sonyps4.ru

Характерные особенности сетевых атак. Виды хакерских атак

Хакерская атака - действие, целью которого является захват контроля (повышение прав) над удалённой/локальной вычислительной системой, либо её дестабилизация, либо отказ в обслуживании. Изначально причиной атак послужил ряд ограничений, присущих протоколу TCP/IP. В ранних версиях протокола IP отсутствовали требования безопасности, которые появились только спустя несколько лет. Но только с бурным развитием интернет-коммерции проблема стала актуальной, и пришлось в сжатые сроки внедрять стандарты безопасности.

Mailbombing - считается самым старым методом атак, хотя суть его проста и примитивна: большое количество почтовых сообщений делают невозможными работу с почтовыми ящиками, а иногда и с целыми почтовыми серверами. Для этой цели было разработано множество программ, и даже неопытный пользователь мог совершить атаку, указав всего лишь e-mail жертвы, текст сообщения, и количество необходимых сообщений. Многие такие программы позволяли прятать реальный IP-адрес отправителя, используя для рассылки анонимный почтовый сервер, Эту атаку сложно предотвратить, так как даже почтовые фильтры провайдеров не могут определить реального отправителя спама. Провайдер может ограничить количество писем от одного отправителя, но адрес отправителя и тема зачастую генерируются случайным образом.

Переполнение буфера . Пожалуй, один из самых распространенных типов атак в Интернете. Принцип данной атаки построен на использовании программных ошибок, позволяющих вызвать нарушение границ памяти и аварийно завершить приложение или выполнить произвольный бинарный код от имени пользователя, под которым работала уязвимая программа. Если программа работает под учётной записью администратора системы, то данная атака позволит получить полный контроль над компьютером жертвы, поэтому рекомендуется работать под учётной записью рядового пользователя, имеющего ограниченные права на системе, а под учётной записью администратора системы выполнять только операции, требующие административные права.

Вирусы , троянские кони, почтовые черви, снифферы, Rootkit-ы и другие специальные программы. Следующий вид атаки представляет собой более изощренный метод получения доступа к закрытой информации - это использование специальных программ для ведения работы на компьютере жертвы. Такие программы предназначены для поиска и передачи своему владельцу секретной информации, либо просто для нанесения вреда системе безопасности и работоспособности компьютера жертвы. Принципы действия этих программ различны, поэтому мы не будем рассматривать отдельно.

Сетевая разведка . В ходе такой атаки хакер собственно не производит никаких деструктивных действий, но в результате он может получить закрытую информацию о построении и принципах функционирования вычислительной системы жертвы. Полученная информация может быть использована для грамотного построения предстоящей атаки, и обычно производится на подготовительных этапах. В ходе такой разведки злоумышленник может производить сканирование портов, запросы DNS, эхо-тестирование открытых портов, наличие и защищённость прокси-серверов. В результате можно получить информацию о существующих в системе DNS-адресах, кому они принадлежат, какие сервисы на них доступны, уровень доступа к этим сервисам для внешних и внутренних пользователей.

Сниффинг пакетов . Также довольно распространенный вид атаки, основанный на работе сетевой карты в режиме promiscuous mode, а также monitor mode для сетей Wi-Fi. В таком режиме все пакеты, полученные сетевой картой, пересылаются на обработку специальному приложению, называемым сниффером, для обработки. В результате злоумышленник может получить большое количество служебной информации: кто, откуда, куда передавал пакеты, через какие адреса эти пакеты проходили. Самой большой опасностью такой атаки является получение самой информации, например логинов и паролей сотрудников, которые можно использовать для незаконного проникновения в систему под видом обычного сотрудника компании.


Promiscuous mode
или promisc mode – так называемый «неразборчивый» режим в котором сетевая плата позволяет принимать все пакеты независимо от того кому они адресованы, эта возможность обычно используется в сетевых анализаторах трафика. В нормальном состоянии на Ethernet-интерфейсе используется фильтрация пакетов канального уровня и если MAC-адрес в заголовке назначения принятого пакета не совпадает с MAC-адресом текущего сетевого интерфейса и не является широковещательным, то пакет отбрасывается. В «неразборчивом» режиме фильтрация на сетевом интерфейсе отключается и все пакеты, включая не предназначенные текущему узлу, пропускаются в систему. Большинство операционных систем требуют прав администратора для включения «неразборчивого» режима. Данный режим позволяет мониторить трафик только в данном коллизионном домене (для Ethernet или беспроводных сетей) или кольце (для сетей Token ring или FDDI), потому использование сетевых концентраторов является менее безопасным решением, чем коммутаторов так как последние не передают трафик всем вне зависимости от адреса назначения. «Неразборчивый» режим часто используется снифферами - специализированными программами позволяющими отображать и анализировать сетевой трафик для диагностики сетевых неполадок. Такие программы позволяют легко перехватывать пароли и конфиденциальные данные, передаваемые по сети в незащищенном виде, чтобы избежать этого рекомендуется использовать защищенные протоколы, в том числе SSL и различные варианты VPN/IPSec.

Сниффер - анализатор трафика, или сниффер (от англ. to sniff - нюхать) - сетевой анализатор трафика, программа или программно-аппаратное устройство, предназначенное для перехвата и последующего анализа, либо только анализа сетевого трафика, предназначенного для других узлов. Во время работы сниффера сетевой интерфейс переключается в «режим прослушивания» (Promiscuous mode), что и позволяет ему получать пакеты, адресованные другим интерфейсам в сети.

Перехват трафика может осуществляться: обычным «прослушиванием» сетевого интерфейса; подключением сниффера в разрыв канала; ответвлением (программным или аппаратным) трафика и направлением его копии на сниффер; через анализ побочных электромагнитных излучений и восстановление, таким образом, прослушиваемого трафика; через атаку на канальном или сетевом уровне, приводящую к перенаправлению трафика жертвы или всего трафика сегмента на сниффер с последующим возвращением трафика в надлежащий адрес.

· Выявить в сети вредоносное и несанкционированное ПО;

· Локализовать неисправность сети или ошибку конфигурации сетевых агентов;

· Перехватить любой не зашифрованный пользовательский трафик с целью получения паролей и другой информации;

IP-спуфинг . Тоже распространенный вид атаки в недостаточно защищённых сетях, когда злоумышленник выдает себя за санкционированного пользователя, находясь в самой организации, или за её пределами. Для этого хакеру необходимо воспользоваться IP-адресом, разрешённым в системе безопасности сети. Такая атака возможна, если система безопасности позволяет идентификацию пользователя только по IP-адресу и не требует дополнительных подтверждений.

