усиления равен нулю (при этом не допускается закорачивания выводов операционного усилителя).
  4. В режиме насыщения напряжение на выходе равно по модулю напряжению питания, а знак определяется полярностью входного напряжения. Полезно обратить внимание на тот факт, что в режиме насыщения дифференциальный сигнал нельзя всегда считать равным нулю.
  5. Синфазный сигнал не действует на операционный усилитель.
  6. Напряжение смещения нуля равно нулю.

Инвертирующий усилитель на ОУ

Схема инвертирующего усилителя, охваченного параллельной ООС по напряжению показана на рисунках:

ООС реализуется за счет соединения выхода усилителя со входом резистором R2.

На инвертирующем входе ОУ происходит суммирование токов. Поскольку входной ток ОУ i- = 0, то i1 = i2 . Так как i1 = Uвх /R1, а i2 = -Uвых /R2, то . Ku = = -R2/R1. Знак "-" говорит о том, что происходит инверсия знака входного напряжения.

На рисунке (б) в цепь неинвертирующего входа включен резистор R3 для уменьшения влияния входных токов ОУ, сопротивление которого определяется из выражения:

Входное сопротивление усилителя на низких частотах приблизительно равно Rвх.ос = ≈ R1

Выходное сопротивление Rвых.ос = существенно меньше Rвых собственно ОУ.

Неинвертирующий усилитель на ОУ

Схема неинвертирующего усилителя, охваченного последовательной ООС по напряжению, показана на рисунке:

ООС реализуется при помощи резисторов R1, R2.

Используя принятые ранее допущения для идеальной модели получим

Входное сопротивление: Rвх.ос → ∞

Выходное сопротивление: Rвых.ос = → 0

Недостатком усиления является наличие на входах синфазного сигнала, равного Uвх .

Повторитель напряжения на ОУ

Схема повторителя, полученная из схемы неивертирующего усилителя, при R1 → ∞, R2 → 0, показана на рисунке:

Коэффициент β = 1, Ku.ос = K/1+K ≈ 1, т.е. напряжение на входе и выходе ОУ равны: Uвх = Uвых .

Сумматор напряжений на ОУ (инвертирующий сумматор)

Схема инвертирующего усилителя с дополнительными входными цепями показана на рисунке:

Учитывая, что i+ = i- = 0, ioc = - Uвых /Rос = Uвх1 /R1 + Uвх2 /R2 + ... + Uвхn /Rn, получим: Uвых = -Rос (Uвх1 /R1 + Uвх2 /R2 + ... + Uвхn /Rn)

Если Rос = R1 = R2 = ... = Rn, то Uвых = - (Uвх1 + Uвх2 + ... + Uвхn ).

ОУ работает в линейном режиме.

Для уменьшения влияния входных токов ОУ в цепь неинвертирующего входа включают резистор Rэ (на рисунке показан пунктиром) с сопротивлением: Rэ = R1//R2//…//Rn//Roc .

Вычитающий усилитель на ОУ

Схема усилителя с дифференциальным входом показана на рисунке:

Усилитель является сочетанием инвертирующего и неинвертирующего усилителей. В рассматриваемом случае напряжение на выходе определяется из выражения:

Uвых = Uвх2 · R3/(R3+R4) · (1+R2/R1) - Uвх1 · R2/R1

При R1 = R2 = R3 = R4: Uвых = Uвх2 - Uвх1 – т.е. зависит от разности входных сигналов.

Интегрирующий усилитель на ОУ

Схема интегратора, в которой в цепи ООС установлен конденсатор, показана на рисунке:

Пусть на вход подается прямоугольный импульс Uвх . На интервале t1...t2 амплитуда Uвх равна U. Так как входной ток ОУ равен нулю, то |iвх | = |-ic |, iвх = Uвх /R1, ic = C · dUвых /dt.

Uвх /R1 = C · dUвых /dt или

где Uвых (0) – напряжение на выходе (конденсаторе С) к моменту начала интегрирования (к моменту t1).

τ = R1 · C – постоянная времени интегрирования, т.е. время, в течение которого Uвых изменится на величину ΔUвых = U.

Таким образом выходное напряжение на интервале t1...t2 изменяется по линейному закону и представляет интеграл от входного напряжения. Постоянная времени должна быть такой, чтобы до конца интегрирования Uвых < Eпит .

Дифференцирующий усилитель

Поменяв местами R1 и C1 в интеграле, получим схему дифференцирующего усилителя:

По аналогии с интегрирующим усилителем запишем:

Ic = C·dUвх /dt, IR2 = -Uвых /R

Т.к. |Ic | = |-IR2 |, то Uвых = - CR · dUвх /dt

τ = CR – постоянная дифференцирования.

Применение ОУ далеко не исчерпывается приведенными выше схемами.

Активные фильтры

В электронике широко применяются устройство для выделения полезного сигнала из ряда входных сигналов с одного одновремённым ослаблением мешающих сигналов за счёт использования фильтров.

