sonyps4.ru

Что такое цифро аналоговый преобразователь. Аналого-цифровой и цифро-аналоговый преобразователи

Цифро-аналоговый преобразователь (ЦАП) предназначен для автоматического преобразования (декодирования) входных величин, представленных числовыми кодами, в соответствующие им значения непрерывно изменяющихся во времени (т.е. аналоговых) величин. Иными словами, ЦАП выполняет обратное по сравнению с АЦП преобразование. Выходные физические величины АЦП чаще всего представляют собой электрические напряжения и токи, но могут быть также временными интервалами, угловыми перемещениями и т. п. В системе автоматики с ЭВМ удобнее обрабатывать (преобразовывать и передавать) цифровой сигнал, но человеку (оператору) привычнее и удобнее воспринимать аналоговые сигналы, соответствующие значениям числовых кодов. С помощью АЦП информация вводится в ЭВМ, а с помощью ЦАП она выводится из ЭВМ для воздействия на управляемый объект и восприятия человеком.

В схемах ЦАП обычно используется представление двоичного числа, состоящего из нескольких разрядов, в виде суммы степеней числа 2. Каждый разряд (если в нем записана единица) преобразуется в аналоговый сигнал, пропорциональный числу 2 в степени, равной номеру разряда, уменьшенному на единицу.

На рис. 4.38 показана простая схема ЦАП, основу которой составляет резистивная матрица - набор резисторов, которые подключаются ко входу операционного усилителя ключами, управляемыми соответствующими разрядами двоичного числа. В качестве ключей могут быть использованы триоды (например МОП-транзисторы). Если в данном разряде записана 1, то ключ замкнут, если 0 - разомкнут.

Необходимость использования операционного усилителя обусловлена тем, что в ЦАП выходной сигнал является аналоговым. И входной, и выходной сигналы операционного усилителя представляют собой напряжения постоянного (в смысле неизменной полярности) тока.

Коэффициент передачи операционного усилителя равен отношению сопротивления резистора R о.с в цепи обратной связи к сопротивлению резистора на входе усилителя, которое, как видно из рис. 4.38, для каждого разряда имеет свое значение. Коэффициенты передачи K = - U вых /U оп по каждому разряду преобразуемого двоичного числа (если в этом разряде записана 1) соответственно равны: K 0 = R о.с /R 0 ; K 1 = 2R о.с /R 0 ; K 2 = 4R о.с /R 0 ;
K
3 = 8R о.с /R 0 . Выходное напряжение ЦАП

U вых = - U оп (K 3 + K 2 + K 1 + K 0) =

= - U оп (R о.с /R 0)(8x 3 + 4x 2 + 2x 1 + x 0),

где х принимает значение 1 или 0 в зависимости от того, что записано в данном разряде двоичного числа.

Рис. 4.38. Схема цифроаналогового
преобразователя на базе резистивной матрицы

Таким образом, четырехразрядное двоичное число преобразуется в напряжение U вых,которое может принимать 16 возможных значений от 0 до 15Du кв, где Du кв - шаг квантования.


Для уменьшения погрешности квантования необходимо увеличивать число двоичных разрядов ЦАП. При изготовлении интегральных микросхем ЦАП по данной схеме очень трудно сделать высокоточные резисторы с сопротивлениями, отличающимися друг от друга в десятки и сотни раз. Кроме того, нагрузка источника опорного напряжения U оп изменяется в зависимости от состояния ключей, поэтому необходимо применять источник с малым внутренним сопротивлением.

Схема ЦАП, показанная на рис. 4.39, свободна от указанных недостатков. В ней весовые коэффициенты каждого разряда задаются последовательным делением опорного напряжения с помощью резистивной матрицы типа R- 2R ,представляющей собой многозвенный делитель напряжения.

В данной схеме ЦАП используются двухпозиционные ключи , которые подсоединяют резисторы 2R либо ко входу операционного усилителя (при 1 в данном разряде), либо к общему нулевому проводу. Входное сопротивление резистивной матрицы при этом не зависит от положения ключей. Коэффициент передачи между соседними узловыми точками матрицы составляет 0,5. Выходное напряжение

U вых = - U оп (R /16R )(x 1 + 2x 2 + 4x 3 + 8x 4).

Рис. 4.39. Схема цифроаналогового преобразователя
на базе резистивной матрицы R-2R

Наибольшее влияние на погрешность ЦАП оказывают отклонения сопротивлений резисторов от их номинальных значений, а также то, что у реального ключа сопротивление в закрытом состоянии не равно бесконечности, а в открытом - не равно нулю. Выпускаемые резистивные матрицы имеют относительную погрешность около сотых долей процента, т.е. являются очень точными.

4.5.2. Аналого-цифровые преобразователи параллельного кодирования

Аналого-цифровой преобразователь (АЦП) предназначен для автоматического преобразования (измерения и кодирования) непрерывно изменяющихся во времени (т.е. аналоговых) величин в соответствующие значения числовых кодов. В данном случае под словом «цифра» понимается двоичный код. Когда говорят о цифровой звукозаписывающей и воспроизводящей аппаратуре или о цифровой телефонии, то подразумевают, что непрерывно изменяющийся звуковой сигнал записывается или передается оцифрованным, т.е. в виде двоичных (бинарных) кодов.

В зависимости от способа преобразования АЦП подразделяют на последовательные, параллельные и последовательно-параллельные.

Наиболее быстродействующими являются АЦП параллельного типа. Преобразование аналогового сигнала в код в них осуществляется за один шаг, но такие АЦП требуют нескольких компараторов. Входное напряжение одновременно сравнивается во всех компараторах с несколькими опорными напряжениями. Параллельные АЦП имеют большее число элементов, чем последовательные.

Рассмотрим работу параллельного трехразрядного
АЦП (рис. 4.40).

Рис. 4.40. Схема параллельного трехразрядного АЦП

Тремя двоичными разрядами можно представить восемь чисел - от 0 до 7. Поэтому используются семь компараторов для сравнения входного напряжения с опорными напряжениями, получаемыми с помощью резисторного делителя . От каждого компаратора поступает сигнал 0, если входное напряжение меньше опорного, и 1 - в противном случае.

Состояния компараторов и соответствующие им двоичные коды представлены в табл. 4.12. Преобразователь кода выдает двоичное трехразрядное число. Время преобразования параллельных АЦП может составлять несколько десятков наносекунд, что в сотни раз быстрее, чем у последовательных АЦП.

Таблица 4.12

Зависимость цифрового кода от входного напряжения

Относительное значение входного напряжения U = U вх /U оп Состояние компараторов Двоичный код-число
U < 0,5
0,5 £ U < 1,5
1,5 £ U < 2 ,5
2,5 £ U < 3,5
3,5 £ U < 4,5
4,5 £ U < 5 ,5
5,5 £ U<6 ,5
6,5 £ U

4.5.3. Аналого-цифровые преобразователи последовательного кодирования

На рис. 4.41 показана схема АЦП последовательного типа.

Рис. 4.41. Схема аналого-цифрового
преобразователя последовательного типа

По команде «Пуск» цифровой автомат ЦА вырабатывает последовательность двоичных чисел, которые поступают на вход цифро-аналогового преобразователя ЦАП, вырабатывающего напряжение U цап, соответствующее каждому входному двоичному сигналу. Это напряжение (непрерывно растущее, пока работает ЦА )подается на один из входов компаратора K , на другой вход которого поступает входное напряжение U вх.Компаратор сравнивает эти два напряжения и выдает сигнал при их равенстве. По этому сигналу ЦА останавливается, а на его выходе фиксируется двоичный код, соответствующий U вх.Таким образом, преобразование в последовательном АЦП происходит в ступенчатом режиме. Выходное значение отдельными шагами (тактами), т.е. последовательно, приближается к измеряемому значению. Поэтому последовательные АЦП на каждое преобразование аналогового сигнала затрачивают много времени. Для повышения их быстродействия используется метод поразрядного уравновешивания. Иллюстрирующая этот метод схема показана на рис. 4.42.