Man-in-the-Middle . Вид атаки, когда злоумышленник перехватывает канал связи между двумя системами, и получает доступ ко всей передаваемой информации. При получении доступа на таком уровне можно модифицировать информацию нужным образом, чтобы достичь своих целей. Цель такой атаки - кража или фальсифицированные передаваемой информации, или же получение доступа к ресурсам сети. Такие атаки крайне сложно отследить, так как обычно злоумышленник находится внутри организации.

Инъекция. Атака, связанная с различного рода инъекциями, подразумевает внедрение сторонних команд или данных в работающую систему с целью изменения хода работы системы, а в результате - получение доступа к закрытым функциям и информации, либо дестабилизации работы системы в целом. Наиболее популярна такая атака в сети Интернет, но также может быть проведена через командную строку системы.

Виды инъекций:

SQL-инъекция - атака, в ходе которой изменяются параметры SQL-запросов к базе данных. В результате запрос приобретает совершенно иной смысл, и в случае недостаточной фильтрации входных данных способен не только произвести вывод конфиденциальной информации, но и изменить/удалить данные. Очень часто такой вид атаки можно наблюдать на примере сайтов, которые используют параметры командной строки (в данном случае - переменные URL) для построения SQL-запросов к базам данных без соответствующей проверки.

PHP -инъекция – один из способов взлома веб-сайтов, работающих на PHP. Он заключается в том, чтобы внедрить специально сформированный злонамеренный сценарий в код веб-приложения на серверной стороне сайта, что приводит к выполнению произвольных команд. Известно, что во многих распространённых в интернете бесплатных движках и форумах, работающих на PHP (чаще всего это устаревшие версии) есть непродуманные модули или отдельные конструкции с уязвимостями. Хакеры анализируют такие уязвимости, как не экранированные переменные, получающие внешние значения.

C крипт-инъекция илиXSS Cross Site Scripting - тип уязвимости интерактивных информационных систем в вебе. «XSS» возникает, когда в генерируемые сервером страницы по какой-то причине попадают пользовательские скрипты. Специфика подобных атак заключается в том, что вместо непосредственной атаки сервера они используют уязвимый сервер в качестве средства атаки на клиента. Долгое время программисты не уделяли им должного внимания, считая их неопасными. Однако это мнение ошибочно: на странице или в HTTP- Cookies могут быть весьма уязвимые данные (например, идентификатор сессии администратора). На популярном сайте скрипт может устроить DoS-атакy.

XPath-инъекция. Вид уязвимостей, который заключается во внедрении XPath-выражений в оригинальный запрос к базе данных XML. Как и при остальных видах инъекций, уязвимость возможна ввиду недостаточной проверки входных данных.

DoS - (Denial of Service - Отказ в обслуживании) - атака, имеющая своей целью заставить сервер не отвечать на запросы. Такой вид атаки не подразумевает получение некоторой секретной информации, но иногда бывает подспорьем в инициализации других атак. Например, некоторые программы из-за ошибок в своем коде могут вызывать исключительные ситуации, и при отключении сервисов способны исполнять код, предоставленный злоумышленником или атаки лавинного типа, когда сервер не может обработать огромное количество входящих пакетов.

DDoS - (Distributed Denial of Service) - имеющий ту же цель что и DoS, но производимой не с одного компьютера, а с нескольких компьютеров в сети. В данных типах атак используется либо возникновение ошибок, приводящих к отказу сервиса, либо срабатывание защиты, приводящей к блокированию работы сервиса, а в результате также к отказу в обслуживании. DDoS используется там, где обычный DoS неэффективен. Для этого несколько компьютеров объединяются, и каждый производит DoS атаку на систему жертвы. Вместе это называется DDoS-атака.

Любая атака представляет собой не что иное, как попытку использовать несовершенство системы безопасности жертвы либо для получения информации, либо для нанесения вреда системе, поэтому причиной любой удачной атаки является профессионализм хакера и ценность информации, а так же недостаточная компетенция администратора системы безопасности в частности, несовершенство программного обеспечения, и недостаточное внимание к вопросам безопасности в компании в принципе.

Существует огромное множество различных конфигураций компьютеров, операционных систем и сетевого оборудования, однако, это не становится препятствием для доступа в глобальную сеть. Такая ситуация стала возможной, благодаря универсальному сетевому протоколу TCP/IP, устанавливающему определенные стандарты и правила для передачи данных через интернет. К сожалению, подобная универсальность привела к тому, что компьютеры, использующие данный протокол, стали уязвимы для внешнего воздействия, а поскольку протокол TCP/IP используется на всех компьютерах, подключенных к интернету, у злоумышленников нет необходимости разрабатывать индивидуальные средства доступа к чужим машинам.

Сетевая атака – это попытка воздействовать на удаленный компьютер с использованием программных методов. Как правило, целью сетевой атаки является нарушение конфиденциальности данных, то есть, кража информации. Кроме того, сетевые атаки проводятся для получения доступа к чужому компьютеру и последующего изменения файлов, расположенных на нем.

Есть несколько типов классификации сетевых атак. Один из них – по принципу воздействия. Пассивные сетевые атаки направлены на получение конфиденциальной информации с удаленного компьютера. К таким атакам, например, относится чтение входящих и исходящих сообщений по электронной почте. Что касается активных сетевых атак, то их задачей является не только доступ к тем или иным сведениям, но и их модификация. Одно из наиболее значимых различий между этими типами атак заключается в том, что обнаружить пассивное вмешательство практически невозможно, в то время как последствия активной атаки, как правило, заметны.

Кроме того, атаки классифицируются по тому, какие задачи они преследуют. Среди основных задач, как правило, выделяют нарушение работы компьютера, несанкционированный доступ к информации и скрытое изменение данных, хранящихся на компьютере. К примеру, взлом школьного сервера с целью изменить оценки в журналах относится к активным сетевым атакам третьего типа.

