sonyps4.ru

Что собой представляет свитч и как его настроить. Коммутаторы локальных сетей

Неуправляемый коммутатор подходит для построения домашней сети или сети малого офиса. Его отличие от остальных - "коробочная" версия. Т. е., после покупки достаточно настроить подключение к серверу провайдера и можно раздавать интернет.

При работе с таким коммутатором стоит учитывать, что возможны кратковременные задержки при использовании пейджеров голосовой связи (Skype, Vo-IP) и невозможность распределения ширины канала интернета. Т. е., при включении программы Torrent на одном из компьютеров в сети - она будет потреблять почти всю ширину канала, а остальные компьютеры в сети - пользоваться остатками пропускной способности.

Управляемый коммутатор - это лучшее решение для построение сети в офисах и компьютерных клубах. Данный вид продается в стандартной комплектации и стандартными настройками.

Для настройки такого коммутатора придется попотеть - большое количество настроек может вскружить голову, но при правильном подходе принести замечательные результаты. Главная особенность - распределение ширины канала и настройка пропускной способности каждого порта. Возьмем в пример канал интернета 50 Mbps/s, 5 компьютеров в сети, IP-TV приставку и ATC. Мы можем поступить несколькими вариантами, но рассмотрю я всего один.

Далее - только Ваша фантазия и нестандартное мышление. В общей сложности мы имеем относительно большой канал. Почему относительно? Эту информацию Вы узнаете далее, если внимательно вникнете в суть. Забыл уточнить - я собираю сеть для малого офиса. IP-TV используется для телевизора в комнате ожидания, компьютеры - для работы с электронной почтой, передачей документов, просмотров сайтов, ATC - для подключения стационарных телефонов к основной линии для приема звонков с Skype, QIP, сотовых телефонов и пр.

Управляемый коммутатор представляет собой модификацию обычного, неуправляемого коммутатора.

Кроме чипа ASIC в нем присутствует микропроцессор, способный выполнять дополнительные операции над фреймами, такие как фильтрация, модификация и приоритезация, а так же другие, не связанные с пересылкой фреймов, действия. Например, предоставлять пользовательский интерфейс.

В практическом плане отличия управляемых коммутаторов от неуправляемых заключаются, во-первых, в списке поддерживаемых стандартов - если обычный, неуправляемый коммутатор поддерживает только стандарт Ethernet (IEEE 802.3) в различных его разновидностях, то управляемые коммутаторы поддерживают гораздо более широкий список стандартов: 802.1Q.802.1X, 802.1AE, 802.3ad (802.1AX) и так далее, которые требуют настройки и управления.

Есть еще один вид - SMART-коммутаторы.

Появление смарт-коммутаторов было обязано маркетинговому ходу - устройства поддерживают значительно меньшее количество функций, чем свои старшие собратья, но тем не менее являются управляемыми.

Что бы не смущать и не вводить потребителей в заблуждение, первые модели выпускались с обозначением intelligent или web-managed.

Эти устройства по значительно меньшей цене предлагали базовую функциональность управляемых коммутаторов - организация VLAN, административное включение и отключение портов, фильтрация по MAC-адресу или ограничение скорости. Традиционно, единственным способом управления являлся web-интерфейс, так что за смарт-коммутаторами прочно закрепилось название web-eуправляемых.

Коммутатор хранит в ассоциативной памяти таблицу коммутации, в которой указывается соответствие MAC-адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он начинает работать в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует кадры (frame) и, определив MAC-адрес хоста-отправителя, заносит его в таблицу.

Впоследствии, если на один из портов коммутатора поступит кадр, предназначенный для хоста, MAC-адрес которого уже есть в таблице, то этот кадр будет передан только через порт, указанный в таблице. Если MAC-адрес хоста-получателя не привязан к какому-либо порту коммутатора, то кадр будет отправлен на все порты.

Со временем коммутатор строит полную таблицу для всех своих портов, и в результате трафик локализуется.

Стоит отметить малую латентность (задержку) и высокую скорость пересылки на каждом порту интерфейса.

Способы коммутации в коммутаторе.

Существует три способа коммутации. Каждый из них - это комбинация таких параметров, как время ожидания «принятием коммутатором решения» (латентность) и надёжность передачи.

С промежуточным хранением (Store and Forward).

«Напролет» (cut-through).

«Бесфрагментный» (fragment-free) или гибридный.

С промежуточным хранением (Store and Forward). Коммутатор читает всю поступившую информацию в кадре, проверяет его на отсутствие ошибок, выбирает порт коммутации и после этого посылает в него проверенный кадр.

«Напролет» (cut-through). Коммутатор считывает в кадре только адрес назначения и после выполняет коммутацию. Этот режим уменьшает задержки при передаче, но в нём нет метода обнаружения ошибок.

«Бесфрагментный» (fragment-free) или гибридный. Этот режим является модификацией режима «Напролет». Передача осуществляется после фильтрации фрагментов коллизий (кадры размером 64 байта обрабатываются по технологии store-and-forward, остальные по технологии cut-through). Задержка, связанная с «принятием коммутатором решения», добавляется к времени, которое требуется кадру для входа на порт коммутатора и выхода с него, и вместе с ним определяет общую задержку коммутатора.

Характеристики производительности коммутаторов.

Основными характеристиками коммутатора, измеряющими его производительность, являются:

  • - скорость фильтрации (filtering);
  • - скорость маршрутизации (forwarding);
  • - пропускная способность (throughput);
  • - задержка передачи кадра.

Кроме того, существует несколько характеристик коммутатора, которые в наибольшей степени влияют на указанные характеристики производительности. К ним относятся:

  • - размер буфера (буферов) кадров;
  • - производительность внутренней шины;
  • - производительность процессора или процессоров;
  • - размер внутренней адресной таблицы.

Скорость фильтрации и продвижения кадров - это две основные характеристики производительности коммутатора. Эти характеристики являются интегральными показателями, они не зависят от того, каким образом технически реализован коммутатор.

Скорость фильтрации определяет скорость, с которой коммутатор выполняет следующие этапы обработки кадров:

  • - прием кадра в свой буфер;
  • - уничтожение кадра, так как его порт назначения совпадает с портом-источником.

Скорость продвижения определяет скорость, с которой коммутатор выполняет следующие этапы обработки кадров:

  • - прием кадра в свой буфер;
  • - просмотр адресной таблицы с целью нахождения порта для адреса назначения кадра;
  • - передача кадра в сеть через найденный по адресной таблице порт назначения.