Рис. 4.42. Схема аналого-цифрового преобразователя
с поразрядным уравновешиванием

Роль цифрового автомата выполняет регистр Рг с датчиком тактовых импульсов ДТИ . Считывание выходного кода происходит по сигналу схемы готовности данных СГД ,который подается при поступлении сигнала от компаратора K о равенстве входного напряжения U вх и напряжения U цап. Работа компаратора синхронизирована импульсами ДТИ .Эти же импульсы последовательно переводят разряды регистра Рг в состояние 1. Перевод начинается со старшего разряда, а младшие остаются в состоянии 0. При этом ЦАП вырабатывает соответствующее напряжение, которое сравнивается в компараторе K с входным. Если U цап > U вх,то по команде компаратора старший разряд сбрасывается в состояние 0; если U цап < U m ,то в старшем разряде остается 1. Затем в состояние 1 переводится следующий по старшинству разряд Рг и снова производится сравнение напряжений U цап и U вх.Цикл повторяется до тех пор, пока не будет зафиксировано равенство указанных напряжений при переводе в состояние 1 какого-то из младших разрядов. После этого СГД подает сигнал о выдаче выходного кода. Число циклов сравнения в таком АЦП будет равно числу разрядов выходного кода.

4.6. Программируемые логические матрицы и интегральные схемы

В организации ПЗУ и программируемых логических матриц (ПЛМ) много общего. Выявим общий подход в построении этих схем на примере.

Предположим, что необходимо построить устройство, которое обеспечивает выдачу сигнала на выходе Y1 при поступлении на вход кодов 000, 001; на выходе Y2 при кодах 010, 100, 110; на выходе Y3 при кодах 011, 101, 110, 111. Подаваемые на вход устройства коды можно рассматривать как коды адреса одноразрядных ячеек ПЗУ, из которых считываемые единицы через элемент ИЛИ поступают на один из выходов Y i . Рассмотрим взаимосвязь между адресами и данными - функциями
(табл. 4.13).

На рис. 4.43, а представлена схема ПЗУ, состоящая из дешифратора адреса на логических элементах и запоминающих элементов в виде диодно-резистивных схем, в цепи которых включены перемычки. Переменные Х3 , Х2 , X1 рассматриваются как коды адресов различных ячеек памяти. Из табл. 4.13 видно, что в дешифраторе при определенных адресах возбуждаются соответствующие выходные шины, которые должны быть объединены на одном из выходов схемы: Y1 , Y2 , Y3 . Элементы ИЛИ, с помощью которых формируются сигналы Y i , представляют собой неполный шифратор.

Таблица 4.13

Таблица истинности дешифратора

Адрес Входы Выходы
Х3 Х2 XI Y1 Y2 Y3
А0 A1 А2 A3 А4 А5 А6 А7

На рис. 4.43, б представлена та же схема ПЗУ в виде двух матриц. Матрица А1 представляет собой полный линейный дешифратор на восемь выходов. Каждая вертикальная линия в А1 соответствует элементу И с тремя входами, на каждом из которых реализовано одно из сочетаний входных переменных Х3 , Х2 , X1 . Матрица А2 представляет собой неполный шифратор.

Рис. 4.43. Матрица ПЗУ, как основа ПЛМ

Каждая горизонтальная линия в А2 соответствует восьмивходовому элементу ИЛИ. О формировании необходимых сигналов на каждом из его входов говорит точка в месте пересечения вертикальной линии матрицы А1 и горизонтальной линии матрицы А2 .

Схемы, приведенные на рис. 4.43 могут быть реализованы в виде комбинационной схемы на ПЛМ (рис. 4.44).

Рис. 4.44. Комбинационная схема на ПЛМ

Сравнивая две схемы, выполняющие одни и те же функции (см. рис. 4.43, б и 4.44), видим, что схема, реализованная в виде ПЛМ, проще. Матрица А1 в ПЗУ - это полный, жестко программируемый дешифратор, в матрице ПЛМ - это программируемые под функции минтермы. Затраты на оборудование принято определять площадью полупроводникового кристалла , занимаемого схемой. Таким образом, схемы, выполненные на ПЛМ, обеспечивают большую степень интеграции и тем самым расширяют функциональные возможности микросхемы.

ГЛАВА 5.
ВЫЧИСЛИТЕЛЬНЫЕ СРЕДСТВА ОБРАБОТКИ ИНФОРМАЦИИ В СИСТЕМАХ АВТОМАТИКИ

5.1. Микропроцессоры в системах автоматизации текстильного производства

Цифровые микросхемы к настоящему времени достигли большого быстродействия при приемлемом токе потребления. Наиболее быстрые из цифровых микросхем обладают скоростью переключения порядка 3 - 5 нс. В этих микросхемах потребляемый ток прямо пропорционален скорости переключения логических вентилей в микросхеме.

Ещё одной причиной широкого распространения микропроцессоров стало то, что микропроцессор - это универсальная микросхема, которая может выполнять практически любые функции. Универсальность обеспечивает широкий спрос на эти микросхемы, а значит массовость производства. Стоимость же микросхем обратно пропорциональна массовости их производства, то есть микропроцессоры становятся дешёвыми микросхемами и тем самым ещё больше увеличивают спрос.

В наибольшей степени все вышеперечисленные свойства проявляются в однокристальных микроЭВМ или как их чаще называют по области применения: микроконтроллерах. В микроконтроллерах на одном кристалле объединяются все составные части компьютера: микропроцессор (часто называют ядро микроконтроллера), ОЗУ, ПЗУ, таймеры и порты ввода-вывода.

При переходе к комплексной автоматизации технологий текстильного производства и появлении средств для ее реализации в виде специализированных микропроцессорных подсистем управления (МПСУ) возник вопрос о многосвязанном регулировании ряда параметров . Это потребовало решения вопросов идентификации технологических процессов, их взаимосвязи и управляемости по параметрам, предлагаемым технологами в качестве регламентированных. С помощью МПСУ при комплексной автоматизации текстильных производств могут решаться следующие основные задачи.

1. Информационно-измерительные, обеспечивающие сбор обширной информации; помехозащищенность; необходимую обработку статистических данных, программную коррекцию погрешностей измерений, автоматическую диагностику и само-калибровку системы измерений. При этом программируемая логика работы МПСУ обеспечивает гибкость перенастройки и позволяет наращивать функции системы при модернизации без существенных схемных изменений.

2. Регулирование технологических параметров и режимов работы оборудования, позволяющих поддерживать регламентированные технологами параметры на заданном значении или изменять их для выполнения условий оптимизации в системах многосвязанного регулирования, быстродействия по времени, энергетических и качественных показателей. В любом случае качество регулирования определяется достоверностью измерений и получаемой информации.

3. Управление режимами работы технологического оборудования и средствами робототехники, реализуемыми преимущественно в виде автооператоров или автоманипуляторов, выполняющих операции, например, загрузки и разгрузки кип волокна, сновальных валиков и ткацких навоев, съема и установки бобин на шпулярники и прядильные машины, заправки патронами прядильных мест, присучки лент и узловязание и др.