Технологии защиты

Методы защиты от сетевых атак разрабатываются и совершенствуются постоянно, однако полной гарантии ни один из них не дает. Дело в том, что любая статичная защита имеет слабые места, так как невозможно защититься от всего сразу. Что же касается динамических методов защиты, таких как статистические, экспертные, защиты с нечеткой логикой и нейронные сети, то они тоже имеют свои слабые места, поскольку основаны преимущественно на анализе подозрительных действий и сравнении их с известными методами сетевых атак. Следовательно, перед неизвестными типами атак большинство систем защиты пасует, начиная отражение вторжения слишком поздно. Тем не менее, современные защитные системы позволяют настолько осложнить злоумышленнику доступ к данным, что рациональнее бывает поискать другую жертву.

Интернет полностью меняет наш образ жизни: работу, учебу, досуг. Эти изменения будут происходить как в уже известных нам областях (электронная коммерция, доступ к информации в реальном времени, расширение возможностей связи и т.д.), так и в тех сферах, о которых мы пока не имеем представления.

Может наступить такое время, когда корпорация будет производить все свои телефонные звонки через Интернет, причем совершенно бесплатно. В частной жизни возможно появление специальных Web-сайтов, при помощи которых родители смогут в любой момент узнать, как обстоят дела у их детей. Наше общество только начинает осознавать безграничные возможности Интернета.

Введение

Одновременно с колоссальным ростом популярности Интернета возникает беспрецедентная опасность разглашения персональных данных, критически важных корпоративных ресурсов, государственных тайн и т.д.

Каждый день хакеры подвергают угрозе эти ресурсы, пытаясь получить к ним доступ при помощи специальных атак, которые постепенно становятся, с одной стороны, более изощренными, а с другой - простыми в исполнении. Этому способствуют два основных фактора.

Во-первых , это повсеместное проникновение Интернета. Сегодня к Сети подключены миллионы устройств, и многие миллионы устройств будут подключены к Интернету в ближайшем будущем, поэтому вероятность доступа хакеров к уязвимым устройствам постоянно возрастает.

Кроме того, широкое распространение Интернета позволяет хакерам обмениваться информацией в глобальном масштабе. Простой поиск по ключевым словам типа «хакер », «взлом », «hack », «crack » или «phreak » даст вам тысячи сайтов, на многих из которых можно найти вредоносные коды и способы их использования.

Во-вторых , это широчайшее распространение простых в использовании операционных систем и сред разработки. Данный фактор резко снижает уровень необходимых хакеру знаний и навыков. Раньше, чтобы создавать и распространять простые в использовании приложения, хакер должен был обладать хорошими навыками программирования.

Теперь, чтобы получить доступ к хакерскому средству, нужно только знать IP-адрес нужного сайта, а для проведения атаки достаточно щелкнуть мышью.

Классификация сетевых атак

Сетевые атаки столь же многообразны, как и системы, против которых они направлены. Некоторые атаки отличаются большой сложностью, другие по силам обычному оператору, даже не предполагающему, к каким последствиям может привести его деятельность. Для оценки типов атак необходимо знать некоторые ограничения, изначально присущие протоколу TPC/IP. Сеть

Интернет создавалась для связи между государственными учреждениями и университетами с целью оказания помощи учебному процессу и научным исследованиям. Создатели этой сети не подозревали, насколько широкое распространение она получит. В результате в спецификациях ранних версий Интернет-протокола (IP) отсутствовали требования безопасности. Именно поэтому многие реализации IP являются изначально уязвимыми.

Через много лет, после множества рекламаций (Request for Comments, RFC ), наконец стали внедряться средства безопасности для IP. Однако ввиду того, что изначально средства защиты для протокола IP не разрабатывались, все его реализации стали дополняться разнообразными сетевыми процедурами, услугами и продуктами, снижающими риски, присущие этому протоколу. Далее мы кратко рассмотрим типы атак, которые обычно применяются против сетей IP, и перечислим способы борьбы с ними.

Сниффер пакетов

Сниффер пакетов представляет собой прикладную программу, которая использует сетевую карту, работающую в режиме promiscuous mode (в этом режиме все пакеты, полученные по физическим каналам, сетевой адаптер отправляет приложению для обработки).

При этом сниффер перехватывает все сетевые пакеты, которые передаются через определенный домен. В настоящее время снифферы работают в сетях на вполне законном основании. Они используются для диагностики неисправностей и анализа трафика. Однако ввиду того, что некоторые сетевые приложения передают данные в текстовом формате (Telnet, FTP, SMTP, POP3 и т.д .), с помощью сниффера можно узнать полезную, а иногда и конфиденциальную информацию (например, имена пользователей и пароли).

Перехват имен и паролей создает большую опасность, так как пользователи часто применяют один и тот же логин и пароль для множества приложений и систем. Многие пользователи вообще имеют единый пароль для доступа ко всем ресурсам и приложениям.

Если приложение работает в режиме «клиент-сервер », а аутентификационные данные передаются по сети в читаемом текстовом формате, то эту информацию с большой вероятностью можно использовать для доступа к другим корпоративным или внешним ресурсам. Хакеры слишком хорошо знают и используют человеческие слабости (методы атак часто базируются на методах социальной инженерии).

Они прекрасно представляют себе, что мы пользуемся одним и тем же паролем для доступа к множеству ресурсов, и потому им часто удается, узнав наш пароль, получить доступ к важной информации. В самом худшем случае хакер получает доступ к пользовательскому ресурсу на системном уровне и с его помощью создает нового пользователя, которого можно в любой момент использовать для доступа в Сеть и к ее ресурсам.

Снизить угрозу сниффинга пакетов можно с помощью следующих средств :

Аутентификация . Сильные средства аутентификации являются важнейшим способом защиты от сниффинга пакетов. Под «сильными » мы понимаем такие методы аутентификации, которые трудно обойти. Примером такой аутентификации являются однократные пароли (One-Time Passwords, OTP ).

ОТР - это технология двухфакторной аутентификации, при которой происходит сочетание того, что у вас есть, с тем, что вы знаете. Типичным примером двухфакторной аутентификации является работа обычного банкомата, который опознает вас, во-первых, по вашей пластиковой карточке, а во-вторых, по вводимому вами пин-коду. Для аутентификации в системе ОТР также требуются пин-код и ваша личная карточка.

