sonyps4.ru

Что такое TFT. Чем отличается экран TFT от IPS

Введение

Текущее развитие рынка LCD (TFT) дисплеев напоминает многим продавцам о прошлых временах, когда уровни прибыли и спрос были на очень высоком уровне. Еще недавно покупатель должен был выложить очень большие деньги за LCD монитор, что бы сэкономить пространство на рабочем столе, снизить потребление энергии и позаботиться о собственном здоровье. Однако уже сегодня рынок изменяет свое направление, и цены начинают подчиняться обычным динамическим рыночным силам.

Эта статья является первой из цикла, посвященного рассмотрению всех вопросов связанных с LCD. В этой части, мы расскажем Вам о развитии рыночной ситуации и некоторых тенденциях развития LCD. Мы рассмотрим технологию, архитектуру и принципы работы. В заключении мы дадим несколько советов покупателям LCD мониторов. Статья будет интересна не только новичкам, но и профессионалам.

Во второй и третьей частях мы углубленно рассмотрим некоторые особенности LCD, т.к. увеличение угла обзора, рассмотрим современные цифровые интерфейсы (DFP и DVI) и отношение пиксельного размера и максимального диагонального размера дисплея.

Позже мы сообщим о наиболее важных компаниях на рынке LCD, рассмотрим некоторые модели, и естественно будем следить за уровнем цен.

Рыночная ситуация

Огромный успех портативных компьютеров стал сильным толчком в развитии TFT дисплеев. Несмотря на это, свой путь на современный рынок LCD пробивали с большим трудом. Так, например, в 1998 объем проданных LCD был далек от объема продаж ЭЛТ мониторов. При этом спрос на LCD был и остается достаточно высоким. В связи со сложностью производства и низким процентом годных матриц производители не могут выполнить 100% заказов. Не секрет, что сегодня наибольшее распространение LCD получили в офисной сфере. Для того чтобы LCD могли занять свою нишу в секторе домашних компьютеров, необходимо выполнение следующих требований:

  • Цены должны быть на уровне ЭЛТ-мониторов
  • Минимальный размер 15" с разрешением 1024 x 768 пикселей
  • Доступность
  • Стандартизированные интерфейсы для цифрового TFT
  • Качество и функциональность для всех приложений

Производство и выход годных матриц

Как мы уже сказали выше, конструкция и производство активной TFT матрицы процесс достаточно сложный. Это приводит к очень высоким требованиям к отклонениям от нормы. Например, для управления элементами матрицы используются очень тонкие транзисторы, которые должны иметь абсолютно идентичные уровни срабатывания. Как Вы можете понять, все это прямым образом влияет не только на цену, но и доступность TFT дисплеев.

Текущая ценовая ситуация и тенденции

Еще недавно цены на LCD в два - три раза превышали цену аналогичного ЭЛТ-монитора. Так, 15.1" LCD монитор (эквивалент 17" ЭЛТ-монитора) стоил от 500 до 1,300$. А 18.1" TFT (эквивалент 21" ЭЛТ дисплея) от $2,800 - $3,500.

В начале 1999 года на рынке LCD наблюдалась кратковременная тенденция повышения цен. Многие производители подняли цена примерно на 100$. В общем эта тенденция отличается от традиционного развития IT рынка, однако сложившаяся ситуация позволила держать цены на высоком уровне.

Недавно на рынке наметилось существенное снижение цен. Так сегодня 15" модель можно купить уже за 399$. Однако, это не предел. Некоторые аналитики утверждают, что при благоприятных условиях 15" LCD могут достичь цены $80. Не верится? Да, действительно, LCD могут стоить значительно дешевле ЭЛТ. Однако когда это произойдет, никто не знает.

Современные технологии

Современные дисплейные технологии подразделяются на традиционные с электронно-лучевой трубкой (ЭЛТ) и плоско панельные дисплеи. Несмотря на развитие ЭЛТ технологии, мониторы, основанные на ней, занимают достаточно много пространства рабочего стола, имеют высокое энергопотребление и негативно влияют на наше здоровье. Плоско панельные дисплеи - т.е. устройства без ЭЛТ - как следует из названия, плоские и занимают минимум площади рабочего стола. Плоско панельные технологии в свою очередь подразделяются на множество различных технологий типа LCD (Жидкокристаллические дисплеи), плазменные дисплеи, LED (светоизлучающие диоды) и различные другие. Среди этих технологий можно выделить те, которые излучают свет и те, которые управляют проходящим через них светом.

На сегодняшний день наиболее интересной и перспективной технологией считаются т.н. TFT-LCD или как их еще называют в народе активные. Эти устройства для формирования изображения используют проходящий через них свет. Кроме активных LCD, существуют пассивные дисплеи STN и DSTN, однако сегодня они применяются только в дешевых ноутбуках.