Координация работы всех средств управления технологическим оборудованием, включая регулирование потоков сигналов во времени и пространстве, их обработку, осуществляется центральным устройством управления. Современные устройства центрального управления являются электронными и подразделяются на универсальные с использованием микроЭВМ и на специализированные с использованием микроконтроллеров, микропроцессоров и логических схем.

Применение принципа программного управления в системах автоматического управления и сбора данных о состоянии систем в сочетании с микропроцессорами существенно увеличило их функциональные возможности, обеспечило большую гибкость, уменьшило стоимость и габариты, повысило надежность, устойчивость к неблагоприятным условиям окружающей среды и другие эксплуатационные характеристики.

Микропроцессоры и микроконтроллеры на их основе нашли широкое применение в цифровых измерительных приборах и системах, что упростило ввод и выдачу данных, предупредительных сигналов или команд на дисплей, а также автоматическое масштабирование данных параметров. Микропроцессоры могут обеспечить самопроверку и самокалибровку, проверку согласованности данных, связь с микроЭВМ или приборами, управляемыми ЭВМ, и автоматическое усреднение показаний. Однако микропроцессоры и микроконтроллеры на их основе имеют меньший объем стандартного программного обеспечения, номенклатуру периферийных устройств и возможности интерфейса, чем микроЭВМ.

Микропроцессоры нашли также применение в терминалах, сетях микроЭВМ, модулях коммутации сообщений, ретрансляторах, системах накопления передачи данных, кодирующих и декодирующих устройствах, портативных системах связи, охраны и модемах.

Микропроцессоры используются в системных блоках микро-ЭВМ , контроллерах ввода-вывода и других периферийных устройствах. Микроконтроллеры в периферийных устройствах позволяют выполнять многие задачи на периферии, разгружая центральный процессор для выполнения других задач.

Микропроцессоры, микроконтроллеры и микро-ЭВМ находят применение в текстильном оборудовании: в системах контроля данных, установках контроля качества, автоматических взвешивающих и дозирующих системах, контроля узлов/машин, определения степени скручиваемости, контроллерах, управляющих отдельными операциями, например, натяжением нитей, лент, тканей и т.п., устройствах сортировки, погрузочно-разгрузочных устройствах, терминалах и устройствах автоматической диагностики.

Следует отметить, что при управлении технологическими процессорами текстильной промышленности относительно большое число регулируемых параметров и сложность алгоритмов управления требуют применение мощных микроЭВМ. Микропроцессоры находят применение в распределенных системах, в которых реализуются алгоритмы управления объектами на местах и готовятся данные для микроЭВМ, что повышает надежность систем в условиях производственных помех.

В новейших моделях микропроцессоров операционная система полностью или частично реализуется аппаратными средствами на основе флэш-памяти , что оптимизирует процесс управления промышленными объектами.

Применение

ЦАП применяется всегда, когда надо преобразовать сигнал из цифрового представления в аналоговое, например, в проигрывателях компакт-дисков (Audio CD).

Типы ЦАП

Наиболее общие типы электронных ЦАП:

  • Широтно-импульсный модулятор - простейший тип ЦАП. Стабильный источник тока или напряжения периодически включается на время, пропорциональное преобразуемому цифровому коду, далее полученная импульсная последовательность фильтруется аналоговым фильтром нижних частот . Такой способ часто используется для управления скоростью электромоторов, а также становится популярным в Hi-Fi -аудиотехнике;
  • ЦАП передискретизации , такие как дельта-сигма -ЦАП, основаны на изменяемой плотности импульсов. Передискретизация позволяет использовать ЦАП с меньшей разрядностью для достижения большей разрядности итогового преобразования; часто дельта-сигма ЦАП строится на основе простейшего однобитного ЦАП, который является практически линейным. На ЦАП малой разрядности поступает импульсный сигнал с модулированной плотностью импульсов (c постоянной длительностью импульса, но с изменяемой скважностью), создаваемый с использованием отрицательной обратной связи . Отрицательная обратная связь выступает в роли фильтра верхних частот для шума квантования .
Большинство ЦАП большой разрядности (более 16 бит) построены на этом принципе вследствие его высокой линейности и низкой стоимости. Быстродействие дельта-сигма ЦАП достигает сотни тысяч отсчетов в секунду, разрядность - до 24 бит. Для генерации сигнала с модулированной плотностью импульсов может быть использован простой дельта-сигма модулятор первого порядка или более высокого порядка как MASH (англ. Multi stage noise SHaping ). С увеличением частоты передискретизации смягчаются требования, предъявляемые к выходному фильтру низких частот и улучшается подавление шума квантования;
  • ЦАП взвешивающего типа , в котором каждому биту преобразуемого двоичного кода соответствует резистор или источник тока, подключенный на общую точку суммирования. Сила тока источника (проводимость резистора) пропорциональна весу бита, которому он соответствует. Таким образом, все ненулевые биты кода суммируются с весом. Взвешивающий метод один из самых быстрых, но ему свойственна низкая точность из-за необходимости наличия набора множества различных прецизионных источников или резисторов и непостоянного импеданса . По этой причине взвешивающие ЦАП имеют разрядность не более восьми бит;
  • ЦАП лестничного типа (цепная R-2R-схема). В R-2R-ЦАП значения создаются в специальной схеме, состоящей из резисторов с сопротивлениями R и 2R , называемой матрицей постоянного импеданса, которая имеет два вида включения: прямое - матрица токов и инверсное - матрица напряжений. Применение одинаковых резисторов позволяет существенно улучшить точность по сравнению с обычным взвешивающим ЦАП, так как сравнительно просто изготовить набор прецизионных элементов с одинаковыми параметрами. ЦАП типа R-2R позволяют отодвинуть ограничения по разрядности. С лазерной подгонкой резисторов на одной подложке достигается точность 20-22 бита. Основное время на преобразование тратится в операционном усилителе, поэтому он должен иметь максимальное быстродействие. Быстродействие ЦАП единицы микросекунд и ниже (то есть наносекунды);

Характеристики

ЦАП находятся в начале аналогового тракта любой системы, поэтому параметры ЦАП во многом определяют параметры всей системы в целом. Далее перечислены наиболее важные характеристики ЦАП.

  • Максимальная частота дискретизации - максимальная частота, на которой ЦАП может работать, выдавая на выходе корректный результат. В соответствии с теоремой Найквиста - Шеннона (известной также как теорема Котельникова), для корректного воспроизведения аналогового сигнала из цифровой формы необходимо, чтобы частота дискретизации была не менее, чем удвоенная максимальная частота в спектре сигнала. Например, для воспроизведения всего слышимого человеком звукового диапазона частот, спектр которого простирается до 20 кГц, необходимо, чтобы звуковой сигнал был дискретизован с частотой не менее 40 кГц. Стандарт Audio CD устанавливает частоту дискретизации звукового сигнала 44,1 кГц; для воспроизведения данного сигнала понадобится ЦАП, способный работать на этой частоте. В дешевых компьютерных звуковых картах частота дискретизации составляет 48 кГц. Сигналы, дискретизованные на других частотах, подвергаются передискретизации до 48 кГц, что частично ухудшает качество сигнала.
  • Монотонность - свойство ЦАП увеличивать аналоговый выходной сигнал при увеличении входного кода.
  • THD+N (суммарные гармонические искажения + шум) - мера искажений и шума вносимых в сигнал ЦАПом. Выражается в процентах мощности гармоник и шума в выходном сигнале. Важный параметр при малосигнальных применениях ЦАП.
  • Динамический диапазон - соотношение наибольшего и наименьшего сигналов, которые может воспроизвести ЦАП, выражается в децибелах . Данный параметр связан с разрядностью и шумовым порогом.
  • Статические характеристики:
    • DNL (дифференциальная нелинейность) - характеризует, насколько приращение аналогового сигнала, полученное при увеличении кода на 1 младший значащий разряд (МЗР), отличается от правильного значения;
    • INL (интегральная нелинейность) - характеризует, насколько передаточная характеристика ЦАП отличается от идеальной. Идеальная характеристика строго линейна; INL показывает, насколько напряжение на выходе ЦАП при заданном коде отстоит от линейной характеристики; выражается в МЗР;
    • усиление;
    • смещение.
  • Частотные характеристики:
    • SNDR (отношение сигнал/шум +искажения) - характеризует в децибелах отношение мощности выходного сигнала к суммарной мощности шума и гармонических искажений;
    • HDi (коэффициент i-й гармоники) - характеризует отношение i-й гармоники к основной гармонике;
    • THD (коэффициент гармонических искажений) - отношение суммарной мощности всех гармоник (кроме первой) к мощности первой гармоники.