Как скорость фильтрации, так и скорость продвижения измеряются обычно в кадрах в секунду.

Если в характеристиках коммутатора не уточняется, для какого протокола и для какого размера кадра приведены значения скоростей фильтрации и продвижения, то по умолчанию считается, что эти показатели даются для протокола Ethernet и кадров длиной 64 байта (без преамбулы), с полем данных в 46 байт.

Применение в качестве основного показателя скорости работы коммутатора кадров минимальной длины объясняется тем, что такие кадры всегда создают для коммутатора наиболее тяжелый режим работы по сравнению с кадрами другого формата при равной пропускной способности переносимых пользовательских данных.

Поэтому при проведении тестирования коммутатора режим передачи кадров минимальной длины используется как наиболее сложный тест, который должен проверить способность коммутатора работать при наихудшем сочетании для него параметров трафика.

Кроме того, для пакетов минимальной длины скорость фильтрации и продвижения имеют максимальное значение, что имеет немаловажное значение при рекламе коммутатора.

Пропускная способность коммутатора измеряется количеством переданных в единицу времени через его порты пользовательских данных.

Так как коммутатор работает на канальном уровне, то для него пользовательскими данными являются те данные, которые переносятся в поле данных кадров протоколов канального уровня - Ethernet, Token Ring, FDDI и т. п.

Максимальное значение пропускной способности коммутатора всегда достигается на кадрах максимальной длины, так как при этом и доля накладных расходов на служебную информацию кадра гораздо ниже, чем для кадров минимальной длины, и время выполнения коммутатором операций по обработке кадра, приходящееся на один байт пользовательской информации, существенно меньше.

Зависимость пропускной способности коммутатора от размера передаваемых кадров хорошо иллюстрирует пример протокола Ethernet, для которого при передаче кадров минимальной длины достигается скорость передачи в 14880 кадров в секунду и пропускная способность 5.48 Мб/с, а при передаче кадров максимальной длины - скорость передачи в 812 кадров в секунду и пропускная способность 9.74 Мб/c.

Пропускная способность падает почти в два раза при переходе на кадры минимальной длины, и это еще без учета потерь времени на обработку кадров коммутатором.

Задержка передачи кадра измеряется как время, прошедшее с момента прихода первого байта кадра на входной порт коммутатора до момента появления этого байта на выходном порту коммутатора.

Задержка складывается из времени, затрачиваемого на буферизацию байт кадра, а также времени, затрачиваемого на обработку кадра коммутатором - просмотр адресной таблицы, принятие решения о фильтрации или продвижении и получения доступа к среде выходного порта. Величина вносимой коммутатором задержки зависит от режима его работы. Если коммутация осуществляется "на лету", то задержки обычно невелики и составляют от 10 мкс до 40 мкс, а при полной буферизации кадров - от 50 мкс до 200 мкс (для кадров минимальной длины). Коммутатор - это многопортовое устройство, поэтому для него принято все приведенные выше характеристики (кроме задержки передачи кадра) давать в двух вариантах:

  • - первый вариант - суммарная производительность коммутатора при одновременной передаче трафика по всем его портам;
  • - второй вариант - производительность, приведенная в расчете на один порт.

Так как при одновременной передаче трафика несколькими портами существует огромное количество вариантов трафика, отличающегося размерами кадров в потоке, распределением средней интенсивности потоков кадров между портами назначения, коэффициентами вариации интенсивности потоков кадров и т. д., и т. п.

Тогда, при сравнении коммутаторов по производительности необходимо принимать во внимание, для какого варианта трафика получены публикуемые данные производительности. Некоторые лаборатории, постоянно проводящие тестирование коммуникационного оборудования, разработали детальные описания условий тестирования коммутаторов и используют их в своей практике, однако общепромышленными эти тесты пока не стали. В идеальном случае коммутатор, установленный в сети, передает кадры между узлами, подключенными к его портам, с той скоростью, с которой узлы генерируют эти кадры, не внося дополнительных задержек и не теряя ни одного кадра.

В реальной практике коммутатор всегда вносит некоторые задержки при передаче кадров, а также может некоторые кадры терять, то есть не доставлять их адресатам. Из-за различий во внутренней организации разных моделей коммутаторов, трудно предвидеть, как тот или иной коммутатор будет передавать кадры какого-то конкретного образца трафика. Лучшим критерием по-прежнему остается практика, когда коммутатор ставится в реальную сеть и измеряются вносимые им задержки и количество потерянных кадров. Суммарная производительность коммутатора обеспечивается достаточно высокой производительностью каждого его отдельного элемента - процессора порта, коммутационной матрицы, общей шины, соединяющей модули и т. п.

Независимо от внутренней организации коммутатора и способов конвейеризации его операций, можно определить достаточно простые требования к производительности его элементов, которые являются необходимыми для поддержки заданной матрица трафика. Так как производители коммутаторов стараются сделать свои устройства как можно более быстродействующими, то общая внутренняя производительность коммутатора часто с некоторым запасом превышает среднюю интенсивность любого варианта трафика, который можно направить на порты коммутатора в соответствии с их протоколами.

Такой тип коммутаторов называют неблокирующими, т. е., любой вариант трафика передается без снижения его интенсивности. Кроме пропускных способностей отдельных элементов коммутатора, таких как процессоры портов или общая шина, на производительность коммутатора влияют такие его параметры как размер адресной таблицы объем общего буфера или отдельных буферов портов.

Размер адресной таблицы влияет на максимальную емкость адресной таблицы и определяет максимальное количество MAC-адресов, с которыми может одновременно оперировать коммутатор.

Так как коммутаторы чаще всего используют для выполнения операций каждого порта выделенный процессорный блок со своей памятью для хранения экземпляра адресной таблицы, то размер адресной таблицы для коммутаторов обычно приводится в расчете на один порт.

Экземпляры адресной таблицы разных процессорных модулей не обязательно содержат одну и ту же адресную информацию - скорее всего повторяющихся адресов будет не так много, если только распределение трафика каждого порта не полностью равновероятное между остальными портами. Каждый порт хранит только те наборы адресов, которыми он пользуется в последнее время. Значение максимального числа МАС-адресов, которое может запомнить процессор порта, зависит от области применения коммутатора. Коммутаторы рабочих групп обычно поддерживают всего несколько адресов на порт, так как они предназначены для образования микросегментов. Коммутаторы отделов должны поддерживать несколько сотен адресов, а коммутаторы магистралей сетей - до нескольких тысяч, обычно 4000 - 8000 адресов. Недостаточная емкость адресной таблицы может служить причиной замедления работы коммутатора и засорения сети избыточным трафиком. Если адресная таблица процессора порта полностью заполнена, а он встречает новый адрес источника в поступившем пакете, то он должен вытеснить из таблицы какой-либо старый адрес и поместить на его место новый. Эта операция сама по себе отнимет у процессора часть времени, но главные потери производительности будут наблюдаться при поступлении кадра с адресом назначения, который пришлось удалить из адресной таблицы.