Под «карточкой » (token) понимается аппаратное или программное средство, генерирующее (по случайному принципу) уникальный одномоментный однократный пароль. Если хакер узнает данный пароль с помощью сниффера, то эта информация будет бесполезной, поскольку в этот момент пароль уже будет использован и выведен из употребления.

Отметим, что этот способ борьбы со сниффингом эффективен только в случаях перехвата паролей. Снифферы, перехватывающие другую информацию (например, сообщения электронной почты), не теряют своей эффективности.

Коммутируемая инфраструктура . Еще одним способом борьбы со сниффингом пакетов в вашей сетевой среде является создание коммутируемой инфраструктуры. Если, к примеру, во всей организации используется коммутируемый Ethernet, хакеры могут получить доступ только к трафику, поступающему на тот порт, к которому они подключены. Коммутируемая инфраструктура не устраняет угрозы сниффинга, но заметно снижает ее остроту.

Антиснифферы . Третий способ борьбы со сниффингом заключается в установке аппаратных или программных средств, распознающих снифферы, работающие в вашей сети. Эти средства не могут полностью ликвидировать угрозу, но, как и многие другие средства сетевой безопасности, они включаются в общую систему защиты. Антиснифферы измеряют время реагирования хостов и определяют, не приходится ли хостам обрабатывать лишний трафик. Одно из таких средств, поставляемых компанией LOpht Heavy Industries, называется AntiSniff.

Криптография . Этот самый эффективный способ борьбы со сниффингом пакетов хотя и не предотвращает перехвата и не распознает работу снифферов, но делает эту работу бесполезной. Если канал связи является криптографически защищенным, то хакер перехватывает не сообщение, а зашифрованный текст (то есть непонятную последовательность битов). Криптография Cisco на сетевом уровне базируется на протоколе IPSec, который представляет собой стандартный метод защищенной связи между устройствами с помощью протокола IP. К другим криптографическим протоколам сетевого управления относятся протоколы SSH (Secure Shell) и SSL (Secure Socket Layer) .

IP-спуфинг

IP-спуфинг происходит в том случае, когда хакер, находящийся внутри корпорации или вне ее, выдает себя за санкционированного пользователя. Это можно сделать двумя способами: хакер может воспользоваться или IP-адресом, находящимся в пределах диапазона санкционированных IP-адресов, или авторизованным внешним адресом, которому разрешается доступ к определенным сетевым ресурсам.

Атаки IP-спуфинга часто являются отправной точкой для прочих атак. Классический пример - атака DoS, которая начинается с чужого адреса, скрывающего истинную личность хакера.

Как правило, IP-спуфинг ограничивается вставкой ложной информации или вредоносных команд в обычный поток данных, передаваемых между клиентским и серверным приложением или по каналу связи между одноранговыми устройствами.

Для двусторонней связи хакер должен изменить все таблицы маршрутизации, чтобы направить трафик на ложный IP-адрес. Некоторые хакеры, однако, даже не пытаются получить ответ от приложений - если главная задача заключается в получении от системы важного файла, то ответы приложений не имеют значения.

Если же хакеру удается поменять таблицы маршрутизации и направить трафик на ложный IP-адрес, он получит все пакеты и сможет отвечать на них так, как будто является санкционированным пользователем.

Угрозу спуфинга можно ослабить (но не устранить) с помощью перечисленных ниже меров:

  • Контроль доступа . Самый простой способ предотвращения IP-спуфинга состоит в правильной настройке управления доступом. Чтобы снизить эффективность IP-спуфинга, настройте контроль доступа на отсечение любого трафика, поступающего из внешней сети с исходным адресом, который должен располагаться внутри вашей сети.

    Правда, это помогает бороться с IP-спуфингом, когда санкционированными являются только внутренние адреса; если же санкционированными являются и некоторые адреса внешней сети, данный метод становится неэффективным;

  • Фильтрация RFC 2827 . Вы можете пресечь попытки спуфинга чужих сетей пользователями вашей сети (и стать добропорядочным сетевым гражданином). Для этого необходимо отбраковывать любой исходящий трафик, исходный адрес которого не является одним из IP-адресов вашей организации.

    Данный тип фильтрации, известный под названием RFC 2827, может выполнять и ваш провайдер (ISP). В результате отбраковывается весь трафик, который не имеет исходного адреса, ожидаемого на определенном интерфейсе. К примеру, если ISP предоставляет соединение с IP-адресом 15.1.1.0/24, он может настроить фильтр таким образом, чтобы с данного интерфейса на маршрутизатор ISP допускался только трафик, поступающий с адреса 15.1.1.0/24.

Отметим, что до тех пор, пока все провайдеры не внедрят этот тип фильтрации, его эффективность будет намного ниже возможной. Кроме того, чем дальше от фильтруемых устройств, тем труднее проводить точную фильтрацию. Например , фильтрация RFC 2827 на уровне маршрутизатора доступа требует пропуска всего трафика с главного сетевого адреса (10.0.0.0/8), тогда как на уровне распределения (в данной архитектуре) можно ограничить трафик более точно (адрес - 10.1.5.0/24).

Наиболее эффективный метод борьбы с IP-спуфингом - тот же, что и в случае со сниффингом пакетов: необходимо сделать атаку абсолютно неэффективной. IP-спуфинг может функционировать только при условии, что аутентификация происходит на базе IP-адресов.

Поэтому внедрение дополнительных методов аутентификации делает подобные атаки бесполезными. Лучшим видом дополнительной аутентификации является криптографическая. Если она невозможна, хорошие результаты может дать двухфакторная аутентификация с использованием одноразовых паролей.

Отказ в обслуживании

Denial of Service (DoS) , без сомнения, является наиболее известной формой хакерских атак. Кроме того, против атак такого типа труднее всего создать стопроцентную защиту. Среди хакеров атаки DoS считаются детской забавой, а их применение вызывает презрительные усмешки, поскольку для организации DoS требуется минимум знаний и умений.

Тем не менее именно простота реализации и огромные масштабы причиняемого вреда привлекают к DoS пристальное внимание администраторов, отвечающих за сетевую безопасность. Если вы хотите больше узнать об атаках DoS, вам следует рассмотреть их наиболее известные разновидности, а именно:

  • TCP SYN Flood;
  • Ping of Death;
  • Tribe Flood Network (TFN) и Tribe Flood Network 2000 (TFN2K);
  • Trinco;
  • Stacheldracht;
  • Trinity.