См. также

Литература

  • Жан М. Рабаи, Ананта Чандракасан, Боривож Николич. Цифровые интегральные схемы. Методология проектирования = Digital Integrated Circuits. - 2-е изд. - М .: Вильямс, 2007. - 912 с. - ISBN 0-13-090996-3
  • Mingliang Liu. Demystifying Switched-Capacitor Circuits. ISBN 0-75-067907-7 .
  • Phillip E. Allen, Douglas R. Holberg. CMOS Analog Circuit Design. ISBN 0-19-511644-5 .

Ссылки

  • Цифро-аналоговые преобразователи (ЦАП), теория и принципы работы на сайте Рынок микроэлектроники
  • Цифро-аналоговые преобразователи для задач цифровой обработки сигналов
  • INL/DNL Measurements for High-Speed ADCs объясняет, как вычисляются INL и DNL
  • Алексей Стахов . Компьютер Фибоначчи Ч. 1 , Ч. 2 , Ч. 3 // PCweek.ru, 2002
  • R-2R Ladder DAC explained содержит схемы (англ.)

Лекция №3

«Аналого-цифровое и цифро-аналоговое преобразование».

В микропроцессорных системах роль импульсного элемента выполняет аналого-цифровой преобразователь (АЦП), а роль экстраполятора – цифро-аналоговый преобразователь (ЦАП).

Аналого-цифровое преобразование заключается в преобразовании информации, содержащейся в аналоговом сигнале, в цифровой код. Цифро-аналоговое преобразование призвано выполнять обратную задачу, т.е. преобразовывать число, представленное в виде цифрового кода, в эквивалентный аналоговый сигнал.

АЦП, как правило, устанавливаются в цепях обратных связей цифровых систем управления для преобразования аналоговых сигналов обратных связей в коды, воспринимаемые цифровой частью системы. Т.о. АЦП выполняют несколько функций, таких как: временная дискретизация, квантование по уровню, кодирование. Обобщенная структурная схема АЦП представлена на рис.3.1.


На вход АЦП подается сигнал в виде тока или напряжения, который в процессе преобразования квантуется по уровню. Идеальная статическая характеристика 3-разрядного АЦП приведена на рис.3.2.


Входные сигналы могут принимать любые значения в диапазоне от – U max до U max , а выходные соответствуют восьми (2 3) дискретным уровням. Величина входного напряжения, при которой происходит переход от одного зачения выходного кода АЦП к другому соседнему значению, называется напряжением межкодового перехода . Разность между двумя смежными значениями межкодовых переходов называется шагом квантования или единицей младшего значащего разряда (МЗР) .Начальной точкой характеристики преобразования называется точка, определяемая значением входного сигнала, определяемого как

(3.1),

где U 0,1 – напряжение первого межкодового перехода, U LSB – шаг квантования ( LSB – Least Significant Bit ). преобразования соответствует входному напряжению, определяемому соотношением

(3.2).

Область значений входного напряжения АЦП, ограниченная значениями U 0,1 и U N-1,N называется диапазоном входного напряжения .

(3.3).

Диапазон входного напряжения и величину младшего разряда N -разрядного АЦП и ЦАП связывает соотношение

(3.4).

Напряжение

(3.5)

называется напряжением полной шкалы ( FSR – Full Scale Range ). Как правило, этот параметропределяется уровнем выходного сигнала источника опорного напряжения, подключенного к АЦП. Величина шага квантования или единицы младшего разряда т.о. равна

(3.6),

а величина единицы старшего значащего разряда

(3.7).

Как видно из рис.3.2, в процессе преобразования возникает ошибка, не превышающая по величине половины величины младшего разряда U LSB /2.

Существуют различные методы аналого-цифрового преобразования, различающиеся между собой по точности и быстродействию. В большинстве случаев эти характеристики антогонистичны друг другу. В настоящее время большое распространение получили такие типы преобразователей как АЦП последовательных приближений (поразрядного уравновешивания), интегрирующие АЦП, параллельные ( Flash ) АЦП, «сигма-дельта» АЦП и др.

Структурная схема АЦП последовательных приближений представлена на рис.3.3.



Основными элементами устройства являются компаратор (К), цифро-аналоговый преобразователь (ЦАП) и схема логического управления. Принцип преобразования основан на последовательном сравнении уровня входного сигнала с уровнями сигналов соответствующих различным комбинациям выходного кода и формировании результирующего кода по результатам сравнений. Очередность сравниваемых кодов удовлетворяет правилу половинного деления. В начале преобразования входной код ЦАП устанавливается в состояние, в котором все разряды кроме старшего равны 0, а старший равен 1. При этой комбинации на выходе ЦАП формируется напряжение, равное половине диапазона входного напряжения. Это напряжение сравнивается со входным напряжением на компараторе. Если входной сигнал больше сигнала, поступающего с ЦАП, то старший разряд выходного кода устанавливается в 1, в противном случае он сбрасывается в 0. На следующем такте частично сформированный таким образом код снова поступает на вход ЦАП, в нем устанавливается в единицу следующий разряд и сравнение повторяется. Процесс продолжается до сравнения младшего бита. Т.о. для формирования N -разрядного выходного кода необходимо N одинаковых элементарных тактов сравнения. Это означает, что при прочих равных условиях быстродействие такого АЦП уменьшается с ростом его разрядности. Внутренние элементы АЦП последовательных приближений (ЦАП и компаратор) должны обладать точностными показателями лучше величины половины младшего разряда АЦП.

Структурная схема параллельного ( Flash ) АЦП представлена на рис.3.4.



В этом случае входное напряжение подается для сравнения на одноименные входы сразу N -1 компараторов. На противоположные входы компараторов подаются сигналы с высокоточного делителя напряжения, который подключен к источнику опорного напряжения. При этом напряжения с выходов делителя равномерно распределены вдоль всего диапазона изменения входного сигнала. Шифратор с приоритетом формирует цифровой выходной сигнал, соответствующий самому старшему компаратору с активизированным выходным сигналом. Т.о. для обеспечения N -разрядного преобразования необходимо 2 N резисторов делителя и 2 N -1 компаратор. Это один из самых быстрых способов преобразования. Однако, при большой разрядности он требует больших аппаратных затрат. Точность всех резисторов делителя и компараторов снова должна быть лучше половины величины младшего разряда.

Структурная схема АЦП двойного интегрирования представлена на рис.3.5.



Основными элементами системы являются аналоговый коммутатор, состоящий из ключей SW 1, SW 2, SW 3, интегратор И, компаратор К и счетчик С. Процесс преобразования состоит из трех фаз (рис.3.6).