Так как адрес назначения кадра неизвестен, то коммутатор должен передать этот кадр на все остальные порты. Эта операция будет создавать лишнюю работу для многих процессоров портов, кроме того, копии этого кадра будут попадать и на те сегменты сети, где они совсем необязательны. Некоторые производители коммутаторов решают эту проблему за счет изменения алгоритма обработки кадров с неизвестным адресом назначения. Один из портов коммутатора конфигурируется как магистральный порт, на который по умолчанию передаются все кадры с неизвестным адресом.

Внутренняя буферная память коммутатора нужна для временного хранения кадров данных в тех случаях, когда их невозможно немедленно передать на выходной порт. Буфер предназначен для сглаживания кратковременных пульсаций трафика.

Ведь даже если трафик хорошо сбалансирован и производительность процессоров портов, а также других обрабатывающих элементов коммутатора достаточна для передачи средних значений трафика, то это не гарантирует, что их производительности хватит при очень больших пиковых значениях нагрузок. Например, трафик может в течение нескольких десятков миллисекунд поступать одновременно на все входы коммутатора, не давая ему возможности передавать принимаемые кадры на выходные порты. Для предотвращения потерь кадров при кратковременном многократном превышении среднего значения интенсивности трафика (а для локальных сетей часто встречаются значения коэффициента пульсации трафика в диапазоне 50-100) единственным средством служит буфер большого объема. Как и в случае адресных таблиц, каждый процессорный модуль порта обычно имеет свою буферную память для хранения кадров. Чем больше объем этой памяти, тем менее вероятны потери кадров при перегрузках, хотя при несбалансированности средних значений трафика буфер все равно рано или поздно переполниться.

Обычно коммутаторы, предназначенные для работы в ответственных частях сети, имеют буферную память в несколько десятков или сотен килобайт на порт.

Хорошо, когда эту буферную память можно перераспределять между несколькими портами, так как одновременные перегрузки по нескольким портам маловероятны. Дополнительным средством защиты может служить общий для всех портов буфер в модуле управления коммутатором. Такой буфер обычно имеет объем в несколько мегабайт.

IGMP и многих других, а также знание того, как данные технологии можно применить на практике наиболее эффективно.

Книга "Построение коммутируемых компьютерных сетей" появилась благодаря многолетнему сотрудничеству компании D-Link и ведущего технического университета страны - МГТУ им. Н. Э. Баумана. Книга направлена на глубокое изложение теории и формирование практических знаний. В ее основу легли учебные материалы компании D-Link, а также практические занятия, проводимые в учебном центре D-Link - МГТУ им. Н. Э. Баумана – D-Link и кафедры "Компьютерные системы и сети".

Книга содержит полное описание фундаментальных технологий коммутации локальных сетей, примеры их использования, а также настройки на коммутаторах D-Link. Она будет полезна студентам, обучающимся по направлению " Информатика и вычислительная техника", аспирантам, сетевым администраторам, специалистам предприятий, внедряющим новые информационные технологии , а также всем, кто интересуется современными сетевыми технологиями и принципами построения коммутируемых сетей.

Авторы хотят поблагодарить всех людей, вовлеченных в процесс консультирования, редактирования и подготовки рисунков для курса. Авторы выражают благодарность руководителям Представительства компании "Д- Линк Интернешнл ПТЕ Лтд" и МГТУ им. Н. Э. Баумана, специалистам компании D-Link Павлу Козику, Руслану Бигарову, Александру Зайцеву, Евгению Рыжову и Денису Евграфову, Александру Щадневу за технические консультации; Ольге Кузьминой за редактирование книги; Алесе Дунаевой за помощь в подготовке иллюстраций. Большую помощь в подготовке рукописи и тестировании практических занятий оказали преподаватели МГТУ им. Н. Э. Баумана Михаил Калинов, Дмитрий Чирков.

Обозначения, используемые в курсе

В тексте курса используются следующие пиктограммы для обозначения сетевых устройств различных типов:

Синтаксис команд

Следующие символы используются для описания ввода команд, ожидаемых значений и аргументов при настройке коммутатора через интерфейс командной строки ( CLI ).

Символ Назначение
< угловые скобки > Содержат ожидаемую переменную или значение, которое должно быть указано
[ квадратные скобки ] Содержат требуемое значение или набор требуемых аргументов. Может быть указано одно значение или аргумент
| вертикальная черта Отделяет два или более взаимно исключающих пунктов из списка, один из которых должен быть введен/указан
{ фигурные скобки } Содержит необязательное значение или набор необязательных аргументов

Эволюция локальных сетей

Эволюция локальных сетей неразрывно связана с историей развития технологии Ethernet , которая по сей день остается самой распространенной технологией локальных сетей.

Первоначально технология локальных сетей рассматривалась как времясберегающая и экономичная технология, обеспечивающая совместное использование данных, дискового пространства и дорогостоящих периферийных устройств. Снижение стоимости персональных компьютеров и периферии привело к их широкому распространению в бизнесе, и количество сетевых пользователей резко возросло. Одновременно изменились архитектура приложений (" клиент-сервер ") и их требования к вычислительным ресурсам, а также архитектура вычислений ( распределенные вычисления ). Стал популярным downsizing (разукрупнение) - перенос информационных систем и приложений с мэйнфреймов на сетевые платформы. Все это привело к смещению акцентов в использовании сетей: они стали обязательным инструментом в бизнесе, обеспечив наиболее эффективную обработку информации.

В первых сетях Ethernet ( 10Base -2 и 10Base -5) использовалась шинная топология , когда каждый компьютер соединялся с другими устройствами с помощью единого коаксиального кабеля, используемого в качестве среды передачи данных . Сетевая среда была разделяемой и устройства, прежде чем начать передавать пакеты данных, должны были убедиться, что она свободна. Несмотря на то, что такие сети были простыми в установке, они обладали существенными недостатками, заключающимися в ограничениях по размеру, функциональности и расширяемости, недостаточной надежности, а также неспособностью справляться с экспоненциальным увеличением сетевого трафика. Для повышения эффективности работы локальных сетей требовались новые решения.

