sonyps4.ru

Функциональное программирование пример программы. Классификация функциональных языков

Функциональное программирование предполагает обходиться вычислением результатов функций от исходных данных и результатов других функций, и не предполагает явного хранения состояния программы. Соответственно, не предполагает оно и изменяемость этого состояния (в отличие от императивного , где одной из базовых концепций является переменная , хранящая своё значение и позволяющая менять его по мере выполнения алгоритма).

На практике отличие математической функции от понятия «функции» в императивном программировании заключается в том, что императивные функции могут опираться не только на аргументы, но и на состояние внешних по отношению к функции переменных, а также иметь побочные эффекты и менять состояние внешних переменных. Таким образом, в императивном программировании при вызове одной и той же функции с одинаковыми параметрами, но на разных этапах выполнения алгоритма, можно получить разные данные на выходе из-за влияния на функцию состояния переменных. А в функциональном языке при вызове функции с одними и теми же аргументами мы всегда получим одинаковый результат: выходные данные зависят только от входных. Это позволяет средам выполнения программ на функциональных языках кешировать результаты функций и вызывать их в порядке, не определяемом алгоритмом и распараллеливать их без каких-либо дополнительных действий со стороны программиста (см.ниже )

Языки функционального программирования

  • LISP - (Джон МакКарти , ) и множество его диалектов, наиболее современные из которых:
  • Erlang - (Joe Armstrong, ) функциональный язык с поддержкой процессов.
  • APL - предшественник современных научных вычислительных сред, таких как MATLAB .
  • (Робин Милнер , , из ныне используемых диалектов известны Standard ML и Objective CAML).
  • - функциональный язык семейства ML для платформы .NET
  • Miranda (Дэвид Тёрнер , , который впоследствии дал развитие языку Haskell).
  • Nemerle - гибридный функционально/императивный язык.
  • Haskell - чистый функциональный. Назван в честь Хаскелла Карри .

Ещё не полностью функциональные изначальные версии и Lisp и APL внесли особый вклад в создание и развитие функционального программирования. Более поздние версии Lisp, такие как Scheme , а также различные варианты APL поддерживали все свойства и концепции функционального языка .

Как правило, интерес к функциональным языкам программирования, особенно чисто функциональным, был скорее научный, нежели коммерческий. Однако, такие примечательные языки как Erlang, OCaml , Haskell , Scheme (после 1986) а также специфические (статистика), Mathematica (символьная математика), и K (финансовый анализ), и XSLT (XML) находили применение в индустрии коммерческого программирования. Такие широко распространенные декларативные языки как SQL и Lex /Yacc содержат некоторые элементы функционального программирования, например, они остерегаются использовать переменные. Языки работы с электронными таблицами также можно рассматривать как функциональные, потому что в ячейках электронных таблиц задаётся массив функций, как правило зависящих лишь от других ячеек, а при желании смоделировать переменные приходится прибегать к возможностям императивного языка макросов.

История

Первым функциональным языком был Lisp , созданный Джоном МакКарти в период его работы в в конце пятидесятых и реализованный, первоначально, для IBM 700/7000 (англ.) русск. . Lisp ввел множество понятий функционального языка, хотя при этом исповедовал не только парадигму функционального программирования . Дальнейшим развитием лиспа стали такие языки как Scheme и Dylan .

Концепции

Некоторые концепции и парадигмы специфичны для функционального программирования и в основном чужды императивному программированию (включая объектно-ориентированное программирование). Тем не менее, языки программирования обычно представляют собой гибрид нескольких парадигм программирования, поэтому «большей частью императивные» языки программирования могут использовать какие-либо из этих концепций.

Функции высших порядков

Функции высших порядков - это такие функции, которые могут принимать в качестве аргументов и возвращать другие функции. Математики такую функцию чаще называют оператором , например, оператор взятия производной или интегральный оператор.

Функции высших порядков позволяют использовать карринг - преобразование функции от пары аргументов в функцию, берущую свои аргументы по одному. Это преобразование получило свое название в честь Х. Карри .

Чистые функции

Чистыми называют функции, которые не имеют побочных эффектов ввода-вывода и памяти (они зависят только от своих параметров и возвращают только свой результат). Чистые функции обладают несколькими полезными свойствами, многие из которых можно использовать для оптимизации кода:

  • Если результат чистой функции не используется, он может быть удален без вреда для других выражений.
  • Результат вызова чистой функции может быть мемоизирован , то есть сохранен в таблице значений вместе с аргументами вызова. Если в дальнейшем функция вызывается с этими же аргументами, ее результат может быть взят прямо из таблицы, не вычисляясь (иногда это называется принципом прозрачности ссылок). Мемоизация , ценой небольшого расхода памяти, позволяет существенно увеличить производительность и уменьшить порядок роста некоторых рекурсивных алгоритмов.
  • Если нет никакой зависимости по данным между двумя чистыми функциями, то порядок их вычисления можно поменять или распараллелить (говоря иначе вычисление чистых функций удовлетворяет принципам thread-safe)
  • Если весь язык не допускает побочных эффектов, то можно использовать любую политику вычисления. Это предоставляет свободу компилятору комбинировать и реорганизовывать вычисление выражений в программе (например, исключить древовидные структуры).