Прекрасным источником информации по вопросам безопасности является группа экстренного реагирования на компьютерные проблемы (Computer Emergency Response Team, CERT), опубликовавшая отличную работу по борьбе с атаками DoS.

Атаки DoS отличаются от атак других типов. Они не нацелены ни на получение доступа к вашей сети, ни на получение из этой сети какой-либо информации, но атака DoS делает вашу сеть недоступной для обычного использования за счет превышения допустимых пределов функционирования сети, операционной системы или приложения.

В случае использования некоторых серверных приложений (таких как Web-сервер или FTP-сервер) атаки DoS могут заключаться в том, чтобы занять все соединения, доступные для этих приложений, и держать их в занятом состоянии, не допуская обслуживания рядовых пользователей. В ходе атак DoS могут использоваться обычные Интернет-протоколы, такие как TCP и ICMP (Internet Control Message Protocol ).

Большинство атак DoS рассчитано не на программные ошибки или бреши в системе безопасности, а на общие слабости системной архитектуры. Некоторые атаки сводят к нулю производительность сети, переполняя ее нежелательными и ненужными пакетами или сообщая ложную информацию о текущем состоянии сетевых ресурсов.

Данный тип атак трудно предотвратить, так как для этого требуется координация действий с провайдером. Если не остановить у провайдера трафик, предназначенный для переполнения вашей сети, то сделать это на входе в сеть вы уже не сможете, поскольку вся полоса пропускания будет занята. Когда атака данного типа проводится одновременно через множество устройств, мы говорим о распределенной атаке DoS (distributed DoS, DDoS ).

Угроза атак типа DoS может быть снижена тремя способами:

  • Функции антиспуфинга . Правильная конфигурация функций антиспуфинга на ваших маршрутизаторах и межсетевых экранах поможет снизить риск DoS. Эти функции как минимум должны включать фильтрацию RFC 2827. Если хакер не сможет замаскировать свою истинную личность, он вряд ли решится провести атаку.
  • Функции анти-DoS . Правильная конфигурация функций анти-DoS на маршрутизаторах и межсетевых экранах способна ограничить эффективность атак. Эти функции часто ограничивают число полуоткрытых каналов в любой момент времени.
  • Ограничение объема трафика (traffic rate limiting) . Организация может попросить провайдера (ISP) ограничить объем трафика. Этот тип фильтрации позволяет ограничить объем некритического трафика, проходящего по вашей сети. Типичным примером является ограничение объемов трафика ICMP, который используется только для диагностических целей. Атаки (D)DoS часто используют ICMP.

Парольные атаки

Хакеры могут проводить парольные атаки с помощью целого ряда методов, таких как простой перебор (brute force attack ), троянский конь, IP-спуфинг и сниффинг пакетов. Хотя логин и пароль зачастую можно получить при помощи IP-спуфинга и сниффинга пакетов, хакеры нередко пытаются подобрать пароль и логин, используя для этого многочисленные попытки доступа. Такой подход носит название простого перебора (brute force attack ).

Часто для такой атаки используется специальная программа, которая пытается получить доступ к ресурсу общего пользования (например, к серверу). Если в результате хакеру предоставляется доступ к ресурсам, то он получает его на правах обычного пользователя, пароль которого был подобран.

Если этот пользователь имеет значительные привилегии доступа, хакер может создать себе «проход » для будущего доступа, который будет действовать, даже если пользователь изменит свои пароль и логин.

Еще одна проблема возникает, когда пользователи применяют один и тот же (пусть даже очень хороший) пароль для доступа ко многим системам: к корпоративной, персональной и к системам Интернета. Поскольку устойчивость пароля равна устойчивости самого слабого хоста, то хакер, узнавший пароль через этот хост, получает доступ ко всем остальным системам, где используется тот же пароль.

Парольных атак можно избежать, если не пользоваться паролями в текстовой форме. Одноразовые пароли и/или криптографическая аутентификация могут практически свести на нет угрозу таких атак. К сожалению, не все приложения, хосты и устройства поддерживают вышеуказанные методы аутентификации.

При использовании обычных паролей старайтесь придумать такой, который было бы трудно подобрать. Минимальная длина пароля должна быть не менее восьми символов. Пароль должен включать символы верхнего регистра, цифры и специальные символы (#, %, $ и т.д.).

Лучшие пароли трудно подобрать и трудно запомнить, что вынуждает пользователей записывать их на бумаге. Чтобы избежать этого, пользователи и администраторы могут использовать ряд последних технологических достижений.

Так, например, существуют прикладные программы, шифрующие список паролей, который можно хранить в карманном компьютере. В результате пользователю нужно помнить только один сложный пароль, тогда как все остальные будут надежно защищены приложением.

Для администратора существует несколько методов борьбы с подбором паролей. Один из них заключается в использовании средства L0phtCrack , которое часто применяют хакеры для подбора паролей в среде Windows NT. Это средство быстро покажет вам, легко ли подобрать пароль, выбранный пользователем. Дополнительную информацию можно получить по адресу http://www.l0phtcrack.com/ .

Атаки типа Man-in-the-Middle

Для атаки типа Man-in-the-Middle хакеру нужен доступ к пакетам, передаваемым по сети. Такой доступ ко всем пакетам, передаваемым от провайдера в любую другую сеть, может, к примеру, получить сотрудник этого провайдера. Для атак данного типа часто используются снифферы пакетов, транспортные протоколы и протоколы маршрутизации.

Атаки проводятся с целью кражи информации, перехвата текущей сессии и получения доступа к частным сетевым ресурсам, для анализа трафика и получения информации о сети и ее пользователях, для проведения атак типа DoS, искажения передаваемых данных и ввода несанкционированной информации в сетевые сессии.

Эффективно бороться с атаками типа Man-in-the-Middle можно только с помощью криптографии. Если хакер перехватит данные зашифрованной сессии, у него на экране появится не перехваченное сообщение, а бессмысленный набор символов. Отметим, что если хакер получит информацию о криптографической сессии (например, ключ сессии), то это может сделать возможной атаку Man-in-the-Middle даже в зашифрованной среде.

