sonyps4.ru

Функция: область определения и область значений функций. Как найти область определения функции

Функция y=f(x) — это такая зависимость переменной y от переменной x , когда каждому допустимому значению переменной x соответствует единственное значение переменной y .

Областью определения функции D(f) называют множество всех допустимых значений переменной x .

Область значений функции E(f) — множество всех допустимых значений переменной y .

График функции y=f(x) — множество точек плоскости, координаты которых удовлетворяют данной функциональной зависимости, то есть точек, вида M (x; f(x)) . График функции представляет собой некоторую линию на плоскости.

Если b=0 , то функция примет вид y=kx и будет называться прямой пропорциональностью .

D(f) : x \in R;\enspace E(f) : y \in R

График линейной функции — прямая.

Угловой коэффициент k прямой y=kx+b вычисляется по следующей формуле:

k= tg \alpha , где \alpha — угол наклона прямой к положительному направлению оси Ox .

1) Функция монотонно возрастает при k > 0 .

Например: y=x+1

2) Функция монотонно убывает при k < 0 .

Например: y=-x+1

3) Если k=0 , то придавая b произвольные значения, получим семейство прямых параллельных оси Ox .

Например: y=-1

Обратная пропорциональность

Обратной пропорциональностью называется функция вида y=\frac {k}{x} , где k — отличное от нуля, действительное число

D(f) : x \in \left \{ R/x \neq 0 \right \}; \: E(f) : y \in \left \{R/y \neq 0 \right \} .

Графиком функции y=\frac {k}{x} является гипербола.

1) Если k > 0 , то график функции будет располагаться в первой и третьей четверти координатной плоскости.

Например: y=\frac{1}{x}

2) Если k < 0 , то график функции будет располагаться во второй и четвертой координатной плоскости.

Например: y=-\frac{1}{x}

Степенная функция

Степенная функция — это функция вида y=x^n , где n — отличное от нуля, действительное число

1) Если n=2 , то y=x^2 . D(f) : x \in R; \: E(f) : y \in ; основной период функции T=2 \pi

Функция с квадратным корнем определена только при тех значениях «икс», когдаподкоренное выражение неотрицательно : . Если корень расположился в знаменателе , то условие очевидным образом ужесточается: . Аналогичные выкладки справедливы для любого корня положительной чётной степени: , правда, корень уже 4-ой степени в исследованиях функций не припоминаю.

Пример 5


Решение : подкоренное выражение должно быть неотрицательным:

Прежде чем продолжить решение, напомню основные правила работы с неравенствами, известные ещё со школы.

Обращаю особое внимание! Сейчас рассматриваются неравенства с одной переменной – то есть для нас существует только одна размерность по оси . Пожалуйста, не путайте снеравенствами двух переменных , где геометрически задействована вся координатная плоскость. Однако есть и приятные совпадения! Итак, для неравенства равносильны следующие преобразования:

1) Слагаемые можно переносить из части в часть со сменой знака.

2) Обе части неравенства можно умножить на положительное число.

3) Если обе части неравенства умножить на отрицательное число, то необходимо сменитьзнак самого неравенства . Например, если было «больше», то станет «меньше»; если было «меньше либо равно», то станет «больше либо равно».

В неравенстве перенесём «тройку» в правую часть со сменой знака (правило №1):

Умножим обе части неравенства на –1 (правило №3):

Умножим обе части неравенства на (правило №2):

Ответ : область определения:

Ответ также можно записать эквивалентной фразой: «функция определена при ».
Геометрически область определения изображается штриховкой соответствующих интервалов на оси абсцисс. В данном случае:

Ещё раз напоминаю геометрический смысл области определения – график функции существует только на заштрихованном участке и отсутствует при .

В большинстве случаев годится чисто аналитическое нахождение области определения, но когда функция сильно заморочена, следует чертить ось и делать пометки.

Пример 6

Найти область определения функции

Это пример для самостоятельного решения.