Рисунок 1: Краткий обзор современных плоско панельных технологий.

Как работает TFT?

TFT расшифровывается как ’Тонкопленочный транзистор (Thin Film Transistor) и описывает элементы, которые активно управляют индивидуальными пикселями.

Как же формируется изображение? Сам принцип формирования достаточно прост: панель состоит из множества мельчайших пикселей, каждый из которых может формировать любой цвет. Для этого используется задняя подсветка, состоящая из одной или множества флуоресцентных ламп. Для управления проходящим через пиксель светом используется т.н. дверка или затвор. На самом деле технология, которая делает это возможным, значительно сложнее.

LCD (Жидкокристаллический дисплей) означает дисплей основанный на жидких кристаллах, которые могут изменять свою молекулярную структуру, что приводит к изменению уровня света, проходящему через них (они могут полностью блокировать проходящий через них свет). В процессе формирования точки используются два поляризационных фильтра, цветные фильтры и два уровня выравнивания. Все это позволяет точно установить уровень проходящего света и его цвет. Уровень выравнивания расположен между двумя стеклянными панелями. Применив определенное напряжение к уровню выравнивания, создается электрическое поле, которое "выравнивает" жидкие кристаллы. Для формирования цвета каждая точка состоит из трех компонентов, один для красного, зеленого и синего - также как на традиционных ЭЛТ дисплеях.

Наиболее часто, сегодня встречаются т.н. скручивающиеся нематические TFT. Ниже на рисунках 2а и 2b показано как работает стандартный TFT (скручивающийся нематический) дисплей.

Рисунок 2a

Когда на уровень выравнивания не подано напряжение, молекулярная структура находится в своем естественном состоянии и искривлена под углом 90 градусов. Свет, испускаемый задней подсветкой, может спокойно проходить через структуру.

Рисунок 2b

Если подать напряжение, создается электрическое поле, и жидкие кристаллы искривляются так, что бы они были вертикально выровнены. Поляризованный свет поглощается вторым поляризатором, что приводит к отсутствию света в конкретной точке.

Архитектура TFT пикселя

Цветные фильтры интегрированы на стеклянную подложку и расположены рядом друг с другом. Как уже мы говорили выше, каждый пиксель состоит из трех цветных ячеек или под-пиксельных элемента. Это означает, что матрица с разрешением 1280 x 1024 пикселя, имеет 3840 x 1024 транзистора и пиксельных элементов. Точка или пиксельный шаг для 15.1" TFT (1024 x 768 пикселя) составляет около 0.0188" (или 0.30mm), а для 18.1" TFT (1280 x 1024 пикселя) около 0.011" (или 0.28mm).

Рисунок 3: TFT пиксели. В левом верхнем углу каждой ячейки расположен тонкопленочный транзистор. Цветные фильтры позволяют формировать любой RGB цвет.

Говоря о архитектуре пикселя необходимо обратить внимание на физические ограничения TFT. Теоретически, чем меньше интервал между пикселями, тем выше разрешение, однако на 15" (около 38 cm) дисплее с точкой 0.0117" (0.297mm), будет невозможно получить разрешение 1280 x 1024. Об отношении между точечным шагом и диагональным размером мы поговорим в одной из будущих статей.

Проблемы масштабирования

Как Вы смогли понять, каждый пиксель находится в фиксированном положении и поэтому определяет разрешающую способность TFT без каких-либо геометрических проблем. Другими словами: максимальное число пикселей соответствует максимальной разрешающей способности. Но, что происходит при уменьшении разрешения, например, при запуске игр или видео? В этом случае контроллер, отвечающий за масштабирование, уменьшает изображение до размера максимального размера дисплея. Если контроллер не может обрабатывать эту задачу эффективно, результат будет искажен. С технической точки зрения эта задача значительно сложнее изменения масштаба на обычном ЭЛТ-мониторе.

Почему? В случае ЭЛТ, электронный луч может приспосабливаться к новому разрешению простым изменением напряжения отклонения. Кроме того, здесь не имеет значения, если луч сформирует точку между двумя соседними пикселями. В случае TFT все значительно сложнее. Из-за активного управления каждым пикселем, масштабирующий контроллер должен повторно вычислить данные для меньших разрешений. Если используется целый коэффициент масштабирования (например, 2 при переходе на 800 x 600 с 1600 x 1200) все очень просто: высота и ширина каждого пикселя удваивается. В случае не целого коэффициента, например, при переходе к 800 x 600 с 1024 x 768 - 1.28, ситуация значительно усложняется. Контроллер должен сам выбрать где отображать один пиксель, а где два. При математическом округлении, возникают ошибки, которые приводят к неприятным эффектам при отображении текста (см. рисунок ниже). Благодаря новым алгоритмам, современные контроллеры могут уменьшать этот эффект, использую уловку (см. продвинутое масштабирование) уменьшая оптическое впечатление: Если данные не могут быть уникально назначены пикселю, то интенсивность пикселя уменьшается.