Атаки на уровне приложений

Атаки на уровне приложений могут проводиться несколькими способами. Самый распространенный из них - использование хорошо известных слабостей серверного программного обеспечения (sendmail, HTTP, FTP ). Используя эти слабости, хакеры могут получить доступ к компьютеру от имени пользователя, работающего с приложением (обычно это бывает не простой пользователь, а привилегированный администратор с правами системного доступа).

Сведения об атаках на уровне приложений широко публикуются, чтобы дать администраторам возможность исправить проблему с помощью коррекционных модулей (патчей). К сожалению, многие хакеры также имеют доступ к этим сведениям, что позволяет им совершенствоваться.

Главная проблема при атаках на уровне приложений заключается в том, что хакеры часто пользуются портами, которым разрешен проход через межсетевой экран. К примеру, хакер, эксплуатирующий известную слабость Web-сервера, часто использует в ходе атаки ТСР порт 80. Поскольку web-сервер предоставляет пользователям Web-страницы, то межсетевой экран должен обеспечивать доступ к этому порту. С точки зрения межсетевого экрана атака рассматривается как стандартный трафик для порта 80.

Полностью исключить атаки на уровне приложений невозможно. Хакеры постоянно открывают и публикуют в Интернете новые уязвимые места прикладных программ. Самое главное здесь - хорошее системное администрирование. Вот некоторые меры, которые можно предпринять, чтобы снизить уязвимость для атак этого типа:

  • читайте лог-файлы операционных систем и сетевые лог-файлы и/или анализируйте их с помощью специальных аналитических приложений;
  • подпишитесь на услуги по рассылке данных о слабых местах прикладных программ: Bugtrad (http://www.securityfocus.com ).

Сетевая разведка

Сетевой разведкой называется сбор информации о сети с помощью общедоступных данных и приложений. При подготовке атаки против какой-либо сети хакер, как правило, пытается получить о ней как можно больше информации. Сетевая разведка проводится в форме запросов DNS, эхо-тестирования и сканирования портов.

Запросы DNS помогают понять, кто владеет тем или иным доменом и какие адреса этому домену присвоены. Эхо-тестирование адресов, раскрытых с помощью DNS, позволяет увидеть, какие хосты реально работают в данной среде. Получив список хостов, хакер использует средства сканирования портов, чтобы составить полный список услуг, поддерживаемых этими хостами. И наконец, хакер анализирует характеристики приложений, работающих на хостах. В результате он добывает информацию, которую можно использовать для взлома.

Полностью избавиться от сетевой разведки невозможно. Если, к примеру, отключить эхо ICMP и эхо-ответ на периферийных маршрутизаторах, то вы избавитесь от эхо-тестирования, но потеряете данные, необходимые для диагностики сетевых сбоев.

Кроме того, сканировать порты можно и без предварительного эхо-тестирования - просто это займет больше времени, так как сканировать придется и несуществующие IP-адреса. Системы IDS на уровне сети и хостов обычно хорошо справляются с задачей уведомления администратора о ведущейся сетевой разведке, что позволяет лучше подготовиться к предстоящей атаке и оповестить провайдера (ISP), в сети которого установлена система, проявляющая чрезмерное любопытство:

  1. пользуйтесь самыми свежими версиями операционных систем и приложений и самыми последними коррекционными модулями (патчами);
  2. кроме системного администрирования, пользуйтесь системами распознавания атак (IDS) - двумя взаимодополняющими друг друга технологиями ID:
    • сетевая система IDS (NIDS) отслеживает все пакеты, проходящие через определенный домен. Когда система NIDS видит пакет или серию пакетов, совпадающих с сигнатурой известной или вероятной атаки, она генерирует сигнал тревоги и/или прекращает сессию;
    • система IDS (HIDS) защищает хост с помощью программных агентов. Эта система борется только с атаками против одного хоста.

В своей работе системы IDS пользуются сигнатурами атак, которые представляют собой профили конкретных атак или типов атак. Сигнатуры определяют условия, при которых трафик считается хакерским. Аналогами IDS в физическом мире можно считать систему предупреждения или камеру наблюдения.

Самым большим недостатком IDS является их способность генерировать сигналы тревоги. Чтобы минимизировать количество ложных сигналов тревоги и добиться корректного функционирования системы IDS в сети, необходима тщательная настройка этой системы.

Злоупотребление доверием

Собственно говоря, этот тип действий не является в полном смысле слова атакой или штурмом. Он представляет собой злонамеренное использование отношений доверия, существующих в сети. Классическим примером такого злоупотребления является ситуация в периферийной части корпоративной сети.

В этом сегменте часто располагаются серверы DNS, SMTP и HTTP. Поскольку все они принадлежат к одному и тому же сегменту, взлом любого из них приводит к взлому всех остальных, так как эти серверы доверяют другим системам своей сети.

Другим примером является установленная с внешней стороны межсетевого экрана система, имеющая отношения доверия с системой, установленной с его внутренней стороны. В случае взлома внешней системы хакер может использовать отношения доверия для проникновения в систему, защищенную межсетевым экраном.

Риск злоупотребления доверием можно снизить за счет более жесткого контроля уровней доверия в пределах своей сети. Системы, расположенные с внешней стороны межсетевого экрана, ни при каких условиях не должны пользоваться абсолютным доверием со стороны защищенных экраном систем.

Отношения доверия должны ограничиваться определенными протоколами и, по возможности, аутентифицироваться не только по IP-адресам, но и по другим параметрам.

Переадресация портов

Переадресация портов представляет собой разновидность злоупотребления доверием, когда взломанный хост используется для передачи через межсетевой экран трафика, который в противном случае был бы обязательно отбракован. Представим себе межсетевой экран с тремя интерфейсами, к каждому из которых подключен определенный хост.

Внешний хост может подключаться к хосту общего доступа (DMZ), но не к тому, что установлен с внутренней стороны межсетевого экрана. Хост общего доступа может подключаться и к внутреннему, и к внешнему хосту. Если хакер захватит хост общего доступа, он сможет установить на нем программное средство, перенаправляющее трафик с внешнего хоста прямо на внутренний.

Хотя при этом не нарушается ни одно правило, действующее на экране, внешний хост в результате переадресации получает прямой доступ к защищенному хосту. Примером приложения, которое может предоставить такой доступ, является netcat. Более подробную информацию можно получить на сайте http://www.avian.org .