Следующим шагом стала разработка стандарта 10Base -T с топологией типа " звезда ", в которой каждый узел подключался отдельным кабелем к центральному устройству - концентратору (hub) . Концентратор работал на физическом уровне модели OSI и повторял сигналы, поступавшие с одного из его портов на все остальные активные порты, предварительно восстанавливая их. Использование концентраторов позволило повысить надежность сети, т.к. обрыв какого-нибудь кабеля не влек за собой сбой в работе всей сети. Однако, несмотря на то, что использование концентраторов в сети упростило задачи ее управления и сопровождения, среда передачи оставалась разделяемой (все устройства находились в одном домене коллизий). Помимо этого, общее количество концентраторов и соединяемых ими сегментов сети было ограничено из-за временных задержек и других причин.

Задача сегментации сети , т.е. разделения пользователей на группы ( сегменты ) в соответствии с их физическим размещением с целью уменьшения количества клиентов, соперничающих за полосу пропускания, была решена с помощью устройства, называемого мостом (bridge) . Мост был разработан компанией Digital Equipment Corporation ( DEC ) в начале 1980-х годов и представлял собой устройство канального уровня модели OSI (обычно двухпортовое), предназначенное для объединения сегментов сети. В отличие от концентратора, мост не просто пересылал пакеты данных из одного сегмента в другой, а анализировал и передавал их только в том случае, если такая передача действительно была необходима, то есть адрес рабочей станции назначения принадлежал другому сегменту. Таким образом, мост изолировал трафик одного сегмента от трафика другого, уменьшая домен коллизий и повышая общую производительность сети.

Однако мосты были эффективны лишь до тех пор, пока количество рабочих станций в сегменте оставалось относительно невелико. Как только оно увеличивалось, в сетях возникала перегрузка ( переполнение приемных буферов сетевых устройств), которая приводила к потере пакетов.

Увеличение количества устройств, объединяемых в сети, повышение мощности процессоров рабочих станций, появление мультимедийных приложений и приложений " клиент-сервер " требовали большей полосы пропускания. В ответ на эти растущие требования фирмой Kalpana в 1990 г. на рынок был выпущен первый коммутатор (switch) , получивший название EtherSwitch.


Рис. 1.1.

Коммутатор представлял собой многопортовый мост и также функционировал на канальном уровне модели OSI . Основное отличие коммутатора от моста заключалось в том, что он мог устанавливать одновременно несколько соединений между разными парами портов. При передаче пакета через коммутатор в нем создавался отдельный виртуальный (либо реальный, в зависимости от архитектуры) канал, по которому данные пересылались напрямую от порта-источника к порту-получателю с максимально возможной для используемой технологии скоростью. Такой принцип работы получил название "микросегментация" . Благодаря микросегментации коммутаторы получили возможность функционировать в режиме полного дуплекса (

18.03.1997 Дмитрий Ганьжа

Коммутаторы занимают центральное место в современных локальных сетях. ТИПЫ КОММУТАЦИИ КОММУТИРУЮЩИЕ КОНЦЕНТРАТОРЫ МЕТОДЫ ОБРАБОТКИ ПАКЕТОВ RISC И ASIC АРХИТЕКТУРА КОММУТАТОРОВ СТАРШЕГО КЛАССА ПОСТРОЕНИЕ ВИРТУАЛЬНЫХ СЕТЕЙ КОММУТАЦИЯ ТРЕТЬЕГО УРОВНЯ ЗАКЛЮЧЕНИЕ Коммутация - одна из самых популярных современных технологий.

Коммутаторы занимают центральное место в современных локальных сетях.

Коммутация - одна из самых популярных современных технологий. Коммутаторы вытесняют мосты и маршрутизаторы на периферию локальных сетей, оставляя за ними роль организации связи через глобальную сеть. Такая популярность коммутаторов обусловлена в первую очередь тем, что они позволяют за счет микросегментации повысить производительность сети по сравнению с разделяемыми сетями с той же номинальной пропускной способностью. Помимо разделения сети на мелкие сегменты, коммутаторы дают возможность организовать подключенные устройства в логические сети и легко перегруппировывать их, когда это необходимо; иными словами, они позволяют создавать виртуальные сети.

Что же такое коммутатор? Согласно определению IDC, "коммутатор - это устройство, конструктивно выполненное в виде концентратора и действующее как высокоскоростной многопортовый мост; встроенный механизм коммутации позволяет осуществлять сегментирование локальной сети и выделять полосу пропускания конечным станциям в сети" (см. статью М. Кульгина "Построить сеть, посадить дерево..." в февральском номере LAN ). Однако это определение относится в первую очередь к коммутаторам кадров.

ТИПЫ КОММУТАЦИИ

Под коммутацией обычно понимают четыре различные технологии - конфигурационную коммутацию, коммутацию кадров, коммутацию ячеек и преобразование между кадрами и ячейками.

Конфигурационная коммутация известна также как коммутация портов, при этом конкретный порт на модуле интеллектуального концентратора приписывается к одному из внутренних сегментов Ethernet (или Token Ring). Это назначение производится удаленным образом посредством программного управления сетью при подключении или перемещении пользователей и ресурсов в сети. В отличие от других технологий коммутации, этот метод не повышает производительности разделяемой локальной сети.

Коммутация кадров, или коммутация в локальной сети, использует стандартные форматы кадров Ethernet (или Token Ring). Каждый кадр обрабатывается ближайшим коммутатором и передается далее по сети непосредственно получателю. В результате сеть превращается как бы в совокупность параллельно работающих высокоскоростных прямых каналов. То, как осуществляется коммутация кадров внутри коммутатора, мы рассмотрим ниже на примере коммутирующего концентратора.

Коммутация ячеек применяется в ATM. Использование небольших ячеек фиксированной длины дает возможность создать недорогие высокоскоростные коммутирующие структуры на аппаратном уровне. И коммутаторы кадров, и коммутаторы ячеек могут поддерживать несколько независимых рабочих групп вне зависимости от их физического подключения (см. раздел "Построение виртуальных сетей").

Преобразование между кадрами и ячейками позволяет, например, станции с платой Ethernet непосредственно взаимодействовать с устройствами в сети ATM. Эта технология применяется при эмуляции локальной сети.

В данном уроке нас будет прежде всего интересовать коммутация кадров.