Хотя большинство компиляторов императивных языков программирования распознают чистые функции и удаляют общие подвыражения для вызовов чистых функций, они не могут делать это всегда для предварительно скомпилированных библиотек, которые, как правило, не предоставляют эту информацию. Некоторые компиляторы, такие как gcc , в целях оптимизации предоставляют программисту ключевые слова для обозначения чистых функций . Fortran 95 позволяет обозначать функции как «pure» (чистые) .

Рекурсия

Рекурсивные функции можно обобщить с помощью функций высших порядков, используя, например, катаморфизм и анаморфизм (или «свертка» и «развертка»). Функции такого рода играют роль такого понятия как цикл в императивных языках программирования.

Подход к вычислению аргументов

Функциональные языки можно классифицировать по тому, как обрабатываются аргументы функции в процессе её вычисления. Технически различие заключается в денотационной семантике выражения. К примеру, при строгом подходе к вычислению выражения

Print (len ([ 2 +1 , 3 *2 , 1 /0 , 5 -4 ] ) )

на выходе будет ошибка, так как в третьем элементе списка присутствует деление на ноль. При нестрогом подходе значением выражения будет 4, поскольку для вычисления длины списка значения его элементов, строго говоря, не важны и могут вообще не вычисляться. При строгом (аппликативном) порядке вычисления заранее подсчитываются значения всех аргументов перед вычислением самой функции. При нестрогом подходе (нормальный порядок вычисления) значения аргументов не вычисляются до тех пор, пока их значение не понадобится при вычислении функции .

Как правило, нестрогий подход реализуется в виде редукции графа. Нестрогое вычисление используется по умолчанию в нескольких чисто функциональных языках, в том числе Miranda , Clean и Haskell .

ФП в нефункциональных языках

Принципиально нет препятствий для написания программ в функциональном стиле на языках, которые традиционно не считаются функциональными, точно так же, как программы в объектно-ориентированном стиле можно писать на структурных языках. Некоторые императивные языки поддерживают типичные для функциональных языков конструкции, такие как функции высшего порядка и списковые включения (list comprehensions), что облегчает использование функционального стиля в этих языках. Примером может быть функциональное программирование на языке Python .

Стили программирования

Императивные программы имеют склонность акцентировать последовательности шагов для выполнения какого-то действия, а функциональные программы к расположению и композиции функций, часто не обозначая точной последовательности шагов. Простой пример двух решений одной задачи (используется один и тот же язык Python) иллюстрирует это.

# императивный стиль target = # создать пустой список for item in source_list: # для каждого элемента исходного списка trans1 = G(item) # применить функцию G() trans2 = F(trans1) # применить функцию F() target.append (trans2) # добавить преобразованный элемент в список

Функциональная версия выглядит по-другому:

# функциональный стиль # языки ФП часто имеют встроенную функцию compose() compose2 = lambda A, B: lambda x: A(B(x) ) target = map (compose2(F, G) , source_list)

В отличие от императивного стиля, описывающего шаги, ведущие к достижению цели, функциональный стиль описывает математические отношения между данными и целью.

Особенности

Основной особенностью функционального программирования, определяющей как преимущества, так и недостатки данной парадигмы, является то, что в ней реализуется модель вычислений без состояний . Если императивная программа на любом этапе исполнения имеет состояние, то есть совокупность значений всех переменных, и производит побочные эффекты, то чисто функциональная программа ни целиком, ни частями состояния не имеет и побочных эффектов не производит. То, что в императивных языках делается путём присваивания значений переменным, в функциональных достигается путём передачи выражений в параметры функций. Непосредственным следствием становится то, что чисто функциональная программа не может изменять уже имеющиеся у неё данные, а может лишь порождать новые путём копирования и/или расширения старых. Следствием того же является отказ от циклов в пользу рекурсии.

Сильные стороны

Повышение надёжности кода

Привлекательная сторона вычислений без состояний - повышение надёжности кода за счёт чёткой структуризации и отсутствия необходимости отслеживания побочных эффектов. Любая функция работает только с локальными данными и работает с ними всегда одинаково, независимо от того, где, как и при каких обстоятельствах она вызывается. Невозможность мутации данных при пользовании ими в разных местах программы исключает появление труднообнаруживаемых ошибок (таких, например, как случайное присваивание неверного значения глобальной переменной в императивной программе).

Удобство организации модульного тестирования

Поскольку функция в функциональном программировании не может порождать побочные эффекты, менять объекты нельзя как внутри области видимости, так и снаружи (в отличие от императивных программ, где одна функция может установить какую-нибудь внешнюю переменную, считываемую второй функцией). Единственным эффектом от вычисления функции является возвращаемый ей результат, и единственный фактор, оказывающий влияние на результат - это значения аргументов.

Таким образом, имеется возможность протестировать каждую функцию в программе, просто вычислив её от различных наборов значений аргументов. При этом можно не беспокоиться ни о вызове функций в правильном порядке, ни о правильном формировании внешнего состояния. Если любая функция в программе проходит модульные тесты, то можно быть уверенным в качестве всей программы. В императивных программах проверка возвращаемого значения функции недостаточна: функция может модифицировать внешнее состояние, которое тоже нужно проверять, чего не нужно делать в функциональных программах .