Основным способом борьбы с переадресацией портов является использование надежных моделей доверия (см. предыдущий раздел). Кроме того, помешать хакеру установить на хосте свои программные средства может хост-система IDS (HIDS).

Несанкционированный доступ

Несанкционированный доступ не может быть выделен в отдельный тип атаки, поскольку большинство сетевых атак проводятся именно ради получения несанкционированного доступа. Чтобы подобрать логин Тelnet, хакер должен сначала получить подсказку Тelnet на своей системе. После подключения к порту Тelnet на экране появляется сообщение «authorization required to use this resource» («Для пользования этим ресурсом нужна авторизация »).

Если после этого хакер продолжит попытки доступа, они будут считаться несанкционированными. Источник таких атак может находиться как внутри сети, так и снаружи.

Способы борьбы с несанкционированным доступом достаточно просты. Главным здесь является сокращение или полная ликвидация возможностей хакера по получению доступа к системе с помощью несанкционированного протокола.

В качестве примера можно рассмотреть недопущение хакерского доступа к порту Telnet на сервере, который предоставляет Web-услуги внешним пользователям. Не имея доступа к этому порту, хакер не сможет его атаковать. Что же касается межсетевого экрана, то его основной задачей является предотвращение самых простых попыток несанкционированного доступа.

Вирусы и приложения типа «троянский конь»

Рабочие станции конечных пользователей очень уязвимы для вирусов и троянских коней. Вирусами называются вредоносные программы, которые внедряются в другие программы для выполнения определенной нежелательной функции на рабочей станции конечного пользователя. В качестве примера можно привести вирус, который прописывается в файле command.com (главном интерпретаторе систем Windows) и стирает другие файлы, а также заражает все другие найденные им версии command.com.

Троянский конь - это не программная вставка, а настоящая программа, которая на первый взгляд кажется полезным приложением, а на деле исполняет вредную роль. Примером типичного троянского коня является программа, которая выглядит, как простая игра для рабочей станции пользователя.

Однако пока пользователь играет в игру, программа отправляет свою копию по электронной почте каждому абоненту, занесенному в адресную книгу этого пользователя. Все абоненты получают по почте игру, вызывая ее дальнейшее распространение.

Эта статья для тех, кто впервые столкнулся с необходимостью установить удаленное соединение с базой данных MySQL. В статье рассказывается о сложностях, которые…

Почти на каждом сайте с регистрацией есть форма "Вспомнить пароль", с ее помощью можно получить забытый пароль не E-Mail. Высылать пароль не совсем безопасно,…

В настоящее время DDoS — один из наиболее доступных и распространенных видов сетевых атак. Несколько недель назад были опубликованы результаты исследований о распространенности DDoS, проведенных компаниями Arbor Networks, Verisign Inc.

Результаты исследований впечатляют:
Каждый день злоумышленники проводят более 2000 DDoS-атак;
Стоимость недельной атаки на средней величины ЦОД составляет всего 150 долларов США;
Более половины участников опроса испытывали проблемы из-за DDoS;
Десятая часть участников опроса ответила, что их компании страдали от DDoS-атак более шести раз за год;
Около половины компаний испытывали проблемы из-за DDoS, время средней атаки — около 5 часов;
Атаки такого типа являются одной из основных причин остановки и простоя серверов.

Основные виды DDoS-атак

В общем-то, разновидностей DDoS довольно много, и ниже мы постарались перечислить большинство типовых атак, с описанием принципа действия кажого типа атаки.

UDP флуд

Один из наиболее действенных, и в то же время, простых видов атак. Используется UDP протокол, где не требуется установление сессии с отправкой любого типа ответа. В случайном порядке злоумышленник атакует порты сервера, отсылая огромное количество пакетов данных. В результате машина начинает проверять, используется ли порт, на который приходит пакет, каким-либо приложением. А поскольку таких пакетов — масса, то машина любой мощности просто не справляется с задачей. Как результат — все ресурсы машины «съедены», и сервер «ложится».

Наиболее простой способ защиты от такого типа атак — это блокирование UDP трафика.

ICMP флуд

Злоумышленник постоянно пингует сервер жертвы, в ходе чего последний постоянно отдает ответы. Пингов огромное количество, и, как результат — съедаются ресурсы сервера, и машина становится недоступной.

В качестве меры защиты можно использовать блокировку ICMP-запросов, на уровне брандмауэра. К сожалению, в таком случае пинговать машину не получится по понятным причинам.

SYN флуд

В этом типе атаки используется отправка SYN-пакета серверу жертвы. Как результат — сервер отвечает пакетом SYN-ACK, а машина злоумышленника должна отправить ACK-ответ, но он не отправляется. Результат — открытие и подвисание огромного количества соединений, которые закрываются только по истечению таймаута.

При превышении граничного количества запросов/ответов сервер жертвы перестает принимать пакеты любого типа, и становится недоступным.

MAC флуд

Необычный тип атаки, в котором объектом становится сетевое оборудование многих типов. Злоумышленник начинает отправлять большое количество Ethernet-пакетов с совершенно различными MAC-адресами. Как результат — свитч начинает резервировать под каждый из пакетов определенное количество ресурсов, и если пакетов много, то свитч выделяет все доступные запросы, и подвисает. Худший вариант — сбой таблицы маршрутизации.

Ping of Death

Сейчас этот тип атак не является сколько-нибудь серьезной проблемой, хотя раньше это был распространенный вариант атаки. Смысл такого типа атаки — переполнение буфера памяти из-за превышения максимально доступного размера IP пакета, и как результат — отказ сервера и сетевого оборудования от обслуживания любого типа пакетов.

Slowloris

Сфокусированная атака такого типа позволяет малыми силами добиться крупных результатов. Другими словами, используя не самый мощный сервер, можно «положить» гораздо более производительное оборудование. При этом не требуется задействовать другие протоколы. При таком типе атак сервер злоумышленника открывает максимальное количество НТТР-соединений, и старается держать их открытыми также как можно дольше.

Само собой, количество подключений на сервере, подверженному атаке, заканчивается, и полезные запросы перестают приниматься и обрабатываться.