Когда под квадратным корнем находится квадратный двучлен или трёхчлен, ситуация немного усложняется, и сейчас мы подробно разберём технику решения:

Пример 7

Найти область определения функции

Решение : подкоренное выражение должно быть строго положительным, то есть нам необходимо решить неравенство . На первом шаге пытаемся разложить квадратный трёхчлен на множители:

Дискриминант положителен, ищем корни:

Таким образом, парабола пересекает ось абсцисс в двух точках, а это значит, что часть параболы расположена ниже оси (неравенство ), а часть параболы – выше оси (нужное нам неравенство ).


Поскольку коэффициент , то ветви параболы смотрят вверх. Из вышесказанного следует, что на интервалах выполнено неравенство (ветки параболы уходят вверх на бесконечность), а вершина параболы расположена на промежутке ниже оси абсцисс, что соответствует неравенству :

! Примечание: если вам не до конца понятны объяснения, пожалуйста, начертите вторую ось и параболу целиком! Целесообразно вернуться к статье Графики и свойства элементарных функций и методичке Горячие формулы школьного курса математики .

Обратите внимание, что сами точки выколоты (не входят в решение), поскольку неравенство у нас строгое.

Ответ : область определения:

Вообще, многие неравенства (в том числе рассмотренное) решаются универсальнымметодом интервалов , известным опять же из школьной программы. Но в случаях квадратных дву- и трёхчленов, на мой взгляд, гораздо удобнее и быстрее проанализировать расположение параболы относительно оси . А основной способ – метод интервалов мы детально разберём в статье Нули функции. Интервалы знакопостоянства .

Пример 8

Найти область определения функции

Это пример для самостоятельного решения. В образце подробно закомментирована логика рассуждений + второй способ решения и ещё одно важное преобразование неравенства, без знания которого студент будет хромать на одну ногу…, …хмм… на счёт ноги, пожалуй, погорячился, скорее – на один палец. Большой палец.

Может ли функция с квадратным корнем быть определена на всей числовой прямой? Конечно. Знакомые всё лица: . Или аналогичная сумма с экспонентой: . Действительно, для любых значения «икс» и «ка»: , поэтому подАвно и .. Например, функция определена на всей числовой прямой. Однако у функции единственная точка всё же не входит в область определения, поскольку обращают знаменатель в ноль. По той же причине для функции исключаются точки .

Некоторым посетителям сайта рассматриваемые примеры покажутся элементарными и примитивными, но в этом нет случайности – во-первых, я стараюсь «заточить» материал для нубов, а во-вторых, подбираю реалистичные вещи под грядущие задачи: полное исследование функции , нахождение области определения функции двух переменных и некоторые другие. Всё в математике цепляется друг за дружку. Хотя любители трудностей тоже не останутся обделёнными, более солидные задания встретятся и здесь, и на уроке
о методе интервалов .

Для начала научимся находить область определения суммы функций . Понятно, что такая функция имеет смысл для всех таких значений переменной, при которой имеют смысл все функции, составляющие сумму. Поэтому не вызывает сомнений справедливость следующего утверждения:

Если функция f - это сумма n функций f 1 , f 2 , …, f n , то есть, функция f задается формулой y=f 1 (x)+f 2 (x)+…+f n (x) , то областью определения функции f является пересечение областей определения функций f 1 , f 2 , …, f n . Запишем это как .

Давайте условимся и дальше использовать записи, подобные последней, под которыми будем понимать , записанных внутри фигурной скобки, либо одновременное выполнение каких-либо условий. Это удобно и достаточно естественно перекликается со смыслом систем.

Пример.

Дана функция y=x 7 +x+5+tgx , и надо найти ее область определения.

Решение.

Функция f представлена суммой четырех функций: f 1 - степенной функции с показателем 7 , f 2 - степенной функции с показателем 1 , f 3 - постоянной функции и f 4 - функции тангенс.

Взглянув в таблицу областей определения основных элементарных функций, находим, что D(f 1)=(−∞, +∞) , D(f 2)=(−∞, +∞) , D(f 3)=(−∞, +∞) , а областью определения тангенса является множество всех действительных чисел, кроме чисел .

Область определения функции f – это пересечение областей определения функций f 1 , f 2 , f 3 и f 4 . Достаточно очевидно, что это есть множество всех действительных чисел, за исключением чисел .