Возможности оптимизации при компиляции

Традиционно упоминаемой положительной особенностью функционального программирования является то, что оно позволяет описывать программу в так называемом «декларативном» виде, когда жесткая последовательность выполнения многих операций, необходимых для вычисления результата, в явном виде не задаётся, а формируется автоматически в процессе вычисления функций. Это обстоятельство, а также отсутствие состояний даёт возможность применять к функциональным программам достаточно сложные методы автоматической оптимизации.

Возможности параллелизма

Ещё одним преимуществом функциональных программ является то, что они предоставляют широчайшие возможности для автоматического распараллеливания вычислений. Поскольку отсутствие побочных эффектов гарантировано, в любом вызове функции всегда допустимо параллельное вычисление двух различных параметров - порядок их вычисления не может оказать влияния на результат вызова.

Недостатки

Недостатки функционального программирования вытекают из тех же самых его особенностей. Отсутствие присваиваний и замена их на порождение новых данных приводят к необходимости постоянного выделения и автоматического освобождения памяти, поэтому в системе исполнения функциональной программы обязательным компонентом становится высокоэффективный сборщик мусора . Нестрогая модель вычислений приводит к непредсказуемому порядку вызова функций, что создает проблемы при вводе-выводе, где порядок выполнения операций важен. Кроме того, очевидно, функции ввода в своем естественном виде (например, getchar из стандартной библиотеки языка ) не являются чистыми, поскольку способны возвращать различные значения для одних и тех же аргументов, и для устранения этого требуются определенные ухищрения.

Для преодоления недостатков функциональных программ уже первые языки функционального программирования включали не только чисто функциональные средства, но и механизмы императивного программирования (присваивание, цикл, «неявный PROGN» были уже в LISPе). Использование таких средств позволяет решить некоторые практические проблемы, но означает отход от идей (и преимуществ) функционального программирования и написание императивных программ на функциональных языках. В чистых функциональных языках эти проблемы решаются другими средствами, например, в языке Haskell ввод-вывод реализован при помощи монад - нетривиальной концепции, позаимствованной из теории категорий.

См. также

  • Анаморфизм
  • Катаморфизм

Примечания

  1. А. Филд, П. Харрисон Функциональное программирование: Пер. с англ. - М.: Мир, 1993. - 637 с, ил. ISBN 5-03-001870-0 . Стр. 120 [Глава 6: Математические основы: λ-исчисление].
  2. Tiobe Programming Community Index
  3. Пол Хьюдак (англ.) русск. (September 1989). «Conception, evolution, and application of functional programming languages » (PDF). ACM Computing Surveys 21 (3): 359-411. DOI :10.1145/72551.72554 .
  4. Роджер Пенроуз Глава 2: Лямбда-исчисление Черча // Новый ум короля. О компьютерах, мышлении и законах физики = The Emperors New Mind: Concerning Computers, Minds and The Laws of Physics. - Едиториал УРСС, 2003. - ISBN 5-354-00005-X + переиздание ISBN 978-5-382-01266-7 ; 2011 г.
  5. McCarthy, John (June 1978). «History of Lisp ». In ACM SIGPLAN History of Programming Languages Conference : 217–223. DOI :10.1145/800025.808387 .
  6. , Гл. 3. λ-исчисление как язык программирования
  7. В своих мемуарах Герберт Саймон (1991), Models of My Life pp.189-190 ISBN 0-465-04640-1 утверждает, что его, Al. Ньюэлл, и Клифф Шоу которых «часто называют родителями искусственного интеллекта» за написание программы Logic Theorist (англ.) русск. автоматически доказывающей теоремы из Principia Mathematica (англ.) русск. . Для того, чтобы достичь этого, они должны были придумать язык и парадигму, которую, ретроспективно, можно рассматривать как функциональное программирование.
  8. History of Programming Languages: IPL
  9. XIV. APL Session // History of Programming Language / Richard L. Wexelbblat. - Academic Press, 1981. - С. 661-693. - 749 с.
  10. Скачать PDF: «Техники функционального программирования, В. А. Потапенко» стр. 8 «Функции высших порядков» .
  11. GCC, Declaring Attributes of Functions
  12. XL Fortran for AIX, V13.1 > Language Reference, Pure procedures (Fortran 95)
  13. Tail call optimization

Рассказываем о принципах функционального программирования: какие у него минусы, и какие языки относятся к функциональным.

Основные концепции

Функциональное программирование основывается на нескольких важных концепциях: отсутствие побочных эффектов и изменяемых данных, чистые функции и их композиция. Давайте рассмотрим каждую из них.

Чистые функции

Чистая функция максимально проста. Она должна всегда возвращать один и тот же результат. Посмотрите на эту JavaScript-функцию:

var z = 10; function add(x, y) { return x + y; }

var z = 10 ;

function add (x , y ) {

return x + y ;

Конечно, это искусственный пример, но он очень хорошо демонстрирует, как должна работать чистая функция. При одних и тех же значениях x и y мы всегда будем получать одинаковый результат функции. Предсказуемость – важная часть работы программы в функциональном программировании.

Изменяемые данные и побочные эффекты

Вернемся к примеру кода. Если мы добавим в качестве аргумента функции add() , переменную z , которая объявлена выше, наша функция перестанет быть чистой и предсказуемой. Почему? Потому что z объявлена как обычная переменная: она доступна для изменения из любого места программы.