Рисунок 5: Примеры масштабирования

Какие характеристики являются важными при оценке LCD?

Реальный диагональный размер экрана

Видимый диагональный размер ЭЛТ-монитора всегда меньше фактического диагонального размера трубки. TFT панели не имеют этой краевой области, поэтому указанный диагональный размер тот же, что и видимый диагональный размер. Это означает, что панель размером 15.1" эквивалентна размеру 17" ЭЛТ-монитора.

Угол видимости

Эта характеристика является критической практически для всех плоско панельных дисплеев. Не каждый LCD может похвастаться углом видимости, эквивалентным стандартному ЭЛТ-монитору. Меньший угол связан в первую очередь с конструктивными особенностями LCD. Напомним, что свет от задней подсветки должен пройти через поляризационные фильтры, жидкие кристаллы и т.н. уровни выравнивания, что придает ему некий направленный характер. Если посмотреть на дисплей сбоку под большим углом, изображение будет казаться очень темным или будет наблюдаться искажение цвета. Несмотря на отрицательность этого эффекта, производители смогли найти ему достойное применение. Мы имеем ввиду безопасность. Наибольшее применение этот эффект получил в банках и других учреждениях, где очень важно, что бы отображаемый документ был виден только оператору.

Сегодня разработчики работают над технологией, позволяющими увеличить значение угла видимости, однако уже сегодня известны методы, т.к. IPS (in-plane switching), MVA (multi-domain vertical alignment) и TN+film (twisted nematic and retardation film) которые позволяют увеличить угол до 160 градусов и более, что соответствует стандарту для ЭЛТ-мониторов.

Кстати, если Вы не знаете, напоминаем, что максимальный угол обзора равен крайнему значению, при котором коэффициент контрастности снижается до 10:1 от оригинального значения при перпендикулярном положении к плоскости экрана.

Коэффициент контрастности

Коэффициент контрастности получается из значений максимального и минимального значения яркости. На ЭЛТ-мониторах это коэффициент равен 500:1 и позволяет получить фото реалистическое качество. Для LCD этот коэффициент имеет значительно меньшее значение. Особенно это заметно при отображении черного цвета. На ЭЛТ-мониторе черный цвет формируется достаточно просто, изменением уровня всех цветовых составляющих. На LCD свет подсветки обычно не регулируется, и находится постоянно во включенном состоянии. Для отображения черного цвета, жидкие кристаллы должны полностью блокировать прохождение света. Однако, физически это не возможно. Несмотря на полную блокировку, свет частично будет проходить через кристаллы. Разработчики работают на этой проблемой и сегодня приемлемыми значениями для LCD являются 250:1.

Яркость

Здесь TFT дисплеи лидируют. Максимальная яркость определяется возможностями лампы подсветки. Поэтому получить значения в 200 - 250 кандела не проблема. Хотя технически возможно получить еще большее значение яркости, на практике этого не требуется.

Максимальная яркости ЭЛТ-мониторов находится на уровне 100 - 120 cd/m 2 . Большее значение яркости получить возможно, однако это требует поднятия напряжения ускорения, что негативно влияет на срок службы фосфорного покрытия.

Пиксельные ошибки

На некоторых LCD мониторах (даже новых) имеются т.н. "заклинившие" или "мертвые" точки. Это происходит из-за дефектных транзисторов. Т.е. конкретный транзистор не может управлять световым потоком. Он либо всегда блокирует свет, либо всегда пропускает. Этот факт очень раздражает, однако, стандарты учитывают наличие до пяти "мертвых" точек на новом LCD. При этом успокаивает только, то, что в будущем они не появятся. Для тех, кого эта проблема особенно волнует, мы рекомендуем тщательно проверять монитор при покупке.

Время отклика

Одной из критических характеристик многих TFT дисплеев является время отклика жидких кристаллов. Это приводит к видимой задержке при отображении анимированных сюжетов. Для современных систем типичным значением отклика является 20 - 30 миллисекунд.

Для сравнения: Для нормального просмотра видео необходимо отображать 25 кадров в секунду, т.е. каждый кадр может отображаться не более 40 миллисекунд. Это говорит о том, что TFT в принципе подходит для просмотра видео.