На первой фазе замкнут ключ SW 1, а остальные ключи разомкнуты. Через замкнутый ключ SW 1 входное напряжение подается на интегратор, который в течение фиксированного интервала времени интегрирует входной сигнал. По истечение этого интервала времени уровень выходного сигнала интегратора пропорционален значению входного сигнала. На втором этапе преобразования ключ SW 1 размыкается, а ключ SW 2 замыкается, и на вход интегратора подается сигнал с источника опорного напряжения. Конденсатор интегратора разряжается от напряжения, накопленного в первом интервале преобразования с постоянной скоростью, пропорциональной опорному напряжению. Этот этап длится до тех пор, пока выходное напряжение интегратора не упадет до нуля, о чем свидетельствует выходной сигнал компаратора, сравнивающего сигнал интегратора с нулем. Длительность второго этапа пропорциональна входному напряжению преобразователя. В течение всего второго этапа на счетчик помтупают высокочастотные импульсы с калиброванной частотой. Т.о. по истечению второго этапа цифровые показания счетчика пропорциональны входному напряжению. С помощью данного метода можно добиться очень хорошей точности не предъявляя высоких требований к точности и стабильности компонентов. В часности, стабильность емкости интегратора может быть не высокой, поскольку циклы заряда и разряда происходят со скоростью, обратно пропорциональной емкости. Болле того, ошибки дрейфа и смещения компарптора компенсируются благодаря тому, что каждый этап преобразования начинается и заканчивается на одном и том же напряжении. Для повышения точности используется третий этап преобразования, когда на вход интегратора через ключ SW 3 подается нулевой сигнал. Поскольку на этом этапе используется тот же интегратор и компаратор, то вычитание выходного значения ошибки при нуле из результата последующего измерения позволяет компенсировать ошибки, связанные с измерениями вблизи нуля. Жесткие требования не предъявляются даже к частоте тактовых импульсов, поступающих на счетчик, т.к. фиксированный интервал времени на первом этапе преобразования формируется из тех же самых импульсов. Жесткие требования предъявляются только к току разряда, т.е. к источнику опорного напряжения. Недостатком такого способа преобразования является невысокое быстродействие.

АЦП характеризуютя рядом параметров, позволяющих реализовать выбор конкретного устройства исходя из требований, предъявляемых к системе. Все параметры АЦП можно разделить на две группы: статические и динамические. Первые определяют точностные характеристики устройства при работе с неизменяющимся либо медленно изменяющимся входным сигналом, а вторые характеризуют быстродействие устройства как сохранение точности при увеличении частоты входного сигнала.

Уровню квантования, лежащему в окрестностях нуля входного сигнала соответствуют напряжения межкодовых переходов –0.5 U LSB и 0.5 U LSB (первый имеет место только в случае биполярного входного сигнала). Однако, в реальных устройствах, напряжения данных межкодовых переходов могут отличаться от этих идеальных значений. Отклонение реальных уровней этих напряжениймежкодовых переходов от их идеальных значений называется ошибкой биполярного смещения нуля ( Bipolar Zero Error ) и ошибкой униполярного смещения нуля ( Zero Offset Error ) соответственно. При биполярных диапазонах преобразования обычно используют ошибку смещения нуля, а при униполярных – ошибку униполярного смещения. Эта ошибка приводит к параллельному смещению реальной характеристики преобразования относительно идеальной характеристики вдорль оси абсцисс (рис.3.7).


Отклонение уровня входного сигнала соответствующего последнему межкодовому переходу от своего идеального значения U FSR -1.5 U LSB , называется ошибкой полной шкалы ( Full Scale Error ).

Коэффициентом преобразования АЦП называется тангенс угла наклона прямой, проведенной через начальную и конечную точки реальной характеристики преобразования. Разность между действительным и идеальным значением коэффициента преобразования называется ошибкой коэффициента преобразования ( Gain Error ) (рис.3.7).Она включает ошибки на концах шкалы, но не включает ошибки нуля шкалы. Для униполярного диапазона она определяется как разность между ошибкой полной шкалы и ошибкой униполярного смещения нуля, а для биполярного диапазона – как разность между ошибкой полной шкалы и ошибкой биполярного смещения нуля. По сути дела в любом случае это отклонение идеального расстояния между последним и первым межкодовыми переходами (равного U FSR -2 U LSB ) от его реального значения.

Ошибки смещения нуля и коэффициента преобразования можно скомпенсировать подстройкой предварительного усилителя АЦП. Для этого необходимо иметь вольтметр с точностью не хуже 0.1 U LSB . Для независимости этих двух ошибок сначала корректируют ошибку смещения нуля, а затем, ошибку коэффициента преобразования. Для коррекции ошибки смещения нуля АЦП необходимо:

1. Установить входное напряжение точно на уровне 0.5 U LSB ;

2. Подстраивать смещение предварительного усилителя АЦП до тех пор, пока АЦП не переключится в состояние 00…01.

Для коррекции ошибки коэффициента преобразования необходимо:

1. Установить входное напряжение точно на уровне U FSR -1.5 U LSB ;

2. Подстраивать коэффициент усиления предварительного усилителя АЦП до тех пор, пока АЦП не переключится в состояние 11…1.

Из-за не идеальности элементов схемы АЦП ступеньки в различных точках характеристики АЦП отличаются друг от друга по величине и не равны U LSB (рис.3.8).


Отклонение расстояния между серединами двух соседних реальных шагов квантования от идеального значения шага квантования U LSB называется дифференциальной нелинейностью (DNL – Differential Nonlinearity). Если DNL больше или равна U LSB , то у АЦП могут появиться так называемые “пропущенные коды” (рис.3.3). Это влечет локальное резкое изменение коэффициента передачи АЦП, что в замкнутых системах управления может привести к потере устойчивости.

Для тех приложений, где важно поддерживать выходной сигнал с заданной точностью, важно на солько точно выходные коды АЦП соответствуют напряжениям межкодовых переходов. Максимальное отклонение центра шага квантования на реальной характеристике АЦП от линеаризованной характеристики называется интегральной нелинейностью (INL – Integral Nonlinearity) или относительной точностью (Relative Accuracy) АЦП (рис.3.9).


Линеаризованная характеристика проводится через крайние точки реальной характеристики преобразования, после того, как они были откалиброваны, т.е. устранены ошибки смещения нуля и коэффициента преобразования.

Ошибки дифференциальной и интегральной нелинейности скомпенсировать простыми средствами практически невозможно.

Разрешающей способностью АЦП ( Resolution ) называется величина, обратная максимальному числу кодовых комбинаций на выходе АЦП

(3.8).

Этот параметр определяет какой минимальный уровень входного сигнала (относительно сигнала полной амплитуды) способен воспринимать АЦП.

Точность и разрешающая способность – две независимые характеристики. Разрешающая способность играет определяющую роль тогда, когда важно обеспечить заданный динамический диапазон входного сигнала. Точность является определяющей, когда требуется поддерживать регулируемую величину на заданном уровне с фиксированной точностью.

Динамическим диапазоном АЦП (DR - Dinamic Range ) называется отношение максимального воспринимаемого уровня входного напряжения к минимальному, выраженное в дБ

(3.9).

Этот параметр определяет максимальное количество информации, которое способен передавать АЦП. Так, для 12-разрядного АЦП DR =72 дБ.

Характеристики реальных АЦП отличаются от характеристик идеальных устройств из-за неидеальности элементов реального устройства. Рассмотрим некоторые параметры, характеризующие реальные АЦП.