Идея неизменности в функциональном программировании заключается в том, что переменные не могут быть изменены после объявления.

Корректный код чистой функции с z должен выглядеть так:

const x = 10; const z = 10; add (x, z); // вернет 20

const x = 10 ;

const z = 10 ;

add (x , z ) ; // вернет 20

В этом случае функция всегда будет возвращать предсказуемый результат. Если функция не будет работать предсказуемо – это приведет к нежелательным побочным эффектам.

Еще один пример не функционального кода – классические циклы. Вспомним, как выглядит типичный цикл for в JavaScript:

var acc = 0; for (var i = 1; i <= 10; ++i) { acc += i; } console.log(acc); // выведет 55

var acc = 0 ;

for (var i = 1 ; i <= 10 ; ++ i ) {

acc += i ;

console . log (acc ) ; // выведет 55

Первое, на что нужно обратить внимание, – то, что цикл использует var i для подсчета шагов. В функциональном программировании использование такого цикла неприемлемо, так как это может привести к непредсказуемому поведению цикла.

Чтобы избежать побочных эффектов, в ФП для создания циклов используются рекурсивные функции.

function sumRange(start, end, acc) { if (start > end) { return acc; } else { return sumRange(start + 1, end, acc + start); } } console.log(sumRange(1, 10, 0)); // выведет 55

function sumRange (start , end , acc ) {

if (start > end ) {

return acc ;

} else {

return sumRange (start + 1 , end , acc + start ) ;

console . log (sumRange (1 , 10 , 0 ) ) ; // выведет 55

Такая конструкция позволяет использовать константы для определения начала, конца цикла и шага. В основе такого типа цикла лежит идея вызова функции внутри себя, или рекурсивного вызова. В примере выше функция sumRange() с заданными аргументами делает проверку условия, и в случае ложного результата вызывает саму себя с измененными аргументами.

Композиция функций

Композиция функций – это подход в функциональном программировании, который подразумевает вызов одних функций в качестве аргументов других, для создания сложных составных функций из более простых.

function addOne(x) { return x + 1; } function timesTwo(x) { return x * 2; } console.log(addOne(timesTwo(3))); // выведет 7 console.log(timesTwo(addOne(3))); // выведет 8

function addOne (x ) {

return x + 1 ;

function timesTwo (x ) {

В примере выше мы описали две простые функции: addOne (прибавляет к аргументу единицу) и timesTwo (умножает аргумент на два). Техника компоновки позволяет нам вызывать две эти функции друг в друге в разном порядке. В результате, с разным логическим порядком вызова чистых функций и одинаковым значением аргумента мы получили более сложный функционал, который дает нам необходимый результат и делает это предсказуемо.

Польза функционального программирования

Функциональное программирование помогает сделать код более чистым, предсказуемым и легко читаемым. Использование принципов ФП помогает избавиться от лишних абстракций с непредсказуемым поведением, следовательно, сделать работу программы более предсказуемой и снизить количество возможных ошибок.

Недостатки функционального программирования

Функциональное программирование плохо подходит для алгоритмов, основанных на графах из-за сравнительно более медленной работы программы. ФП в целом плохо применимо в решениях, которые годами основывались на использовании императивного подхода.

Самое важное – в функциональных языках нет эффективного неупорядоченного словаря множества. В сравнении с хэш-таблицами, функциональные словари работают значительно хуже, а это может быть критично для некоторых приложений. Однако указанные недостатки можно отнести только к императивным языкам.

Функциональное программирование в языках

Так как функциональное программирование – это прежде всего подход к написанию кода, использовать его принципы можно в любом языке. Однако существуют языки, специально заточенные под функциональный подход. Первый и самый известный из них – Lisp. Он появился еще в 1958 году. Его автор – Джон Маккарти, информатик и автор термина «искусственный интеллект». Lisp по сей день популярен в среде проектировщиков ИИ.

Более современные функциональные языки, такие как Elm и Elixir, по данным GitHub и Stack Overflow постепенно и уверенно набирают популярность. Рост популярности JavaScript также привел к повышенному интересу к концепциям функционального программирования для применения в этом языке.

Если вы новичок в мире программирования, то возможно ещё не знаете, что существуют три основных парадигмы: логическое программирование, императивное и функциональное.

В первом случае основные принципы понятны: вы оперируете математической логикой для вывода новых фактов и состояний из уже известных. Ярким примером такого языка является Prolog.

Принцип работы с императивным программированием, наиболее распространённым, заключается в формировании инструкций, последовательных команд, которые должна выполнять машина. За примерами далеко ходить не надо, просто откройте список самых популярных языков программирования: те, что сверху - императивные.

А вот функциональное программирование – это то, что понять после классической школьной программы уроков информатики бывает сложно. Именно поэтому для общего развития и возможного будущего опыта вот наиболее полезные ресурсы по функциональному программированию.

Что это

Итак, как мы уже выяснили, императивное программирование работает со строго определёнными состояниями и инструкциями. Функциональное же основывается на взаимодействии с функциями, то есть некими процессами, описывающими связь между входными и выходными параметрами. Таким образом, в то время, как императивный язык описывает конкретное действие с известными входными параметрами, функциональный описывает некое тело взаимодействий, не опускаясь до конкретных случаев.