Цветовое качество - подготовка аналоговых входных сигналов

П сравнению с цифровыми плоско панельными дисплеями, LCD, оборудованные стандартным VGA разъемом, должны конвертировать аналоговый сигнал обратно в цифровой, что приводит к потере цветового качества. Некоторые производители рекомендуют использовать A/D конвертеры, которые могут передавать только 18 bit (3 x 6 bit на каждый цвет (красный, зеленый и синий)). Это приводит к снижению числа отображаемых цветов до 262,144 (псевдо RGB). Режим "True Color" требует отображения 16.7 миллионов цветов.

Преимущества и недостатки TFT дисплеев

После знакомства с оcновными характеристиками TFT дисплеев, мы хотели бы провести сравнение обычного ЭЛТ монитора и TFT. TFT дисплеи предлагают очень хорошие характеристики фокусировки из-за активного управления пикселями. Кроме того, TFT дисплеи лишены различных геометрических искажений и ошибок сходимости. Также мы хотим отметить отсутствие нежелательного мерцания. Все эти преимущества TFT перед ЭЛТ связаны с технической природой. Так, например, для формирования изображения на экране ЭЛТ, электронный луч должен пройти весь экран с лева на право с верху в низ, после чего экран гаснет, и луч переходит в исходную позицию. В большинстве случаев возникшее мерцание не заметно, однако оно имеет негативное влияние на наши глаза. В случае TFT дисплеев каждый пиксель горит постоянно, меняется только интенсивность свечения.

В таблице ниже мы привели сравнение основных характеристик ЭЛТ и TFT дисплеев.

Плоско панельные дисплеи (TFT)

ЭЛТ-мониторы

(+) 170 - 250 cd/m 2

(~) 80 - 120 cd/m 2

Коэффициент контрастности

(~) 200:1 - 400:1

(+) 350:1 - 700:1

Угол видимости (контрастность)

(~) 110 - 170 градусов

(+) более 150 градусов

Угол видимости (цвет)

(-) 50 до 125 градусов

(~) более 120 градусов

Ошибки сходимости

(~) 0.0079" - 0.0118" (0,20 - 0,30 mm)

(+) очень хороший

(~) удовлетворительный - очень хороший

Геометрические и линейные ошибки

(~) возможны

Пиксельные ошибки

Входной сигнал

(+) аналоговый или цифровой

(~) только аналоговый

Масштабирование для различных разрешений

(-) нет или используются методы интерполяции

(+) очень хорошее

Гамма (настройка цвета)

(~) удовлетворительно

(+) фото реалистично

Однородность

(~) более яркое изображение на гранях

(~) более яркое в центре

Чистота цвета/качество

(~) хорошее

(+) высокое

Мерцание

(~) не видимо на частоте более 85 Hz

Время отклика

(-) 20 - 30 msec

(+) не значимо

Потребление энергии

(+) 25 - 40 Вт

(-) 60 - 150 Вт

Габаритные размеры/вес

(+) плоский дизайн, маленький вес

(-) требует много пространства + большой вес

(+) положительно (~) приемлемо (-) отрицательно

Идеальный TFT: Что выбрать?

Итак, если Вы решили купить LCD, мы настоятельно рекомендуем проконсультироваться с продавцом и ознакомиться с описанием конкретной модели. Вам необходимо удостовериться, что выбранный Вами монитор отвечает следующим требованиям:

Заключение

Итак, какие выводы можно сделать из нашей первой статьи.

Во-первых, LCD мониторы стали дешевле, и уже практически достигли уровня традиционных ЭЛТ-мониторов. Во-вторых, мы выяснили, что характеристики современных LCD не только не отстают, но и в некоторых случаях превосходят ЭЛТ-мониторы. LCD мониторы лишены таких недостатков ЭЛТ мониторов, как сходимость и геометрические искажения, не имеют неприятного мерцания и излучения, они занимают минимум площади рабочего места, и потребляют в три раза меньше энергии.

Все это говорит о том, что современные LCD могут свободно применяться не только для работы с офисными приложениями, но и дома при просмотре видео, 3D играх и в других современных приложениях, экономя потребление энергии, сохраняя Ваше здоровье, и не портят дизайн Вашей рабочей комнаты.

Сразу стоит отметить, что поклонников у каждой технологии достаточно, а потому ожесточённые споры в интернете не утихают ни на миг. В основном это касается темы «AMOLED vs IPS», поскольку TN-матрицы стоят несколько особняком и не претендуют на лавры «самой крутой технологии». Ознакомившись с несколькими обзорами, мы всё же составили своё мнение, которым и поделимся с вами.