Ответ:

множество всех действительных чисел, кроме .

Переходим к нахождению области определения произведения функций . Для этого случая имеет место аналогичное правило:

Если функция f - это произведение n функций f 1 , f 2 , …, f n , то есть, функция f задается формулой y=f 1 (x)·f 2 (x)·…·f n (x) , то область определения функции f есть пересечение областей определения функций f 1 , f 2 , …, f n . Итак, .

Оно и понятно, в указанной области определены все функции произведения, а значит и сама функция f .

Пример.

Y=3·arctgx·lnx .

Решение.

Структуру правой части формулы, задающей функцию, можно рассматривать так f 1 (x)·f 2 (x)·f 3 (x) , где f 1 – это постоянная функция, f 2 – это функция арктангенс, а f 3 – логарифмическая функция с основанием e .

Нам известно, что D(f 1)=(−∞, +∞) , D(f 2)=(−∞, +∞) и D(f 3)=(0, +∞) . Тогда .

Ответ:

областью определения функции y=3·arctgx·lnx является множество всех действительных положительных чисел.

Отдельно остановимся на нахождении области определения функции, заданной формулой y=C·f(x) , где С – некоторое действительное число. Легко показать, что область определения этой функции и область определения функции f совпадают. Действительно, функция y=C·f(x) – это произведение постоянной функции и функции f . Областью определения постоянной функции является множество всех действительных чисел, а область определения функции f есть D(f) . Тогда область определения функции y=C·f(x) есть , что и требовалось показать.

Итак, области определения функций y=f(x) и y=C·f(x) , где С – некоторое действительное число, совпадают. Например, область определения корня есть , становится ясно, что D(f) - это множество всех x из области определения функции f 2 , для которых f 2 (x) входит в область определения функции f 1 .

Таким образом, область определения сложной функции y=f 1 (f 2 (x)) - это пересечение двух множеств: множества всех таких x , что x∈D(f 2) , и множества всех таких x , для которых f 2 (x)∈D(f 1) . То есть, в принятых нами обозначениях (это по сути система неравенств).

Давайте рассмотрим решения нескольких примеров. В процессе мы не будем подробно описывать , так как это выходит за рамки этой статьи.

Пример.

Найти область определения функции y=lnx 2 .

Решение.

Исходную функцию можно представить в виде y=f 1 (f 2 (x)) , где f 1 – логарифм с основанием e , а f 2 – степенная функция с показателем 2 .

Обратившись к известным областям определения основных элементарных функций, имеем D(f 1)=(0, +∞) и D(f 2)=(−∞, +∞) .

Тогда

Так мы нашли нужную нам область определения функции, ей является множество всех действительных чисел, кроме нуля.

Ответ:

(−∞, 0)∪(0, +∞) .

Пример.

Какова область определения функции ?

Решение.

Данная функция сложная, ее можно рассматривать как y=f 1 (f 2 (x)) , где f 1 – степенная функция с показателем , а f 2 – функция арксинус, и нам нужно найти ее область определения.

Посмотрим, что нам известно: D(f 1)=(0, +∞) и D(f 2)=[−1, 1] . Остается найти пересечение множеств таких значений x , что x∈D(f 2) и f 2 (x)∈D(f 1) :

Чтобы arcsinx>0 вспомним свойства функции арксинус . Арксинус возрастает на всей области определения [−1, 1] и обращается в ноль при x=0 , следовательно, arcsinx>0 для любого x из промежутка (0, 1] .

Вернемся к системе:

Таким образом, искомая область определения функции есть полуинтервал (0, 1] .

Ответ:

(0, 1] .

Теперь давайте перейдем к сложным функциям общего вида y=f 1 (f 2 (…f n (x)))) . Область определения функции f в этом случае находится как .

Пример.

Найти область определения функции .

Решение.

Заданную сложную функцию можно расписать как y=f 1 (f 2 (f 3 (x))) , где f 1 – sin , f 2 – функция корень четвертой степени, f 3 – lg .

Нам известно, что D(f 1)=(−∞, +∞) , D(f 2)=}

Загрузка...