КОММУТИРУЮЩИЕ КОНЦЕНТРАТОРЫ

Первый коммутирующий концентратор под названием EtherSwictch был представлен компанией Kalpana. Этот концентратор позволял снизить конкуренцию в сети за счет сокращения числа узлов в логическом сегменте с помощью технологии микросегментации. По существу, число станций в одном сегменте сокращалось до двух: станция, инициирующая запрос, и станция, отвечающая на запрос. Никакая другая станция не видит передаваемую между ними информацию. Пакеты передаются как бы через мост, но без свойственной мосту задержки.

В коммутируемой сети Ethernet каждому члену группы из нескольких пользователей может быть одновременно гарантирована пропускная способность 10 Мбит/с. Понять, как такой концентратор работает, лучше всего помогает аналогия с обычным старым телефонным коммутатором, в котором участников диалога соединяет коаксиальный кабель. Когда абонент звонил по "вечному" 07 и просил соединить его с таким-то номером, оператор прежде всего проверял, доступна ли линия; если да, то он соединял участников непосредственно с помощью куска кабеля. Никто другой (за исключением спецслужб, разумеется) не мог слышать их разговор. После завершения разговора оператор отсоединял кабель от обоих портов и ждал следующего вызова.

Коммутирующие концентраторы действуют аналогичным образом (см. Рисунок 1): они передают пакеты со входного порта на выходной порт через коммутирующую матрицу. Когда пакет попадает на входной порт, коммутатор читает его MAC-адрес (т. е. адрес второго уровня), и он немедленно перенаправляется на порт, связанный с этим адресом. Если порт занят, то пакет помещается в очередь. По существу, очередь представляет собой буфер на входном порту, где пакеты ждут, когда нужный порт освободится. Однако методы буферизации несколько отличаются.

Рисунок 1.
Коммутирующие концентраторы функционируют аналогично прежним телефонным коммутаторам: они соединяют входной порт непосредственно с выходным через коммутирующую матрицу.

МЕТОДЫ ОБРАБОТКИ ПАКЕТОВ

При сквозной коммутации (называемой также коммутацией на лету и коммутацией без промежуточной буферизации) коммутатор считывает только адрес поступающего пакета. Пакет передается далее вне зависимости от отсутствия или наличия в нем ошибок. Это позволяет значительно сократить время обработки пакета, так как читаются только несколько первых байт. Поэтому определять дефектные пакеты и запрашивать их повторную передачу должна принимающая сторона. Однако современные кабельные системы достаточно надежны, так что необходимость в повторной передаче во многих сетях минимальна. Тем не менее никто не застрахован от ошибок в случае повреждения кабеля, неисправности сетевой платы или помех от внешнего электромагнитного источника.

При коммутации с промежуточной буферизацией коммутатор, получая пакет, не передает его дальше, пока не прочтет полностью, или во всяком случае не прочтет всю необходимую ему информацию. Он не только определяет адрес получателя, но и проверяет контрольную сумму, т. е. может отсекать дефектные пакеты. Это позволяет изолировать порождающий ошибки сегмент. Таким образом, коммутация с промежуточной буферизацией делает упор на надежность, а не на скорость.

Помимо двух вышеперечисленных, некоторые коммутаторы используют гибридный метод. В обычных условиях они осуществляют сквозную коммутацию, но при этом следят за числом ошибок посредством проверки контрольных сумм. Если число ошибок достигает заданного порогового значения, они переходят в режим коммутации с промежуточной буферизацией. При снижении числа ошибок до приемлемого уровня они возвращаются в режим сквозной коммутации. Такой тип коммутации называется пороговой или адаптивной коммутацией.

RISC И ASIC

Зачастую коммутаторы с промежуточной буферизацией реализуются на основе стандартных процессоров RISC. Одним из преимуществ такого подхода является их относительная дешевизна по сравнению с коммутаторами с интегральными схемами ASIC, однако он не очень хорош в случае специализированных приложений. Коммутация в таких устройствах осуществляется при помощи программного обеспечения, поэтому их функциональность может быть изменена посредством модернизации установленного ПО. Недостаток же их в том, что они медленнее коммутаторов на базе ASIC.

Коммутаторы с интегральными схемами ASIC предназначены для выполнения специализированных задач: вся их функциональность "зашита" в аппаратное обеспечение. В таком подходе есть и недостаток: когда необходима модернизация, производитель вынужден перерабатывать схему. ASIC обычно осуществляют сквозную коммутацию. Коммутирующая матрица ASIC создает выделенные физические пути между входным и выходным портом, как показано на .

АРХИТЕКТУРА КОММУТАТОРОВ СТАРШЕГО КЛАССА

Коммутаторы старшего класса имеют, как правило, модульную структуру, и они могут осуществлять как коммутацию пакетов, так и коммутацию ячеек. Модули такого коммутатора осуществляют коммутацию между сетями разных типов, в том числе Ethernet, Fast Ethernet, Token Ring, FDDI и ATM. При этом основным механизмом коммутации в таких устройствах является коммутационная структура ATM. Мы рассмотрим архитектуру таких устройств на примере Centillion 100 компании Bay Networks.

Коммутация осуществляется при помощи следующих трех аппаратных компонентов (см. Рисунок 2):

  • объединительная панель ATM для сверхвысокоскоростной передачи ячеек между модулями;
  • интегральная схема специального назначения CellManager на каждом модуле для управления передачей ячеек по объединительной панели;
  • интегральная схема специального назначения SAR на каждом модуле для преобразования кадров в ячейки и обратно.
  • (1x1)

    Рисунок 2.
    В коммутаторах старшего класса коммутация ячеек используется все чаще благодаря ее высокой скорости и простоте миграции к ATM.

    Каждый модуль коммутатора имеет порты ввода/вывода, буферную память и CellManager ASIC. Кроме того, каждый модуль для локальной сети имеет также процессор RISC для осуществления коммутации кадров между локальными портами и сборщика/разборщика пакетов для преобразования кадров и ячеек друг в друга. Все модули могут самостоятельно осуществлять коммутацию между своими портами, так что только трафик, предназначенный другим модулям, передается через объединительную панель.

    Каждый модуль поддерживает свою собственную таблицу адресов, а главный управляющий процессор сводит их в одну общую таблицу, благодаря чему отдельный модуль может видеть сеть в целом. Если, например, модуль Ethernet получает пакет, он определяет, кому этот пакет адресован. Если адрес находится в локальной таблице адресов, то RISC-процессор осуществляет коммутацию пакета между локальными портами. Если адресат находится на другом модуле, то сборщик/разборщик преобразует пакет в ячейки. CellManager указывает маску адресата для идентификации модуля(-ей) и порта(-ов), которым предназначен полезный груз ячеек. Всякий модуль, бит маски платы которого задан в маске адресата, копирует ячейку в локальную память и передает данные на соответствующий выходной порт в соответствии с заданными битами маски портов.