Сравнение IPS и TN матриц

То, что экраны созданные с использованием TN-технологии не исчезли с рынка, говорит о том, что они по-прежнему востребованы. Их главным преимуществом считается цена, поскольку стоимость TN-дисплеев в среднем на 20-50% ниже, чем у равноценных IPS-устройств. Вторым конкурентным преимуществом называют низкое время отклика: современные экраны с TN-матрицей обладают временем отклика порядка 1 мс, в то время как IPS-мониторы имеют характеристику 5 – 8 мс. Впрочем, последней вполне достаточно для отображения фильмов и даже 3D игр с большим количеством динамических сцен, а потому на этот параметр можно не обращать внимания, пока он находится в указанном диапазоне.

Планшет Asus MeMO Pad ME172V с TN-экраном

В противовес сказанному выше, IPS экраны показывают более высокую контрастность, а также яркость картинки и самое главное прекрасные углы обзора. К тому же толщина устройств с IPS-матрицами немного ниже, чем у TN оппонентов, что иногда актуально для смартфонов и планшетов. Ещё одним преимуществом является лучшее качество изображения при попадании на IPS-экран прямых лучей солнца, что опять же важно для носимых устройств. Согласитесь, постоянно прикрывать экран смартфона рукой для того, чтобы хоть что-то разглядеть на улице, не совсем удобно, а потому телефоны с TN-экранами плавно уходят в небытие.

Вывод: Экраны с TN-матрицами подойдут для корпоративного сектора, а также для мониторов и планшетов не слишком требовательных клиентов, которые не против сэкономить. Для обладателей смартфонов и тех, кто не стеснён в средствах, стоит подбирать устройства оснащённые IPS-экранами.

Сравнение AMOLED и TN

Люди, которые не слишком вникают в технологию производства экранов, иногда называют дисплеи с TN-матрицами не иначе как TFT. Они задают продавцам вопросы типа: «Что лучше AMOLED или TFT?», заставляя последних вымученно улыбаться и объяснять любопытным клиентам матчасть. Будем считать, что среди наших читателей таких нет, а потому перейдём к теме заголовка.

Планшет Ramos W30 с ISP-экраном

Вообще сложно сравнивать эти две технологии, поскольку устройства, выполненные с их применением, рассчитаны на разные категории клиентов. AMOLED – это в первую очередь дань моде и шаг в сторону инноваций. Клиенты, рассматривающие покупку техники с AMOLED-экраном, рассчитывают на приобретение современного устройства с топовыми характеристиками и лишь во вторую очередь изучают ценник и принимают решение. Покупатели аппаратуры с TN экраном наоборот ищут максимум за свои деньги и бюджет здесь выступает первоочередным фактором при покупке. По характеристикам же AMOLED ближе к IPS, а потому выводы для сравнения напрашиваются соответствующие.

Вывод: Поскольку AMOLED дисплеи ещё дороже, чем IPS, вам вряд ли стоит к ним присматриваться при выборе бюджетного или среднебюджетного варианта. Если же ваша цель – устройство с высоким уровнем качества изображения, то вам прямиком к следующему подзаголовку.

Сравнение AMOLED и IPS

Вот мы и добрались до главного вопроса статьи: «Что лучше AMOLED или IPS?». И, конечно, для того чтобы сделать вывод, нужно рассмотреть сильные и слабые стороны каждой технологии.

Углы обзора. Обе технологии обладают прекрасными углами обзора, и владельцы смартфонов-планшетов наперебой рассказывают, что их AMOLED/ IPS-экран уж точно лучше. Больших различий действительно нет, однако пользователи и специалисты отмечают, что при больших углах обзора отличие IPS от AMOLED -экранов проявляется в синеватом либо зеленоватом оттенке изображения у последних.

Энергосбережение. Дело в том, что здесь нужно сказать, про одну особенность этих двух технологий. Экраны с IPS-матрицами выдают лучший белый цвет среди конкурентов, в то время как AMOLED-дисплеи лидеры по отображению чёрных цветов (кстати, из-за этого их называют ещё более контрастными). Если AMOLED-экрану приходится часто отображать белые цвета, например, при пользовании браузером, то его расход энергии увеличивается примерно в 5 раз.

Гибридный планшет Samsung ATIV Smart PC с AMOLED-экраном

Чёткость изображения. AMOLED-дисплеи в большинстве применяют PenTile-структуру расположения субпикселей. Хотя разработчики и уверяют, что это не влияет на изображение, однако немало пользователей при сравнении называют картинку IPS-экранов чётче. С другой стороны, может они просто мнительные?

Толщина экрана. Здесь преимущество AMOLED-дисплеев неоспоримо. Отсутствие отдельного слоя подсветки делает такие экраны действительно тоньше.