Функциональное программирование, несмотря на кажущуюся сложность, несёт в себе ряд преимуществ:

  1. Код становится короче;
  2. Понятнее;
  3. Включает в себя признаки хороших императивных языков: модульность, типизация, чистота кода.

Примерами функциональных языков являются LISP (Clojure), Haskell, Scala, R. В общем-то, вы даже можете попробовать писать функциональный код на Python или Ruby, но это больше развлечение для мозгов, нежели рациональное использование возможностей языка.

Конкретнее

Логично, что по функциональному программированию, существующему уже почти 50 лет, написано множество книг и статей. Поэтому какой смысл представлять собственную версию «ФП для чайников», если всё уже в прекрасном и удобочитаемом виде давно есть в сети? Поэтому просто поделимся ссылками:

  1. , имеющая исторический экскурс, яркие образы, но главное хорошие примеры. Имеется перевод .
  2. Книга , которую необходимо прочитать каждому функциональщику, если можно так выразиться. Тоже есть на русском .
  3. Онлайн-курс , который можно прослушать на английском языке. Будем надеяться, что-то похожее скоро появится и у нас на GeekBrains.
  4. Забавное и познавательное слад-шоу на тему функционального программирования.
  5. Прекрасная книга про Haskell, написанная доступным языком (русским), для тех, кто созрел для полноценного изучения первого функционального языка. Справочник прилагается.
  6. Для тех, кто предпочитает начать изучение не с простого, а с хронологического начала – перевод книги Кристиана Кеннека «Les Langages Lisp». Она же «Lisp in Small Pieces».


Куда с этими знаниями идти

Что касается области применения, то функциональное программирование является незаменимым инструментом при создании искусственного интеллекта или в тех областях, где императивные языки потребляют слишком много ресурсов (например, в ). Так что если решили направить свою дальнейшую карьеру в это русло, то самое время обложиться описанной выше литературой и оставить свой след в чьей-то виртуальной голове.

Отложенные вычисления

В традиционных языках программирования (например, C++) вызов функции приводит к вычислению всех аргументов. Этот метод вызова функции называется вызов-по-значению. Если какой-либо аргумент не использовался в функции, то результат вычислений пропадает, следовательно, вычисления были произведены впустую. В каком-то смысле противоположностью вызова-по-значению является вызов-по-необходимости. В этом случае аргумент вычисляется, только если он нужен для вычисления результата. Примером такого поведения можно взять оператор конъюнкции всё из того же C++ (&&), который не вычисляет значение второго аргумента, если первый аргумент имеет ложное значение.

Если функциональный язык не поддерживает отложенные вычисления, то он называется строгим. На самом деле, в таких языках порядок вычисления строго определен. В качестве примера строгих языков можно привести Scheme, Standard ML и Caml.

Языки, использующие отложенные вычисления, называются нестрогими. Haskell - нестрогий язык, так же как, например, Gofer и Miranda. Нестрогие языки зачастую являются чистыми.

Очень часто строгие языки включают в себя средства поддержки некоторых полезных возможностей, присущих нестрогим языкам, например бесконечных списков. В поставке Standard ML присутствует специальный модуль для поддержки отложенных вычислений. А Objective Caml помимо этого поддерживает дополнительное зарезервированное слово lazy и конструкцию для списков значений, вычисляемых по необходимости.

В этом разделе приведено краткое описание некоторых языков функционального программирования (очень немногих).

§ Lisp (List processor). Считается первым функциональным языком программирования. Нетипизирован. Содержит массу императивных свойств, однако в общем поощряет именно функциональный стиль программирования. При вычислениях использует вызов-по-значению. Существует объектно-ориентированный диалект языка - CLOS.

§ ISWIM (If you See What I Mean). Функциональный язык-прототип. Разработан Ландиным в 60-х годах XX века для демонстрации того, каким может быть язык функционального программирования. Вместе с языком Ландин разработал и специальную виртуальную машину для исполнения программ на ISWIM’е. Эта виртуальная машина, основанная на вызове-по-значению, получила название SECD-машины. На синтаксисе языка ISWIM базируется синтаксис многих функциональных языков. На синтаксис ISWIM похож синтаксис ML, особенно Caml.

§ Scheme . Диалект Lisp’а, предназначенный для научных исследований в области computer science. При разработке Scheme был сделан упор на элегантность и простоту языка. Благодаря этому язык получился намного меньше, чем Common Lisp.


§ ML (Meta Language). Семейство строгих языков с развитой полиморфной системой типов и параметризуемыми модулями. ML преподается во многих западных университетах (в некоторых даже как первый язык программирования).

§ Standard ML . Один из первых типизированных языков функционального программирования. Содержит некоторые императивные свойства, такие как ссылки на изменяемые значения и поэтому не является чистым. При вычислениях использует вызов-по-значению. Очень интересная реализация модульности. Мощная полиморфная система типов. Последний стандарт языка - Standard ML-97, для которого существует формальные математические определения синтаксиса, а также статической и динамической семантик языка.