    ПОСТРОЕНИЕ ВИРТУАЛЬНЫХ СЕТЕЙ

    Кроме повышения производительности, коммутаторы позволяют создавать виртуальные сети. Одним из методов создания виртуальной сети является создание широковещательного домена посредством логического соединения портов внутри физической инфраструктуры коммуникационного устройства (это может быть как интеллектуальный концентратор - конфигурационная коммутация, так и коммутатор - коммутация кадров). Например, нечетные порты восьмипортового устройства приписываются к одной виртуальной сети, а четные - к другой. В результате станция в одной виртуальной сети оказывается изолированной от станций в другой. Недостаток такого метода организации виртуальной сети состоит в том, что все станции, подключенные к одному и тому же порту, должны принадлежать к одной и той же виртуальной сети.

    Другой метод создания виртуальной сети базируется на MAC-адресах подсоединенных устройств. При таком способе организации виртуальной сети любой сотрудник может подключать, например, свой портативный компьютер к любому порту коммутатора, и он будет автоматически определять принадлежность его пользователя к той или иной виртуальной сети на основе MAC-адреса. Такой метод разрешает также пользователям, подключенным к одному порту коммутатора, принадлежать к разным виртуальным сетям. Подробнее о виртуальных сетях см. статью А. Авдуевского "Такие реальные виртуальные сети" в мартовском номере LAN за этот год.

    КОММУТАЦИЯ ТРЕТЬЕГО УРОВНЯ

    При всех их достоинствах коммутаторы имеют один существенный недостаток: они не в силах защитить сеть от лавин широковещательных пакетов, а это ведет к непроизводительной загрузке сети и увеличении времени отклика. Маршрутизаторы могут контролировать и фильтровать ненужный широковещательный трафик, но они работают на порядок медленнее. Так, согласно документации Case Technologies, типичная производительность маршрутизатора составляет 10 000 пакетов в секунду, а это не идет ни в какое сравнение с аналогичным показателем коммутатора - 600 000 пакетов в секунду.

    В результате многие производители стали встраивать в коммутаторы функции маршрутизации. Чтобы работа коммутатора не замедлилась существенным образом, применяются различные методы: например, и коммутация второго уровня, и коммутация третьего уровня реализуются непосредственно в аппаратном обеспечении (в интегральных схемах ASIC). Разные производители называют эту технологию по-разному, но цель одна: маршрутизирующий коммутатор должен выполнять функции третьего уровня с той же скоростью, что и функции второго уровня. Немаловажным фактором является и цена такого устройства в расчете на порт: она тоже должна быть невысока, как и у коммутаторов (см. статью Ника Липписа в следующем номере журнала LAN).

    ЗАКЛЮЧЕНИЕ

    Коммутаторы и конструктивно, и функционально весьма разнообразны; в одной небольшой статье невозможно охватить все их аспекты. В следующем уроке мы подробно рассмотрим коммутаторы ATM.

    Дмитрий Ганьжа - ответственный редактор LAN. С ним можно связаться по адресу: [email protected] .



    Коммутатор одно из важнейших устройств использующихся при построении локальной сети. В этой статье мы поговорим какими коммутаторы бывают и остановимся на важных характеристиках, которые нужно учитывать при выборе коммутатора локальной сети.

    Для начала рассмотрим общую структурную схему, чтобы понимать какое место коммутатор занимает в локальной сети предприятия.

    На рисунке выше показанна наиболее распространенная структурная схема небольшой локальной сети. Как правило в таких локальных сетях используются коммутаторы доступа.

    Коммутаторы доступа непосредственно подключены к конечным пользователям, предоставляя им доступ к ресурсам локальной сети.

    Однако в крупных локальных сетях коммутаторы выполняют следующие функции:


    Уровень доступа сети . Как было сказано выше коммутаторы доступа предоставляют точки подключения устройств конечного пользователя. В крупных локальных сетях фреймы коммутаторов доступа не взаимодействуют друг с другом, а передаются через коммутаторы распределения.

    Уровень распределения . Коммутаторы данного уровня пересылают трафик между коммутаторами доступа, но при этом не взаимодействуют с конечными пользователями.

    Уровень ядра системы . Устройства данного типа объединяют каналы передачи данных от коммутаторов уровня распределения в крупных территориальных локальных сетях и обеспечивают очень высокую скорость коммутации потоков данных.

    Коммутаторы бывают:

    Неуправляемые коммутаторы . Это обычные автономные устройства в локальной сети, которые управляют передачей данных самостоятельно и не имеют возможности дополнительной настройки. В виду простоты установки и небольшой цены получили широкое распространение при монтаже в домашних условиях и малом бизнесе.

    Управляемые коммутаторы . Более продвинутые и дорогие устройства. Позволяют администратору сети самостоятельно настраивать их под заданные задачи.

    Управляемые коммутаторы могут настраиваться одним из следующих способов:

    Через консольный порт Через WEB интерфейс

    Через Telnet Через протокол SNMP

    Через SSH

    Уровни коммутаторов


    Все коммутаторы можно разделить на уровни модели OSI . Чем этот уровень выше тем большими возможностями коммутатор обладает, однако и стоимость его будет значительно выше.

    Коммутаторы 1 уровня (layer 1) . К данному уровню можно отнести хабы, повторители и другие устройства, работающие на физическом уровне. Эти устройства были на заре развития интернета и в настоящее время в локальной сети не используются. Получив сигнал устройство данного типа, просто передает его далее, во все порты, кроме порта отправителя

    Коммутаторы 2 уровня (layaer 2) . К данному уровню относятся неуправляемые и часть управляемых коммутаторов ( switch ) работающих на канальном уровне модели OSI . Коммутаторы второго уровня работают с фреймами – кадрами: потоком данных разбитых на порции. Получив фрейм коммутатор уровня 2 вычитывает из фрейма адрес отправителя и заносит его в свою таблицу MAC адресов, сопоставляя этот адрес порту на котором он этот фрейм получил. Благодаря такому подходу коммутаторы второго уровня пересылают данные только на порт получателя, не создавая при этом избыточного трафика по остальным портам. Коммутаторы второго уровня не понимают IP адресов расположенных на третьем сетевом уровне модели OSI и работают только на канальном уровне.