Отражённые атаки

Необычный тип атаки, когда сервер злоумышленника отправляет пакеты с фальшивым IP отправителя, причем отправка идет по максимально возможному количеству машин. Все затронутые такими действиями сервера отправляют ответ на укзанный в пакете IP, в результате чего получатель не справляется с нагрузкой и «подвисает». При этом производительность сервера атакующего может быть в 10 раз ниже планируемой мощности атаки. Сервер, рассылающий 100 Мбит/сек ложных запросов, может полностью положить гигабитный канал сервера жертвы.

Деградация

При таком типе атаки сервер злоумышленника симулирует действия реального человека или целой аудитории. Как пример самого простого варианта — можно отсылать запросы для одной и той же страницы ресурса, причем делать это тысячи раз. Наиболее простой способ решения проблемы — временное сообщение об ошибки с блокированием атакуемой страницы.

Более сложный тип атаки — запрос большого количества различных ресурсов сервера, включая медиафайлы, страницы и все прочее, в результате чего сервер жерты перестает работать.

Сложные атаки такого типа довольно сложно отфильтровать, как результат — приходится использовать специализированные программы и сервисы.

Атака нулевого дня

Так называют атаки, где используются неизвестные доселе уязвимости/слабые места сервиса. Для борьбы с проблемой необходимо изучить такой тип атаки, чтобы можно было что-то предпринять.

Вывод: наиболее сложным типом атаки являются комбинированные, где используются различные виды DDoS. Чем сложнее комбинация, тем сложнее от нее защититься. Общей проблемой для DDoS, вернее, для жертв DDoS, является общедоступность такого типа атак. В Сети есть большое количество приложений и сервисов, позволяющих бесплатно или почти бесплатно осуществлять мощнейшие атаки.

переполнение буферов, являются составной частью многих видов вредоносных атак. Атаки переполнения имеют, в свою очередь , много разновидностей. Одна из наиболее опасных предполагает ввод в диалоговое окно , помимо текста, присоединенного к нему исполняемого кода. Такой ввод может привести к записи этого кода поверх исполняемой программы, что рано или поздно вызовет его исполнение . Последствия нетрудно себе представить.

"Пассивные" атаки с помощью, например, sniffer , особенно опасны, так как, во-первых, практически не детектируемы, во-вторых, предпринимаются из локальной сети (внешний Firewall бессилен).

Вирусы - вредоносные программы, способные к самокопированию и к саморассылке. Еще в декабре 1994 года я получил предупреждение о распространении сетевых вирусов (good times и xxx-1) по Интернет :

С момента создания до момента обнаружения вируса проходят часы, дни, недели, а иногда и месяцы. Это зависит от того, насколько быстро проявляются последствия заражения. Чем это время больше, тем большее число ЭВМ оказывается заражено. После выявления факта заражения и распространения новой разновидности вируса требуется от пары часов (например, для Email_Worm.Win32.Bagle.bj) до трех недель (W32.Netsky.N@mm) на выявление сигнатуры, создания противоядия и включения его сигнатуры в базу данных противовирусной программы. Временная диаграмма жизненного цикла вируса представлена на рис. 12.1 (" Network Security ", v.2005, Issue 6, June 2005, p 16-18). Только за 2004 год зарегистрировано 10000 новых сигнатур вирусов . Червь Blaster заразил 90% машин за 10 минут. За это время антивирусная группа должна обнаружить объект , квалифицировать и разработать средство противодействия. Понятно, что это нереально. Так что антивирусная программа является не столько средством противодействия, сколько успокоительным . Эти же соображения справедливы и для всех других видов атак. Когда сигнатура атаки становится известной, сама атака обычно не опасна, так как уже выработаны средства противодействия и уязвимость перекрыта. Именно по этой причине такое внимание уделяется системе управления программными обновлениями (пэтчами).

Некоторые вирусы и черви имеют встроенные SMTP-программы, предназначенные для их рассылки, и люки для беспрепятственного проникновения в зараженную машину. Новейшие версии снабжены средствами подавления активности других вирусов или червей. Таким образом могут создаваться целые сети зараженных машин (BotNet ), готовых по команде начать, например, DDoS -атаку. Для управления такими машинами-зомби может использоваться протокол IRC ( Internet Relay Chart ). Эта система рассылки сообщений поддерживается большим числом серверов и поэтому такой канал обычно трудно отследить и запротоколировать. Этому способствует также то, что большинство систем более тщательно контролируют входной трафик, а не выходной. Следует иметь в виду, что зараженная машина может служить, помимо DoS-атак , для сканирования других ЭВМ и рассылки SPAM , для хранения нелегальных программных продуктов, для управления самой машиной и кражи документов, хранящихся там, для выявления паролей и ключей, используемых хозяином. Ущерб от вируса Blaster оценивается в 475000$.

К сожалению, пока не придумано надежных средств обнаружения новых вирусов (сигнатура которых не известна) .


Рис. 12.1.

В 2005 году выявлена еще одна угроза – распространение вирусов и сетевых червей с помощью программ-роботов поисковых систем ( bots ), базирующихся на IRC .

Программы bots не всегда опасны, некоторые их разновидности применяются для сбора данных, в частности, о предпочтениях клиентов, а в поисковой системе Google они работают для сбора и индексации документов. Но в руках хакера эти программы превращаются в опасное оружие. Наиболее известная атака была предпринята в 2005 году, хотя подготовка и "первые опыты" начались в сентябре 2004 года. Программа искала машины со специфическими уязвимостями, в частности, LSASS ( Local Security Authority Subsystem Service , Windows ). Подсистема LSASS, призванная способствовать обеспечению безопасности, оказалась сама уязвимой для атак типа переполнения буфера. Хотя уязвимость уже ликвидирована, число машин с необновленной версией остается значительным. После вторжения хакер обычно использует IRC для выполнения нужных ему операций (открытие определенного порта, рассылка SPAM , запуск сканирования других потенциальных жертв). Новой особенностью таких программ является их встраивание в операционную системы таким образом (rootkit ), что они не могут быть обнаружены, так как размещаются в зоне ядра ОС. Если антивирусная программы попытается получить доступ к определенной области памяти с целью выявления вредоносного кода, rootkit перехватывает такой запрос и отправляет тестирующей программе уведомление, что все в порядке. Что еще хуже, bot-программы могут модифицировать содержимое



Загрузка...