Фильтры подразделяются не пассивные, выполненные на основе конденсаторов, индуктивностей и резисторов, и активные на базе транзисторов и операционных усилителей.

В информационной электронике обычно используются активные фильтры. Термин "активный" объясняется включением в схему RLC - фильтра активного элемента (с транзистора или ОУ) для компенсации потерь на пассивных элементах.

Фильтром называют устройство, которое пропускает сигналы в полосе пропускания и задерживает их в остальном диапазоне частот.

По виду АЧХ фильтры подразделяются на фильтры нижних частот (ФНЧ), и на фильтры верхних частот (ФВЧ), полосовые фильтры и режекторные фильтры.

Схема простейшего ФНЧ и его АЧХ приведены на рисунке:

В полосе пропускания 0 - fc полезный сигнал проходит через ФНЧ без искажений.

Fс – fз – переходная полоса,
fз - ∞ – полоса задерживания,
fс – частота среза,
fз – частота задерживания.

ФВЧ пропускает сигналы верхних частот и задерживает сигналы нижних частот.

Полосовой фильтр пропускает сигналы одной полосы частот, расположенной в некоторой внутренней части оси частот.

Схема фильтра получила название моста Вина. На частоте f0 =

Мост Вина имеет коэффициент передачи β = 1/3. При R1 = R2 = R и C1 = C2 = C

Режекторный фильтр не пропускает сигналы, лежащие в некоторой полосе частот, и пропускает сигналы с другими частотами.

Схема фильтра называется несимметричным двойным Т-образным мостом.

Где R1 = R2 = R3 = R, C1 = C2 = C3 = C.

В качестве примера рассмотрим двухполюсный (по числу конденсаторов) активный ФНЧ.

ОУ работает в линейном режиме. При расчёте задаются fс . Коэффициент усиления в полосе пропускания должен удовлетворять условию: К0 ≤ 3.

Если принять С1 = С2 = С, R1 = R2 = R, то C = 10/fc , где fс – в Гц, С – в мкФ,

Для получения более быстрого изменения коэффициента усиления на удаление от полосы пропускания последовательно включают подобные схемы.

Поменяв местами резисторы R1, R2 и конденсаторы С1, С2, получим ФВЧ.

Избирательные усилители

Избирательные усилители позволяют усиливать сигналы в ограниченном диапазоне частот, выделяя полезные сигналы и ослабляя все остальные. Это достигается применением специальных фильтров в цепи обратной связи усилителя. Схема избирательного усилителя с двойным Т-образным мостом в цепи отрицательной обратной связи показана на рисунке:

Коэффициент передачи фильтра (кривая 3) уменьшается от 0 до 1. АЧХ усилителя иллюстрируется кривой 1. На квазирезонансной частоте коэффициент передачи фильтра в цепи отрицательной обратной связи равен нулю, Uвых максимально. При частотах слева и справа от f0 коэффициент передачи фильтра стремится единице и Uвых = Uвх . Таким образом фильтр выделяет полосу пропускания Δf, а усилитель осуществляет операцию аналогового усиления.

Генераторы гармонических колебаний

В системах управления используются генераторы сигналов различного вида. Генератором гармонических колебаний называют устройство, создающее переменное синусоидальное напряжение.

Структурная схема такого генератора показана на рисунке:

Входной сигнал отсутствует. Uвых = К · Uос .

Для возникновения синусоидальных колебаний должно выполняться условие самовозбуждения только для одной частоты:
К · γ = 1 – баланс амплитуд,
φ + ψ = 2πn – баланс фаз,
где К – коэффициент усиления усилителя,
γ – коэффициент передачи звена положительной обратной связи,
φ – сдвиг по фазе для усилителя,
ψ – сдвиг по фазе для цепи обратной связи,
n = 0, 1, ...

Основной генераторов синусоидальных сигналов являются фильтры, например мост Вина. Генератор на основе ОУ, содержащий мост Вина, представлен на рисунке:

Генератор вырабатывает синусоидальный сигнал частотой .

На частоте f0 коэффициент передачи фильтра β = 1/3. Усилитель должен иметь коэффициент усиления К ≥ 3, который задаётся резисторами R1 и R2. Важной проблемой является стабилизация амплитуды Uвых , которая обеспечивается в ведением резистора R3 и стабилитронов VD1 и VD2. При малых Uвых напряжение на VD1 и VD2 меньше напряжения стабилизации и R3 не зашунтировано стабилитронами. При этом К > 3 и Uвых возрастает. При достижении напряжения на стабилитронах, равного напряжения стабилизации, тот или иной стабилитрон открывается и пара стабилитронов шунтирует сопротивление R3. Коэффициент усиления становится равным и напряжение Uвых начинает уменьшатся, коэффициент усиления снова становится больше 3 и Uвых снова будет уменьшатся, но уже и в противоположном направлении. Таким образом стабилитроны предотвращают насыщение.

При использовании данного генератора нагрузку желательно подключать через буферный каскад.

Материал для подготовеки к аттестации

Загрузка...