    Коммутаторы второго уровня поддерживают такие наиболее распространенные протоколы как:

    IEEE 802.1 q или VLAN виртуальные локальные сети. Данный протокол, позволяет в рамках одной физической сети создавать отдельные логические сети.


    Например устройства подключенные к одному коммутатору, но находящиеся в разных VLAN не увидят друг друга и передавать данные смогут только в своем широковещательном домене (устройствам из той же VLAN). Между собой компьютеры на рисунке выше смогут передавать данные при помощи устройства работающего на третьем уровне с IP адресами: маршрутизатором.

    IEEE 802.1p (Priority tags ). Этот протокол изначально присутствует в протоколе IEEE 802.1 q и представляет собой 3 битное поле от 0 до 7. Данный протокол позволяет маркировать и отсортировывать весь трафик по степени важности выставляя приоритеты (максимальный приоритет 7). Фреймы с большим приоритетом будут пересылаться в первую очередь.

    IEEE 802.1d Spanning tree protocol (STP). Данный протокол выстраивает локальную сеть в виде древовидной структуры, чтобы избежать закольцовывания сети и предотвратить образования сетевого шторма.


    Допустим монтаж локальной сети выполнен в виде кольца для повышения отказоустойчивости системы. Коммутатор с наибольшим приоритетом в сети выбирается корневым (Root). В примере приведенном выше SW3 является корневым. Не углубляясь в алгоритмы выполнения протокола, коммутаторы вычисляют путь с максимальной ценой и блокируют его. Например в нашем случае кротчайший путь от SW3 до SW1 и SW2 будет через собственные выделенные интерфейсы (DP) Fa 0/1 и Fa 0/2 . В этом случае цена пути по умолчанию для интерфейса 100 Мбит/c будет 19. Интерфейс Fa 0/1 коммутатора SW1 локальной сети блокируется потому, чо общая цена пути будет складываться из двух переходов между 100 Мбит/с интерфейсами 19+19=38.

    Если рабочий маршрут будет поврежден, коммутаторы выполнят пересчет пути и разблокируют данный порт

    IEEE 802.1w Rapid spanning tree protocol (RSTP). Усовершенствованный стандарт 802.1 d , который обладает более высокой устойчивостью и меньшим временем восстановления линии связи.

    IEEE 802.1s Multiple spanning tree protocol. Последняя версия, учитывающая все недостатки протоколов STP и RSTP .

    IEEE 802.3ad Link aggregation for parallel link. Данный протокол позволяет объединять порты в группы. Суммарная скорость данного порта агрегации будет складываться из суммы скоростей каждого порта в ней. Максимальная скорость определена стандартом IEEE 802.3ad и составляет 8 Гбит/сек.


    Коммутаторы 3 уровня (layer 3) . Данные устройства еще называют мультисвичи так как они объединяют в себе возможности коммутаторов работающих на втором уровне и маршрутизаторов работающих с IP пакетами на третьем уровне. Коммутаторы 3 уровня полностью поддерживают все функции и стандарты коммутаторов 2 уровня. С сетевыми устройствами могут работать по IP-адресам. Коммутатор 3 уровня поддерживает установку различных соединений: l 2 tp , pptp, pppoe, vpn и т.д.

    Коммутаторы 4 уровня (Layer 4) . Устройства уровня L4 работающие на транспортном уровне модели OSI . Отвечают за обеспечение надежности передачи данных. Эти коммутаторы, могут на основании информации из заголовков пакетов понимать принадлежность трафика разным приложениям и принимать решения о перенаправлении такого трафика на основании этой информации. Название таких устройств не устоялось, иногда их называют интеллектуальными коммутаторами, или коммутаторами L4.

    Основные характеристики коммутаторов

    Количество портов . В настоящее время существуют коммутаторы с количеством портов от 5 до 48. От этого параметра зависит количество сетевых устройств, которые можно подключить к данному коммутатору.

    Например при построении малой локальной сети из 15 компьютеров нам понадобится коммутатор с 16 портами: 15 для подключения конченых устройств и один для установки и подключения маршрутизатора для выхода в интернет.

    Скорость передачи данных . Это скорость, на которой работает каждый порт коммутатора. Обычно скорости указываются следующим образом: 10/100/1000 Мбит/с. Скорость работы порта определяется в процессе авто согласование с конечным устройством. В управляемых коммутаторах данный параметр может настраиваться вручную.

    Например : Клиентское устройство ПК с сетевой платой 1 Гбит/с подключено к порту коммутатора со скоростью работы 10/100 Мбит/ c . В результате авто согласования устройства договариваются использовать максимально возможную скорость в 100 Мбит/с.

    Авто согласование порта между Full – duplex и half – duplex . Full – duplex: передача данных одновременно осуществляется в двух направления. Half – duplex передача данных осуществляется сначала в одном, потом в другом направлении последовательно.

    Внутренняя пропускная способность коммутационной матрицы . Данный параметр показывает с какой общей скоростью коммутатор может обрабатывать данные со всех портов.

    Например : в локальной сети есть коммутатор у которого 5 портов работающих на скорости 10/100 Мбит/с. В технических характеристиках параметр коммутационная матрица равен 1 Гбит/ c . Это означает что каждый порт в режиме Full – duplex может работать со скоростью 200 Мбит/ c (100 Мбит/с прием и 100 Мбит/с передача). Допустим параметр данной коммутационной матрицы меньше заданного. Это означает, что в момент пиковых нагрузках, порты не смогут работать с заявленной скоростью в 100 Мбит/с.

    Авто согласование типа кабеля MDI / MDI-X . Эта функция позволяет определить по какому из двух способов была обжата витая пара EIA/TIA-568A или EIA/TIA-568B. При монтаже локальных сетей наибольшее распространение получила схема EIA/TIA-568B.


    Стекирование – это объединение нескольких коммутаторов в одно единое логическое устройство. Разные производители коммутаторов используют свои технологии стекирования, например c isco использует технологию стекирования Stack Wise с шиной между коммутаторами 32 Гбит/сек и Stack Wise Plus с шиной между коммутаторами 64 Гбит/сек.

    К примеру данная технология актуально в крупных локальных сетях, где требуется на базе одного устройства подключить более 48 портов.


    Крепеж для 19” стойки . В домашних условиях и малых локальных сетях коммутаторы довольно часто устанавливают на ровные поверхности или крепят на стену, однако наличие так называемых «ушей» необходимо в более крупных локальных сетях где активное оборудование размещается в серверных шкафах.