Яркость и контрастность. Данные характеристики у экранов AMOLED действительно выше, чем у конкурентов. С другой стороны немало людей считают их перенасыщенными и утомляющими глаза, особенно при длительном пользовании. Похоже, что этот пункт остаётся делом вкуса каждого конкретного пользователя.

Выгорание экрана. Данный пункт касается в основном органических дисплеев. Печальный факт – при длительном отображении статичной картинки на экране остаются её «следы». Так, например, на экранах смартфонов появляются «образы» постоянно отображаемых иконок.

Время отклика. Считается, что у AMOLED-экранов время отклика ниже, чем у экранов IPS. На практике такая разница малозначительна и годится лишь для маркетинговых приёмов.

Вывод: Пусть меня (то есть автора) забросают помидорами поклонники AMOLED-технологии, однако моё субъективное мнение склонилось в пользу IPS. Плюсов у технологии больше, а цена устройств всё же ниже. Мы верим, что органические дисплеи ещё проявят себя после нескольких лет совершенствования технологии во всей красе, однако пока что, их характеристики проигрывают в категории «цена-качество».

Изображение формируется с помощью отдельных элементов, как правило, через систему развёртки. Простые приборы (электронные часы , телефоны, плееры , термометры и пр.) могут иметь монохромный или 2-5 цветный дисплей . Многоцветное изображение формируется с помощью 2008) в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц, а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом (6 бит на канал), 24-битность эмулируется мерцанием с дизерингом .

Устройство ЖК-монитора

Субпиксел цветного ЖК-дисплея

Каждый пиксел ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами , и двух поляризационных фильтров , плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны , поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается, и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света - ячейку можно считать прозрачной. Если же к электродам приложено напряжение - молекулы стремятся выстроиться в направлении поля , что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение , можно управлять степенью прозрачности. Если постоянное напряжение приложено в течении долгого времени - жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток , или изменение полярности поля при каждой адресации ячейки (непрозрачность структуры не зависит от полярности поля). Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным - отражённым от подложки(в ЖК-дисплеях без подсветки). Но чаще применяют , кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения. Таким образом полноценный ЖК-монитор состоит из электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.

Технические характеристики ЖК-монитора

Важнейшие характеристики ЖК-мониторов:

  • Разрешение : Горизонтальный и вертикальный размеры, выраженные в пикселах . В отличие от ЭЛТ-мониторов, ЖК имеют одно, «родное», физическое разрешение, остальные достигаются интерполяцией .

Фрагмент матрицы ЖК монитора (0,78х0,78 мм), увеличеный в 46 раз.

  • Размер точки: расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.
  • Соотношение сторон экрана (формат): Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.
  • Видимая диагональ: размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.
  • Контрастность : отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведенная для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.
  • Яркость : количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
  • Время отклика : минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.
  • Угол обзора: угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению.
  • Тип матрицы: технология, по которой изготовлен ЖК-дисплей.
  • Входы: (напр, DVI , HDMI и пр.).

Технологии

Часы с ЖКИ-дисплеем

Жидкокристаллические мониторы были разработаны в 1963 году в исследовательском центре Давида Сарнова (David Sarnoff) компании RCA, Принстон, штат Нью-Джерси.

Основные технологии при изготовлении ЖК дисплеев: TN+film, IPS и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода . Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в конкретных разработках.

Время отклика ЖК мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display - кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию PALC (англ. Plasma Addressed Liquid Crystal - плазменное управление жидкими кристаллами), которая соединила в себе преимущества LCD (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту, H, и вертикали, V, высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения.

TN+film (Twisted Nematic + film)

Часть «film» в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90° до 150°). В настоящее время приставку «film» часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет.

TN + film - самая простая технология.

Матрица TN + film работает следующим образом: если к субпикселам не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое маленькое время отклика среди современных матриц, а также невысокую себестоимость.

IPS (In-Plane Switching)

Технология In-Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN + film. Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.

На настоящий момент матрицы, изготовленные по технологии IPS единственные из ЖК-мониторов, всегда передающие полную глубину цвета RGB - 24 бита, по 8 бит на канал. TN-матрицы почти всегда имеют 6-бит, как и часть MVA.

Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение черного цвета близко к идеалу. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а черным.

При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.

IPS в настоящее время вытеснено технологией S-IPS (Super-IPS, Hitachi год), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика . Но, несмотря на то, что цветность S-IPS панелей приблизилась к обычным мониторам CRT , контрастность все равно остаётся слабым местом. S-IPS активно используется в панелях размером от 20", LG.Philips , NEC остаются единственными производителями панелей по данной технологии.