§ Caml Light и Objective Caml . Как и Standard ML принадлежит к семейству ML. Objective Caml отличается от Caml Light в основном поддержкой классического объектно-ориентированного программирования. Также как и Standard ML строгий, но имеет некоторую встроенную поддержку отложенных вычислений.

§ Miranda . Разработан Дэвидом Тернером, в качестве стандартного функционального языка, использовавшего отложенные вычисления. Имеет строгую полиморфную систему типов. Как и ML преподаётся во многих университетах. Оказал большое влияние на разработчиков языка Haskell.

§ Haskell . Один из самых распространённых нестрогих языков. Имеет очень развитую систему типизации. Несколько хуже разработана система модулей. Последний стандарт языка - Haskell-98.

§ Gofer (GOod For Equational Reasoning). Упрощённый диалект Haskell’а. Предназначен для обучения функциональному программированию.

§ Clean . Специально предназначен для параллельного и распределённого программирования. По синтаксису напоминает Haskell. Чистый. Использует отложенные вычисления. С компилятором поставляется набор библиотек (I/O libraries), позволяющих программировать графический пользовательский интерфейс под Win32 или MacOS.

Напомним, что важнейшей характеристикой функционального подхода является то обстоятельство, что всякая программа, разработанная на языке функционального программирования, может рассматриваться как функция, аргументы которой, возможно, также являются функциями.

Функциональный подход породил целое семейство языков, родоначальником которых, как уже отмечалось, стал язык программирования LISP. Позднее, в 70-х годах, был разработан первоначальный вариант языка ML, который впоследствии развился, в частности, в SML, а также ряд других языков. Из них, пожалуй, самым "молодым" является созданный уже совсем недавно, в 90-х годах, язык Haskell.

Важным преимуществом реализации языков функционального программирования является автоматизированное динамическое распределение памяти компьютера для хранения данных. При этом программист избавляется от необходимости контролировать данные, а если потребуется, может запустить функцию «сборки мусора» – очистки памяти от тех данных, которые больше не понадобятся программе.

Сложные программы при функциональном подходе строятся посредством агрегирования функций. При этом текст программы представляет собой функцию, некоторые аргументы которой можно также рассматривать как функции. Таким образом, повторное использование кода сводится к вызову ранее описанной функции, структура которой, в отличие от процедуры императивного языка, математически прозрачна.

Поскольку функция является естественным формализмом для языков функционального программирования, реализация различных аспектов программирования, связанных с функциями, существенно упрощается. Интуитивно прозрачным становится написание рекурсивных функций, т.е. функций, вызывающих самих себя в качестве аргумента. Естественной становится и реализация обработки рекурсивных структур данных.

Благодаря реализации механизма сопоставления с образцом, такие языки функционального программирования как ML и Haskell хорошо использовать для символьной обработки.

Естественно, языки функционального программирования не лишены и некоторых недостатков.

Часто к ним относят нелинейную структуру программы и относительно невысокую эффективность реализации. Однако первый недостаток достаточно субъективен, а второй успешно преодолен современными реализациями, в частности, рядом последних трансляторов языка SML, включая и компилятор для среды Microsoft .NET.

Для профессиональной разработки программного обеспечения на языках функционального программирования необходимо глубоко понимать природу функции.

Заметим, что под термином "функция" в математической формализации и программной реализации имеются в виду различные понятия.

Так, математической функцией f с областью определения A и областью значений B называется множество упорядоченных пар

таких, что если

(a,b 1) f и (a,b 2) f,

В свою очередь, функцией в языке программирования называется конструкция этого языка, описывающая правила преобразования аргумента (так называемого фактического параметра) в результат.

Для формализации понятия "функция" была построена математическая теория, известная под названием лямбда-исчисления. Более точно это исчисление следует именовать исчислением лямбда-конверсий.

Под конверсией понимается преобразование объектов исчисления (а в программировании – функций и данных) из одной формы в другую. Исходной задачей в математике было стремление к упрощению формы выражений. В программировании именно эта задача не является столь существенной, хотя, как мы увидим в дальнейшем, использование лямбда-исчисления как исходной формализации может способствовать упрощению вида программы, т.е. вести к оптимизации программного кода.

Кроме того, конверсии обеспечивают переход к вновь введенным обозначениям и, таким образом, позволяют представлять предметную область в более компактном либо более детальном виде, или, говоря математическим языком, изменять уровень абстракции по отношению к предметной области. Эту возможность широко используют также языки объектно-ориентированного и структурно-модульного программирования в иерархии объектов, фрагментов программ и структур данных. На этом же принципе основано взаимодействие компонентов приложения в.NET. Именно в этом смысле переход к новым обозначениям является одним из важнейших элементов программирования в целом, и именно лямбда-исчисление (в отличие от многих других разделов математики) представляет собой адекватный способ формализации переобозначений.

Систематизируем эволюцию теорий, лежащих в основе современного подхода к лямбда-исчислению.

Рассмотрим эволюцию языков программирования, развивающихся в рамках функционального подхода.

Ранние языки функционального программирования, которые берут свое начало от классического языка LISP (LISt Processing), были предназначены, для обработки списков, т.е. символьной информации. При этом основными типами были атомарный элемент и список из атомарных элементов, а основной акцент делался на анализе содержимого списка.