    Размер таблицы MAC адресов . Коммутатор (switch) это устройство работающее на 2 уровне модели OSI . В отличии от хаба, который просто перенаправляет полученный фрейм во все порты кроме порта отправителя, коммутатор обучается: запоминает MAC адрес устройства отправителя, занося его, номер порта и время жизни записи в таблицу. Используя данную таблицу коммутатор перенаправляет фрейм не на все порты, а только на порт получателя. Если в локальной сети количество сетевых устройств значительно и размер таблицы переполнен, коммутатор начинает затирать более старые записи в таблице и записывает новые, что значительно снижает скорость работы коммутатора.

    Jumboframe . Эта функции позволяет коммутатору работать с большим размером пакета, чем это определено стандартом Ethernet. После приема каждого пакета тратится некоторое время на его обработку. При использовании увеличенного размера пакета по технологии Jumbo Frame, можно сэкономить на времени обработки пакета в сетях, где используются скорости передачи данных от 1 Гб/сек и выше. При меньшей скорости большого выигрыша нет

    Режимы коммутации. Для того, чтобы понять принцип работы режимов коммутации, сначала рассмотрим структуру фрейма передаваемого на канальном уровни между сетевым устройством и коммутатором в локальной сети:


    Как видно из рисунка:

    • Сначала идет преамбула сигнализирующая начало передачи фрейма,
    • Затем MAC адрес назначения ( DA ) и MAC адрес отправителя ( SA )
    • Идентификатор третьего уровня: IPv 4 или IPv 6 используется
    • payload )
    • И в конце контрольная сумма FCS : 4 байтное значение CRC используемое для выявления ошибок передачи. Вычисляется отправляющей стороной, и помещается в поле FCS. Принимающая сторона вычисляет данное значение самостоятельно и сравнивает с полученным значением.

    Теперь рассмотрим режимы коммутации:

    Store - and - forward . Данный режим коммутации сохраняет фрейм в буфер целиком и проверяет поле FCS , которое находится в самом конце фрейма и если контрольная сумма этого поля не совпадает, отбрасывает весь фрейм. В результате снижается вероятность возникновения перегрузок в сети, так как есть возможность отбрасывать фреймы с ошибкой и откладывать время передачи пакета. Данная технология присутствует в более дорогих коммутаторах.

    Cut -through . Более простая технология. В данном случае фреймы могут обрабатываться быстрее, так как не сохраняются в буфер полностью. Для анализа в буфер сохраняются данные от начала фрейма до MAC адрес назначения (DA) включительно. Коммутатор вычитывает этот MAC адрес и перенаправляет его адресату. Недостатком данной технологии является то, что коммутатор пересылая в данном случае как карликовые, длиной менее 512 битовых интервала, так и поврежденные пакеты, увеличивая нагрузку на локальную сеть.

    Поддержка технологии PoE

    Технология pover over ethernet позволяет запитывать сетевое устройство по тому же кабелю. Данное решение позволяет сократить денежные затраты на дополнительный монтаж питающих линий.

    Существует следующие стандарты PoE:

    PoE 802.3af поддерживает оборудование мощностью до 15,4 Вт

    PoE 802.3at поддерживает оборудование мощностью до 30 Вт

    Passiv PoE

    PoE 802.3 af/at имеют интеллектуальные схемы управления подачи напряжения на устройство: прежде чем подать питание на устройство PoE источник стандарта af/at производит согласование с ним во избежании порчи устройства. Passiv PoE значительно дешевле первых двух стандартов, питание напрямую подается на устройство по свободным парам сетевого кабеля без каких либо согласований.

    Характеристики стандартов


    Стандарт PoE 802.3af поддерживается большинством недорогих IP видеокамер, IP телефонов и точек доступа.

    Стандарт PoE 802.3at присутствует в более дорогих моделях IP камер видеонаблюдения, где не возможно уложиться в 15.4 Вт. В этом случае как IP видеокамера, так и PoE источник (коммутатор) должны поддерживать данный стандарт.

    Слоты расширения . Коммутаторы могут иметь дополнительные слоты расширения. Наиболее распространенными являются SFP модули (Small Form-factor Pluggable) . Модульные, компактные приемопередатчики использующиеся для передачи данных в телекоммуникационной среде.


    SFP модули вставляются в свободный SFP порт маршрутизатора, коммутатора, мультиплексора или медиа-конвертера. Хотя существуют SFP модули Ethernet, наиболее часто используются оптоволоконные модули для подкючения маигстрального канала при передаче данных на большие расстояния, недосягаемые для стандарта Ethernet. SFP модули подбираются в зависимости от расстояния, скорости передачи данных. Наиболее распространенными являются двухволоконные SFP модули, использующие одно волокно для приема, другое для передачи данных. Однако технология WDM позволяет вести передачу данных на разных длинах волн по одному оптическому кабелю.

    SFP модули бывают:

    • SX - 850 нм используется с многомодовым оптическим кабелем на расстоянии до 550м
    • LX - 1310 нм используется с обоими видами оптического кабеля (SM и MM) на расстоянии до 10 км
    • BX - 1310/1550 нм используется с обоими видами оптического кабеля (SM и MM) на расстоянии до 10 км
    • XD - 1550 нм используется с одномодовый кабель до 40км, ZX до 80км, EZ или EZX до 120 км и DWDM

    Сам стандарт SFP предусматривает передачу данных со скоростью 1Гбит/с, либо со скоростью 100 Мбит/с. Для более быстрой передачи данных, были разработаны модули SFP+:

    • SFP+ передача данных со скоростью 10 Гбит/с
    • XFP передача данных со скоростью 10 Гбит/с
    • QSFP+ передача данных со скоростью 40 Гбит/с
    • CFP передача данных со скоростью 100 Гбит/с

    Однако при более высоких скоростях производится обработка сигналов на высоких частотах. Это требует большего теплоотвода и, соответственно, больших габаритов. Поэтому, собственно, форм-фактор SFP сохранился еще только в модулях SFP+.

    Заключение

    Многие читатели наверное сталкивались с неуправляемыми коммутаторами и бюджетными управляемыми коммутаторами второго уровня в малых локальных сетях. Однако выбор коммутаторов для построения более крупных и технически сложных локальных сетей лучше предоставить профессионалам.

    Безопасная Кубань при монтаже локальных сетей использует коммутаторы следующих брендов:

    Профессиональное решение:

    Cisco

    Qtech

    Бюджетное решение

    D-Link

    Tp-Link

    Tenda

    Безопасная Кубань выполняет монтаж, запуск в эксплуатацию и обслуживание локальных сетей по Краснодару и Югу России.



    Загрузка...