AS-IPS - технология Advanced Super IPS (Расширенная Супер-IPS), также была разработана корпорацией Hitachi в году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации LG.Philips.

A-TW-IPS - Advanced True White IPS (Расширенная IPS с настоящим белым), разработано LG.Philips для корпорации году. Усиленная мощность электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК , на матрицах производства Hitachi Displays.

*VA (Vertical Alignment)

MVA - Multi-domain Vertical Alignment. Эта технология разработана компанией Fujitsu как компромисс между TN и IPS технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160°(на современных моделях мониторов до 176-178 градусов), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика, но значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Достоинствами технологии MVA являются глубокий черный цвет и отсутствие, как винтовой структуры кристаллов, так и двойного магнитного поля.

Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения, большее время отклика.

Аналогами MVA являются технологии:

  • PVA (Patterned Vertical Alignment ) от Samsung.
  • Super PVA от Samsung.
  • Super MVA от CMO.

Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским качествам.

Преимущества и недостатки

Искажение изображения на ЖК-мониторе при большом угле обзора

Макрофотография типичной жк-матрицы. В центре можно увидеть два дефектных субпикселя (зелёный и синий).

В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малый размер и вес в сравнении с ЭЛТ . У ЖК-мониторов, в отличие от ЭЛТ , нет видимого мерцания, дефектов фокусировки и сведения лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов в 2-4 раза меньше, чем у ЭЛТ и плазменных экранов сравнимых размеров. Энергопотребление ЖК мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight - задний свет) ЖК-матрицы. Во многих современных (2007) мониторах для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более Герц . Светодиодная подсветка в основном используется в небольших дисплеях, хотя в последние годы она все шире применяется в ноутбуках и даже в настольных мониторах. Несмотря на технические трудности её реализации, она имеет и очевидные преимущества перед флуоресцентными лампами, например более широкий спектр излучения, а значит, и цветовой охват.

С другой стороны, ЖК-мониторы имеют и некоторые недостатки, часто принципиально трудноустранимые, например:

  • В отличие от ЭЛТ, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией с потерей чёткости. Причем слишком низкие разрешения (например 320x200) вообще не могут быть отображены на многих мониторах.
  • Цветовой охват и точность цветопередачи ниже, чем у плазменных панелей и ЭЛТ соответственно. На многих мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах).
  • Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета. Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения.
  • Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки).
  • Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев . Технология overdrive решает проблему скорости лишь частично.
  • Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии.
  • Массово производимые ЖК-мониторы более уязвимы, чем ЭЛТ. Особенно чувствительна матрица, незащищённая стеклом. При сильном нажатии возможна необратимая деградация. Также существует проблема дефектных пикселей .
  • Вопреки расхожему мнению пикселы ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения.

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED -дисплеи. С другой стороны, эта технология встретила сложности в массовом производстве, особенно для матриц с большой диагональю.

См. также

  • Видимая область экрана
  • Антибликовое покрытие
  • en:Backlight

Ссылки

  • Информация о флюоресцентных лампах, используемых для подсветки ЖК-матрицы
  • Жидкокристаллические дисплеи (технологии TN + film, IPS, MVA, PVA)

Литература

  • Артамонов О. Параметры современных ЖК-мониторов
  • Мухин И. А. Как выбрать ЖК-монитор? . «Компьютер-бизнес-маркет», № 4 (292), январь 2005, стр. 284-291.
  • Мухин И. А. Развитие жидкокристаллических мониторов . «BROADCASTING Телевидение и радиовещение»: 1 часть - № 2(46) март 2005, с.55-56; 2 часть - № 4(48) июнь-июль 2005, с.71-73.
  • Мухин И. А. Современные плоскопанельные отображающие устройства ."BROADCASTING Телевидение и радиовещение": № 1(37), январь-февраль 2004, с.43-47.
  • Мухин И. А., Украинский О. В.

Всегда сводится в первую очередь к выбору типа матрицы монитора. И когда вы уже определились, какого типа матрица вам нужна, можно переходить к другим характеристикам монитора. В данной статье мы рассмотрим основные типы матриц мониторов, которые сейчас используются производителями.

Сейчас на рынке можно найти мониторы с такими типами матриц:

  • TN+film (Twisted Nematic + film)
  • IPS (SFT – Super Fine TFT)
  • *VA (Vertical Alignment)
  • PLS (Plane-to-Line Switching)

Рассмотрим все типы матриц мониторов по порядку.