Отношением сигнал-шум (SNR – Signal to Noise Ratio ) называется отношение среднеквадратического значения входного синусоидального сигнала к среднеквадратическому значению шума, который определяется как сумма всех остальных спектральных компонент вплоть до половины частоты дискретизации, без учета постоянной составляющей. Для идеального N -разрядного АЦП, который генерирует лишь шум квантования SNR , выражаемый в децибелах, можно определить как


(3.10),

где N – разрядность АЦП. Так, для 12-разрядного идеального АЦП SNR =74 дБ. Это значение больше значения динамического диапазона такого же АЦП т.к. минимальный уровень воспринимаемого сигнала должен быть больше уровня шума. В данной формуле учитывается только шум квантования и не учитываются другие источники шума, существующие в реальных АЦП. Поэтому, значения SNR для реальных АЦП как правило ниже идеального. Типичным значением SNR для реального 12-разрядного АЦП является 68-70 дБ.

Если входной сигнал имеет размах меньше U FSR , то в последнюю формулу нужно внести корректировку

(3.11),

где К ОС – ослабление входного сигнала, выраженное в дБ. Так, если входной сигнал 12-разрядного АЦП имеет амплитуду в 10 раз меньше половины напряжения полной шкалы, то К ОС =-20 дБ и SNR =74 дБ – 20 дБ=54 дБ.

Значение реального SNR может быть использовано для определения эффективного количества разрядов АЦП ( ENOB – Effective Number of Bits ). Оно определяется по формуле

(3.12).

Этот показатель может характеризовать действительную решающую способность реального АЦП, Так, 12-разрядный АЦП, у которого SNR =68 дБ для сигнала с К ОС =-20 дБ является на самом деле 7-разрядным ( ENOB =7.68). Значение ENOB сильно зависит от частоты входного сигнала, т.е. эффективная разрядность АЦП падает с увеличением частоты.

Суммарный коэффициент гармоник ( THD – Total Harmonic Distortion ) – это отношение суммы среднеквадратических значений всех высших гармоник к среднеквадратическому значению основной гармоники

(3.13),

где n обычно ограничивают на уровне 6 или 9. Этот параметр характеризует уровень гармонических искажений выходного сигнала АЦП по сравнения с входным. THD возрастает с частотой входного сигнала.

Полоса частот полной мощности ( FPBW – Full Power Bandwidth ) – это максимальная частота входного сигнала с размахом, равным полной шкале, при которой амплитуда восстановленной основной составляющей уменьшается не более чем на 3 дБ. С ростом частоты входного сигнала аналоговые цепи АЦП перестают успевать отрабатывать его изменения с заданной точностью, что приводит к уменьшению коэффициента преобразования АЦП на высоких частотах.

Время установления (Settling Time ) – это время, необходимое АЦП для достижения номинальной точности после того, как на ее вход был подан ступенчатый сигнал с амплитудой, равной полному диапазонувходного сигнала. Этот параметр ограничен из-за конечного быстродействия различных узлов АЦП.

Вследствие различного рода погрешностей характеристика реального АЦП является нелинейной. Если на вход устройства с нелинейностями подать сигнал, спектр которого состоит из двух гармоник f a и f b , то в спектре выходного сигнала такого устройства кроме основных гармоник будут присутствовать интермодуляционные субгармоники с частотами , где m , n =1,2,3,… Субгармоники второго порядка – это f a + f b , f a - f b , субгармоники третьего порядка – это 2 f a + f b , 2 f a - f b , f a +2 f b , f a -2 f b . Если входные синусоиды имеют близкие частоты, расположенные вблизи верхнего края полосы пропускания, то субгармоники второго порядка далеко отстоят от входных синусоид и располагаются в области нижних частот, тогда как субгармоники третьего порядка имеют частоты, близкие к входным частотам.

Коэффициент интермодуляционных искажений ( Intermodulatin Distortion ) – это отношение суммы среднеквадратических значений интермодуляционных субгармоник определенного порядка к сумме среднеквадратических значений основных гармоник, выраженное в дБ

(3.14).

Любой способ аналого-цифрового преобразования требует некоторого конечного времени для его выполнения. Под временем преобразования АЦП ( Conversion Time ) понимается интервал времени от момента поступления аналогового сигнала на вход АЦП до момента появления соответствующего выходного кода. Если входной сигнал АЦП изменяется во времени, то конечное время преобразования АЦП приводит к появлению т.н. аппертурной погрешности (рис.3.10).



Сигнал начала преобразования поступает в момент t 0 , а выходной код появляется в момент t 1 . За это время входной сигнал успел измениться на величину D U . Возникает неопределенность: какому уровню значения входного сигнала в диапазоне U 0 – U 0 + D U соответствует данный выходной код. Для сохранения точности преобразования на уровне единицы младшего разряда необходимо чтобы за время преобразования изменение значения сигнала на входе АЦП составило бы не более величины единицы младшего разряда

(3.15).

Изменение уровня сигнала за время преобразования можно приблизительно вычислить как

(3.16),

где U in – входное напряжение АЦП, T c – время преобразования. Подставляя (3.16) в (3.15) получим

(3.17).

Если на входе действует синусоидальный сигнал с частотой f

(3.18),

то его производная будет равна

(3.19).

Она принимает максимальное значение когда косинус равен 1. Подставляя с учетом этого (3.9) в (3.7) получим

, или

(3.20)

Конечное время преобразования АЦП приводит к требованию ограничения скорости изменения входного сигнала. Для того, чтобы уменьшить апертурную погрешность и т.о. ослабить ограничение на скорость изменения входного сигнала АЦП на входе преобразователя устанавливается т.н. «устройство выборки-хранения» (УВХ) ( Track / Hold Unit ). Упрощенная схема УВХ представлена на рис.3.11.



Это устройство имеет два режима работы: режим выборки и режим фиксации. Режим выборки соответствует замкнутому состоянию ключа SW . В этом режиме выходное напряжение УВХ повторяет его входное напряжение. Режим фиксации включается по команде размыкающей ключ SW . При этом связь между входом и выходом УВХ прерывается, а выходной сигнал поддерживается на постоянном уровне, соответствующем уровню входного сигнала на момент поступления команды фиксации за счет заряда, накопленного на конденсаторе. Т.о., если подать команду фиксации непосредственно перед началом преобразования АЦП, то выходной сигнал УВХ будет поддерживаться на неизменном уровне в течение всего времени преобразования. После окончания преобразования УВХ снова переводится в режим выборки. Работа реального УВХ несколько отличается от идеального случая, который был описан (рис.3.12).



(3.21),

где f – частота входного сигнала, t A – величина апертурной неопределенности.

В реальных УВХ выходной сигнал не может оставаться абсолютно неизменным в течение конечного времени преобразования. Конденсатор будет постепенно разряжаться маленьким входным током выходного буфера. Для сохранения требуемой точности необходимо чтобы за время преобразования заряд конденсатора не изменился больше чем на 0.5 U LSB .

Цифро-аналоговые преобразователи устанавливаются обычно на выходе микропроцессорной системы для преобразования ее выходных кодов в аналоговый сигнал, подаваемый на непрерывный объект регулирования. Идеальная статическая характеристика 3-разрядного ЦАП представлена на рис.3.13.


Начальная точка характеристики определяетсякак точка, соответствующая первому (нулевому) входному коду U 00…0 . Конечная точка характеристики определяетсякак точка, соответствующая последнему входному коду U 11…1 . Определения диапазона выходного напряжения, единицы младшего разряда квантования, ошибки смещения нуля, ошибки коэффициента преобразования аналогичны соответствующим характеристикам АЦП.

С точки зрения структурной организации у ЦАП наблюдается гораздо меньшее разнообразие вариантов построения преобразователя. Основной структурой ЦАП является т.н. “цепная R -2 R схема” (рис.3.14).