Развитием ранних языков программирования стали языки функционального программирования с сильной типизацией, характерным примером здесь является классический ML, и его прямой потомок SML. В языках с сильной типизацией каждая конструкция (или выражение) должна иметь тип.

При этом в более поздних языках функционального программирования нет необходимости в явном приписывании типа, и типы изначально неопределенных выражений, как в SML, могут выводиться (до запуска программы), исходя из типов связанных с ними выражений.

Следующим шагом в развитии языков функционального программирования стала поддержка полиморфных функций, т.е. функций с параметрическими аргументами (аналогами математической функции с параметрами). В частности, полиморфизм поддерживается в языках SML, Miranda и Haskell.

На современном этапе развития возникли языки функционального программирования "нового поколения" со следующими расширенными возможностями: сопоставление с образцом (Scheme, SML, Miranda, Haskell), параметрический полиморфизм (SML) и так называемые "ленивые" (по мере необходимости) вычисления (Haskell, Miranda, SML).

Семейство языков функционального программирования довольно многочисленно. Об этом свидетельствует не столько значительный список языков, сколько тот факт, что многие языки дали начало целым направлениям в программировании. Напомним, что LISP дал начало целому семейству языков: Scheme, InterLisp, COMMON Lisp и др.

Не стал исключением и язык программирования SML, который был создан в форме языка ML Р. Милнером (Robin Milner) в MIT (Massachusetts Institute of Technology) и первоначально предназначен для логических выводов, в частности, доказательства теорем. Язык отличается строгой типизацией, в нем отсутствует параметрический полиморфизм.

Развитием "классического" ML стали сразу три современных языка с практически одинаковыми возможностями (параметрический полиморфизм, сопоставление с образцом, "ленивые" вычисления). Это язык SML, разработанный в Великобритании и США, CaML, созданный группой французских ученых института INRIA, SML/NJ – диалект SML из New Jersey, а также российская разработка – mosml ("московский" диалект ML).

Близость к математической формализации и изначальная функциональная ориентированность послужили причиной следующих преимуществ функционального подхода:

1. простота тестирования и верификации программного кода на основе возможности построения строгого математического доказательства корректности программ;

2. унификация представления программы и данных (данные могут быть инкапсулированы в программу как аргументы функций, означивание или вычисление значения функции может производиться по мере необходимости);

3. безопасная типизация: недопустимые операции с данными исключены;

4. динамическая типизация: возможно обнаружение ошибок типизации во время выполнения (отсутствие этого свойства в ранних языках функционального программирования может приводить к переполнению оперативной памяти компьютера);

5. независимость программной реализации от машинного представления данных и системной архитектуры программы (программист сосредоточен на деталях реализации, а не на особенностях машинного представления данных).

Заметим, что реализация преимуществ, которые предоставляют языки функционального программирования, существенно зависит от выбора программно-аппаратной платформы.

В случае выбора в качестве программной платформы технологии.NET, практически вне зависимости от аппаратной реализации, программист или руководитель программного проекта дополнительно получает следующие преимущества:

1. интеграция различных языков функционального программирования (при этом максимально используются преимущества каждого из языков, в частности, Scheme предоставляет механизм сопоставления с образцом, а SML – возможность вычисления по мере необходимости);

2. интеграция различных подходов к программированию на основе межъязыковой инфраструктуры Common Language Infrastructure, или CLI (в частности, возможно использование C# для обеспечения преимуществ объектно-ориентированного подхода и SML – функционального, как в настоящем курсе);

3. общая унифицированная система типизации Common Type System, CTS (единообразное и безопасное управление типами данных в программе);

4. многоступенчатая, гибкая система обеспечения безопасности программного кода (в частности, на основе механизма сборок).

Основными особенностями функциональных языков программирования, отличающими их как от императивных языков, так и от языков логического программирования, являются прозрачность по ссылкам и детерминизм. В функциональных языках существует значительный разброс по таким параметрам как типизация, правила вычисления. Во многих языках порядок вычисления строго определен. Но иногда строгие языки содержат средства поддержки некоторых полезных элементов, присущих нестрогим языкам, например бесконечных списков (в Standard ML присутствует специальный модуль для поддержки отложенных вычислений). Напротив, нестрогие языки позволяют в некоторых случаях выполнять энергичные вычисления.

Так, Miranda имеет ленивую семантику, но позволяет специфицировать строгие конструкторы, пометив определенным образом аргументы конструктора.

Многие современные языки функционального программирования являются строго типизированными языками (строгая типизация). Строгая типизация обеспечивает большую безопасность. Многие ошибки могут быть исправлены на стадии компиляции, поэтому стадия отладки и общее время разработки программ сокращаются. Строгая типизация позволяет компилятору генерировать более эффективный код и тем самым ускорять выполнение программ. Наряду с этим, существуют функциональные языки с динамической типизацией. Тип данных в таких языках определяется во время выполнения программы (гл. 3). Иногда их называют «безтиповыми». К их, достоинствам следует отнести то, что программы, написанные на этих языках, обладают большей общностью. Недостатком можно считать отнесение многих ошибок на стадию выполнения программы и связанную с этим необходимость применения функций проверки типов и соответствующее сокращение общности программы. Типизированные языки способствуют генерации более «надежного» кода, а типизированные более «общего».