TN+film – самая простая и дешевая в производстве технология создания матриц. Благодаря своей низкой цене пользуется наибольшей популярностью. Еще несколько лет назад почти 100 процентов всех мониторов использовали эту технологию. И только продвинутые профессионалы, которым нужны качественные мониторы, покупали устройства, построенные на основе других технологий. Сейчас ситуация немного изменилась, мониторы подешевели и TN+film матрицы теряют свою популярность.

Преимущества и недостатки матриц TN+film:

  • Низкая цена
  • Хорошая скорость отклика
  • Плохие углы обзора
  • Низкая контрастность
  • Плохая цветопередача

IPS

IPS – самый продвинутый тип матриц. Данная технология была разработана компаниями Hitachi и NEC. Разработчиками матрицы IPS удалось избавиться от недостатков TN+film, но в результате цена матриц такого типа значительно поднялась по сравнению с TN+film. Тем не менее, с каждым годом цены на снижаются и стают более доступными для обычного потребителя.

Преимущества и недостатки матриц IPS:

  • Хорошая цветопередача
  • Хорошая контрастность
  • Широкие углы обзора
  • Высока цена
  • Большое время отклика

*VA

*VA это тип матриц мониторов, которые можно считать компромиссом между TN+film и IPS. Наибольшую популярность, среди таких матриц получила MVA (Multi-domain Vertical Alignment). Данная технология была разработана компанией Fujitsu.

Аналоги данной технологии, разработанные другими производителями:

  • PVA (Patterned Vertical Alignment) от Samsung.
  • Super PVA от Sony-Samsung (S-LCD).
  • Super MVA от CMO.

Преимущества и недостатки матриц MVA:

  • Большие углы обзора
  • Хорошая цветопередача (лучше, чем TN+film, но хуже чем IPS)
  • Хорошая скорость отклика
  • Глубокий черный цвет
  • Не высокая цена
  • Исчезновение деталей в тенях (по сравнению с IPS)

PLS

PLS – тип матриц, разработанный компанией Samsung как альтернатива дорогим IPS матрицам.

Технологии не стоят на месте, и производство жидкокристаллических экранов не является исключением. Однако в связи с постоянными разработками и выходом новых технологий в изготовлении экранов, а также из-за особых маркетинговых подходов к рекламе у многих покупателей при выборе монитора или телевизора может возникнуть вопрос, что лучше IPS или TFT экран?

Чтобы ответить на поставленный вопрос необходимо понять, что такое IPS технология и что такое TFT экран. Лишь зная это, вы сможете понять какая разница между этими технологиями. Это в свою очередь поможет вам сделать правильный выбор экрана, который будет полностью соответствовать вашим требованиям.

1. Итак, что такое TFT-дисплей

Как вы уже догадались, TFT–это сокращенное название технологии. Полностью оно имеет такой вид - Thin Film Transistor, что в переводе на русский язык означает тонкопленочный транзистор. По сути TFT дисплей – это тип жидкокристаллического экрана, который основан на активной матрице. Другими словами, это обычный жидкокристаллический экран с активной матрицей. То есть управление молекулами жидких кристаллов происходит при помощи специальных тонкопленочных транзисторов.

2. Что такое IPS технология

IPS – это также является сокращением от In-Plane Switching. Это разновидность ЖК-дисплея с активной матрицей. Это означает, что вопрос, что лучше TFT или IPS является ошибочным, так как это по сути одно и то же. Если говорить точнее, то IPS – это тип матрицы FTF дисплея.

Свое название IPS технология получила благодаря уникальному расположению электродов, которые находятся на одной плоскости с молекулами жидких кристаллов. В свою очередь жидкие кристаллы располагаются параллельно плоскости экрана. Такое решение позволило существенно увеличить углы обзоров, а также повысить яркость и контрастность изображения.

На сегодняшний день можно выделить три наиболее распространенных типа активных матриц TFT дисплеев:

  • TN+Film;
  • PVA/MVA.

Таким образом, становится очевидно, что отличие TFT от IPS заключается лишь в том, что TFT – это тип ЖК экрана с активной матрицей, а IPS является той самой активной матрицей в TFT дисплее, а точнее одним из типов матриц. Стоит отметить, что такая матрица является наиболее распространенной среди пользователей во всем мире.

3. Чем отличаются дисплеи TFT и IPS: Видео

Всеобщее заблуждение в том, что между TFT и IPS есть какая-то разница, возникло из-за маркетинговых уловок менеджеров по продажам. В попытках привлечь новых клиентов маркетологи не распространяют полной информации о технологиях, что позволяет создавать иллюзию того, что в мир выходит совершенно новая разработка. Конечно, IPS является более новой разработкой, нежели TN, однако выбирать какой лучше дисплей TFT или IPS нельзя по указанным выше причинам.



Загрузка...