Легко показать, что входной ток схемы равен I in = U REF / R , а токи последовательных звеньев цепи соответственно I in /2, I in /4, I in /8 и т.д. Для преобразования входного цифрового кода в выходной ток достаточно собрать все токи плечей, соответствующих единицам во входном коде, в выходной точке преобразователя (рис.3.15).



Если к выходной точке преобразователя подключить операционный усилитель, то выходное напряжение можно определить как

(3.22),

где K – входной цифровой код, N – разрядность ЦАП.

Все существующие ЦАП делятся на две больших группы: ЦАП с выходом по току и ЦАП с выходом по напряжению. Различие между ними заключается в отсутствии или наличии у микросхемы ЦАП оконечного каскада на операционном усилителе. ЦАП с выходом по напряжению являются более завершенными устройствами и требуют меньше дополнительных элементов для своей работы. Однако, оконечный каскад наряду с параметрами лесничной схемы определяет динамические и точностные параметры ЦАП. Выполнить точный быстродействующий операционный усилитель на одном кристалле с ЦАП часто бывает затруднительно. Поэтому большинство быстродействующих ЦАП имеют выход по току.

Дифференциальная нелинейность для ЦАП определяется как отклонение расстояния между двумя соседними уровнями выходного аналогового сигнала от идеального значения U LSB . Большое значение дифференциальной нелинейности может привести к тому, что ЦАП станет немонотонным. Это означает, что увеличение цифрового кода будет приводить к уменьшению выходного сигнала на каком нибудь участке характеристики (рис.3.16). Это может приводить к нежелательной генерации в системе.


Интегральная нелинейность для ЦАП определяется как наибольшее отклонение уровня аналогового выходного сигнала от прямой линии, проведенной через точки, соответствующие первому и последнему коду, после того, как они отрегулированы.

Время установления ЦАП определяется как время, за которое выходной сигал ЦАП установится на заданном уровне с погрешностью не более 0.5 U LSB после того, как входной код изменился со значения 00…0 до значения 11…1. Если ЦАП имеет входные регистры, то определенная часть времени установления обусловлена фиксированной задержкой прохождения цифровых сигналов, и лишь оставшаяся часть – инерционностью самой схемы ЦАП. Поэтому время установления измеряют обычно не от момента поступления нового кода на вход ЦАП, а от момента начала изменения выходного сигнала, соответствующего новому коду, до момента установления выходного сигнала с точностью 0.5U LSB (рис.3.17) .



В этом случае время установления определяет максимальную частоту стробирования ЦАП

(3.23),

где t S – время установления.

Входные цифровые цепи ЦАП имеют конечное быстродействие. В добавок, скорость распространения сигналов, соответствующих различным разрядом входного кода, неодинакова вследствие разброса параметров элементов и схемных особенностей. В результате этого плечи лестничной схемы ЦАП при поступлении нового кода переключаются не синхронно, а с некоторой задержкой один относительно другого. Это приводит к тому, что в диаграмме выходного напряжения ЦАП, при переходе от одного установившегося значения к другому наблюдаются выбросы различной амплитуды и направленности (рис.3.18).




Согласно алгоритму работы, ЦАП представляет из себя экстраполятор нулевого порядка, частотная характеристика которого может быть представлена выражением

(3.24),

где w s – частота дискретизации. Амплитудно-частотная характеристика ЦАП представлена на рис.3.20.



Как видно, на частоте 0.5 w s восстанавливаемый сигнал ослабляется на 3.92 дБ по сравнению с низкочастотными составляющими сигнала. Таким образом, имеет место небольшое искажение спектра восстанавливаемого сигнала. В большинстве случаев это небольшое искажение не сказывается значительно на параметрах системы. Однако, в тех случаях, когда необходима повышенная линейность спектральных характеристик системы (например в системах обработки звука), для выравнивания результирующего спектра на выходе ЦАП необходимо ставить специальный восстанавливающий фильтр с частотной характеристикой типа x / sin (x ).

Между дискретным цифровым миром и аналоговыми сигналами.

Энциклопедичный YouTube

    1 / 3

    ✪ Лекция 26. Цифро-аналоговый преобразователь R-2R

    ✪ Параллельный АЦП ЦАП

    ✪ Цифро-аналоговый преобразователь

    Субтитры

Применение

ЦАП применяется всегда, когда надо преобразовать сигнал из цифрового представления в аналоговое, например, в проигрывателях компакт-дисков (Audio CD).

Типы ЦАП

Наиболее общие типы электронных ЦАП:

  • Широтно-импульсный модулятор - простейший тип ЦАП. Стабильный источник тока или напряжения периодически включается на время, пропорциональное преобразуемому цифровому коду, далее полученная импульсная последовательность фильтруется аналоговым фильтром нижних частот . Такой способ часто используется для управления скоростью электромоторов, а также становится популярным в Hi-Fi -аудиотехнике;
  • ЦАП передискретизации , такие, как дельта-сигма -ЦАП, основаны на изменяемой плотности импульсов. Передискретизация позволяет использовать ЦАП с меньшей разрядностью для достижения большей разрядности итогового преобразования; часто дельта-сигма ЦАП строится на основе простейшего однобитного ЦАП, который является практически линейным. На ЦАП малой разрядности поступает импульсный сигнал с модулированной плотностью импульсов (c постоянной длительностью импульса, но с изменяемой скважностью), создаваемый с использованием отрицательной обратной связи . Отрицательная обратная связь выступает в роли фильтра верхних частот для шума квантования .
Большинство ЦАП большой разрядности (более 16 бит) построены на этом принципе вследствие его высокой линейности и низкой стоимости. Быстродействие дельта-сигма ЦАП достигает сотни тысяч отсчётов в секунду, разрядность - до 24 бит. Для генерации сигнала с модулированной плотностью импульсов может быть использован простой дельта-сигма модулятор первого порядка или более высокого порядка как MASH (англ. Multi stage noise SHaping ). С увеличением частоты передискретизации смягчаются требования, предъявляемые к выходному фильтру низких частот, и улучшается подавление шума квантования;
  • ЦАП взвешивающего типа , в котором каждому биту преобразуемого двоичного кода соответствует резистор или источник тока, подключённый на общую точку суммирования. Сила тока источника (проводимость резистора) пропорциональна весу бита, которому он соответствует. Таким образом, все ненулевые биты кода суммируются с весом. Взвешивающий метод один из самых быстрых, но ему свойственна низкая точность из-за необходимости наличия набора множества различных прецизионных источников или резисторов и непостоянного импеданса . По этой причине взвешивающие ЦАП имеют разрядность не более восьми бит;

Характеристики

ЦАП находятся в начале аналогового тракта любой системы, поэтому параметры ЦАП во многом определяют параметры всей системы в целом. Далее перечислены наиболее важные характеристики ЦАП.