Следующим критерием, по которому можно провести классификацию функциональных языков программирования, может стать наличие императивных механизмов. При этом принято называть функциональные языки программирования, лишенные императивных механизмов, «чистыми», а имеющие их – «нечистыми». В обзоре функциональных языков программирования, приведенном ниже, языки программирования будут называться «практическими» и «академическими». Под «практическими» языками понимаются языки, имеющие коммерческое приложение (на них разрабатывались реальные приложения или были коммерческие системы программирования). Академические языки программирования имеют популярность в исследовательских кругах и в области компьютерного образования, но коммерческих приложений, написанных на таких языках, практически нет. Они остаются всего лишь инструментом при проведении теоретических исследований в области информатики и широко используются в образовательном процессе.

Перечень наиболее популярных функциональных языков программирования приводится ниже с использованием следующих критериев: общие сведения; типизация; вид вычисления; чистота.

Common Lisp. Версия Лиспа, которая с 1970 г. может считаться стандартом языка, благодаря поддержке со стороны лаборатории искусственного интеллекта Массачусетского технологического института, безтиповый, энергичный, с большим набором императивных включений, допускающих присваивание, разрушение структур. Практический. Достаточно сказать, что на Лиспе был написан векторный графический редактор Автокад.

Scheme. Диалект Лиспа, предназначенный для научных исследований в области компьютерной науки и обучения функциональному программированию. Благодаря отсутствию императивных включений язык получился намного меньше, чем Common Lisp. Восходит к языку, разработанному Дж. Маккарти в 1962 г. Академический, безтиповый, энергичный, чистый.

Refal. Семейство языков, разработанных В. Ф. Турчиным. Старейший член этого семейства впервые реализован в 1968 году в России. Широко используется и поныне в академических кругах. Содержит элементы логического программирования (сопоставление с образцом). Поэтому язык Refal предлагается в данном учебном пособии в качестве языка для самостоятельного изучения.

Miranda. Строго типизированный, поддерживает типы данных пользователя и полиморфизм. Разработан Тернером на основе более ранних языков SALS и KRC. Имеет ленивую семантику. Без императивных включений.

Haskell. Развитие языка пришлось на конец прошлого века. Широко известен в академических кругах. В некоторых западных университетах используется в качестве основного языка для изучения студентами. Один из наиболее мощных функциональных языков. Ленивый язык. Чисто функциональный язык. Типизированный. Haskell – отличный инструмент для обучения и экспериментов со сложными функциональными типами данных. Программы, написанные на Haskell, имеют значительный размер объектного кода и невысокую скорость исполнения.

Clean. Диалект Haskell, приспособленный к нуждам практического программирования. Как и Haskell, является ленивым чисто функциональным языком, содержит классы типов. Но Clean также содержит интересные особенности, которые не имеют эквивалента в Haskell. Например, императивные возможности в Clean основаны на уникальных типах, идея которых заимствована из линейной логики (linear logic). Clean содержит механизмы, которые позволяют значительно улучшить эффективность программ. Сред этих механизмов явное подавление отложенных вычислений. Реализация Clean является коммерческим продуктом, но свободная версия доступна для исследовательских и образовательных целей.

ML(Meta Language). Разработан группой программистов во главе с Робертом Милиером в середине 70-х гг. в Эдинбурге (Edinburgh Logic for Computable Functions). Идея языка состояла в создании механизма для построения формальных доказательств в системе логики для вычислимых функций. В 1983 язык был пересмотрен дополнен такими концепциями, как модули. Стал называться стандартный ML. ML – это сильно типизированный язык со статическим контролем типов и аппликативным выполнением программ. Он завоевал большую популярность в исследовательских кругах и в области компьютерного образования.

  • Перевод

- ООП не сможет больше спасать нас от «Облачных монстров».

Примечание переводчика: Есть два понятия - параллельность (выполнение одновременно, независимо) и конкурентность (выполнение по шагам, поочерёдно, но одновременно несколько задач) и как всегда, мне пришлось поломать голову подобрая правильные термины.

Некоторые слова или термины я буду дублировать в скобках в оригинале, для того, чтобы искать по англоязычным терминам дополнительную информацию, которой будет в разы больше.

Возможно вы уже слышали такое выражение, вроде: “Clojure”, “Scala”, “Erlang” или даже “Java теперь имеет лямбды”. И вы имеете хоть и отдалённое представление о «Функциональном программировании». Если вы участник какого-либа программисткого сообщества, тогда эта тема могла уже вами обсуждаться.

Если вы поищите в Google по словосочетанию «Функциональное программирование», вы не увидите что-то нового. Второй язык из созданных ранее уже охватывает эту тему, он был создан в 50-ых и называется Lisp. Тогда, какого чёрта, эта тема стала популярна только сейчас? Всего то 60 лет спустя?

В начале, компьютеры были очень медленными

Верите вы этому или нет, но компьютеры были нааамного медленнее чем DOM. Нет, действительно. И в то-же время были 2 основные идеи в соглашении по дизайну и реализации языков программирования:

Первые две имеют похожие учебные планы, познакомят вас с базисом Функционального программирования и очень подходят для начинающих. Третья из ссылок, это курс Парадигм компьютерного программирования, охватывает больше, чем Функциональное программирование. Важно отметить, что эти материалы для начального уровня.



Загрузка...