  • Максимальная частота дискретизации - максимальная частота, на которой ЦАП может работать, выдавая на выходе корректный результат. В соответствии с теоремой Котельникова , для корректного воспроизведения аналогового сигнала из цифровой формы необходимо, чтобы частота дискретизации была не менее, чем удвоенная максимальная частота в спектре сигнала. Например, для воспроизведения всего слышимого человеком звукового диапазона частот, спектр которого простирается до 20 кГц, необходимо, чтобы звуковой сигнал был дискретизован с частотой не менее 40 кГц. Стандарт Audio CD устанавливает частоту дискретизации звукового сигнала 44,1 кГц; для воспроизведения данного сигнала понадобится ЦАП, способный работать на этой частоте. В дешёвых компьютерных звуковых картах частота дискретизации составляет 48 кГц. Сигналы, дискретизованные на других частотах, подвергаются передискретизации до 48 кГц, что частично ухудшает качество сигнала.
  • Статические характеристики:
    • DNL (дифференциальная нелинейность) - характеризует, насколько приращение аналогового сигнала, полученное при увеличении кода на 1 младший значащий разряд (МЗР), отличается от правильного значения;
    • INL (интегральная нелинейность) - характеризует, насколько передаточная характеристика ЦАП отличается от идеальной. Идеальная характеристика строго линейна; INL показывает, насколько напряжение на выходе ЦАП при заданном коде отстоит от линейной характеристики; выражается в МЗР;
    • усиление;
    • смещение.
  • Частотные характеристики:
    • SNDR (отношение сигнал/шум +искажения) - характеризует в децибелах отношение мощности выходного сигнала к суммарной мощности шума и гармонических искажений;
    • HDi (коэффициент i-й гармоники) - характеризует отношение i-й гармоники к основной гармонике;
    • THD (коэффициент гармонических искажений) - отношение суммарной мощности всех гармоник (кроме первой) к мощности первой гармоники.

Цифро-аналоговый преобразователь (ЦАП) – устройство, выполняющее преобразование входного цифрового сигнала (кода) в аналоговый.

ЦАП широко используется там, где необходимо с помощью цифровой информации, выдаваемой ЭВМ, управлять аналоговыми устройствами, например, осуществлять перемещения клапана, пропорциональные рассчитанному значению цифрового сигнала. ЦАП используются для согласования ЭВМ (ЦУ) с аналоговыми устройствами, в качестве внутренних узлов АЦП и цифровых измерительных приборов. В составе аналого-цифровых преобразователей ЦАП служит для формирования аналогового сигнала (тока или напряжения), с которым сравнивается преобразуемый сигнал.

Основной характеристикой ЦАП является разрешающая способность, определяемая числом разрядов n . Теоретически ЦАП, преобразующий n -разрядные двоичные коды, должен обеспечить 2n различных значений выходного сигнала с разрешающей способностью (2n – 1)-1. Абсолютное значение минимального выходного кванта напряжения определяется как предельным принимаемым числом 2n – 1, так и максимальным выходным напряжением ЦАП, называемым напряжением шкалы U шк. Так, при 12 разрядах число независимых квантов (ступенек) выходного напряжения ЦАП составляет 212 – 1 = 0,0245%. Выбранное с помощью опорного источника напряжение шкалы U шк = 10B, разделенное на это число квантов, дает абсолютную разрешающую способность ЦАП

Dx = U шк/(2n – 1) = 103 мB/ (212 – 1) = 2,45 мВ.

Характеристика преобразования (ХП) ЦАП – совокупность значений выходной аналоговой величины хi в зависимости от входного кода бi .

Характеристика преобразования (или передаточная характеристика) ЦАП изображена на рис. 3.15.

Рис. 3.15. Передаточная характеристика ЦАП; A – линейность; B – нелинейность; C – немонотонность; D – выходной сигнал; E – прямая, соединяющая идеальные значения уровней выходного сигнала; dпш – погрешность полной шкалы

Отличие реального значения разрешающей способности от теоретического обусловлено погрешностями узлов и шумами ЦАП. Точность ЦАП определяется значениями абсолютной погрешности прибора, нелинейностью и дифференциальной нелинейностью.

Абсолютная погрешность dшк представляет отклонение значения выходного напряжения (тока) от номинального расчетного, соответствующего конечной точке характеристики преобразования (см. рис. 3.15). Абсолютная погрешность обычно измеряется в единицах младшего значащего разряда (МЗР).

Нелинейность dл характеризует идентичность минимальных приращений выходного сигнала во всем диапазоне преобразования и определяется как наибольшее отклонение выходного сигнала от прямой линии абсолютной точности, проведенной через ноль и точку максимального значения выходного сигнала. Значение нелинейности не должно превышать ±0,5 единицы МЗР.

Дифференциальная нелинейность dл.диф характеризует идентичность соседних приращений сигнала. Ее определяют как минимальную разность погрешности нелинейности двух соседних квантов в выходном сигнале. Значение дифференциальной нелинейности не должно превышать удвоенное значение погрешности нелинейности. Если значение dл.диф больше единицы МЗР, то преобразователь считается немонотонным, т.е. на его выходе выходной сигнал не может наращиваться равномерно при равномерном возрастании входного кода.

Немонотонность в некоторых квантах дает уменьшение выходного сигнала при нарастании входного кода.

Аппаратурная погрешность, определяемая нестабильностью источника опорного напряжения, погрешностью ключей, резистивных матриц и выходных операционных усилителей, называется инструментальной погрешностью. Основными факторами, вызывающими возникновение погрешностей элементов, являются: технологический разброс параметров; влияние изменений окружающей среды (в основном температуры); изменение параметров во времени (старение); воздействия внешних и внутренних шумов и помех.

Все инструментальные погрешности проявляются, в основном, в следующих видах:

а) смещения нуля, характеризующего параллельный сдвиг передаточной характеристики ЦАП от усредненной прямой (вызывается напряжением смещения нуля и ненулевым входным током ОУ, а также остаточными параметрами ключей);

б) изменения коэффициента передачи, характеризующего отклонения крутизны реальной передаточной характеристики от усредненной прямой;

в) отклонения передаточной характеристики преобразователя от идеальной прямой (такая нелинейность преобразования проявляется как неидентичность приращений выходного сигнала в функции от входного кода).

К динамическим характеристикам ЦАП относятся временные параметры и максимальная частота преобразования.

Временные параметры определяют быстродействие преобразователей. Различают три временных параметра: шаг (период) квантования Dt , время преобразования (время установления выходного сигнала) t пр, длительность цикла преобразования t ц.

Шаг (период) квантования Dt – интервал времени между двумя последовательными преобразованиями. Значение, обратное периоду квантования 1/Dt = f кв, называется частотой квантования.

Время установки выходного сигнала ЦАП t пр – время от момента изменения кода на входах ЦАП до момента, когда значение выходной аналоговой величины отличается от установившегося на заданную величину (рис. 3.16).

Рис. 3.16. Определение времени t пр преобразования ЦАП

Длительность цикла преобразования t ц – время между моментом подачи входного кода и выдачей выходного аналогового сигнала (t ц = t пр). Определяется, в основном, циклограммами и временными диаграммами, описывающими работу информационно-вычислительных устройств и систем с имеющимися преобразователями.

Максимальная частота преобразования – наибольшая частота дискретизации, при которой параметры ЦАП соответствуют заданным значениям.

Работа ЦАП часто сопровождается специфическими переходными импульсами, которые представляют собой острые пики большой амплитуды в выходном сигнале, возникающие из-за разности времен открывания и закрывания аналоговых ключей в ЦАП. Особенно выбросы проявляются, когда вместо нуля в старшем значащем разряде и единиц в младших разрядах кода поступает единица в старший значащий разряд (СЗР) и код «все нули» в МЗР. Например, если входной код 011...111 сменяется кодом 10...000, а ключ старшего ЦАП открывается позже, чем закрываются ключи младших, то приращение выходного сигнала всего на один квант может сопровождаться импульсом с амплитудой 0,5U шк. Длительность этого пика будет соответствовать запаздыванию смены состояния ключей.

В настоящее время, в зависимости от значений параметров, выделяют прецизионные и быстро-действующие ЦАП. Прецизионные ЦАП имеют dл = 0,1%, а быстродействующие t уст = 100нс.



Загрузка...