sonyps4.ru

Что можно подключить к raspberry pi 3. Программируем Raspberry Pi на голом железе

Самым популярным языком, используемым для программирования Raspberry Pi, является Python. Python считается интерпретируемым языком. Это означает, что вы можете написать программу или скрипт и выполнить его непосредственно, а не компилировать его в машинный код. Это обеспечивает некоторое удобство программирования и запуска кода для новичков, которые пока не слишком хотят лезть в такие сложности как компилирование, отладка и прочие моменты, так приятные опытным программистам.



В этом материале будет показано, как начать программировать на языке Python, что поможет новичку быстрее освоиться в работе с Raspberry Pi.


Помимо быстрого исполнения кода Python обладает другими преимуществами, не свойственными большинству интерпретируемых языков. Например, в Python вам не нужно явно указывать тип переменной (число, строка, список). Интерпретатор определяет типы данных при выполнении скрипта. Интерпретатор Python может работать двумя способами: как интерактивная оболочка для выполнения отдельных команд или в качестве программы с командной строкой для выполнения автономных скриптов. Интегрированная среда разработки (IDE) Python для Raspberry Pi называется IDLE и с ней мы будем работать.


Для запуска этой среды кликните дважды на иконке IDLE 3 на рабочем столе, либо в нижнем левом углу нажмите на меню и выберете Programming→IDLE 3. Через несколько секунд появится оболочка Python Shell. Чтобы начать написание новой программы на Python, выберете File→New Window, после чего откроется новое окно редактора код.



Теперь можно написать свою первую простую программу, введя текст, изображенный ниже.



Если вы знакомы с программированием на Arduino, то сможете заметить, что концепция написания программ в чем-то схожа. Здесь также есть раздел настроек (setup) и бесконечный цикл (loop), который в данном случае организуется через while True. Оператор % дает остаток от деления. При написании программы следите за отступами, поскольку Python является высокоструктурированным языком, и отступы здесь четко определяют структуру.


Чтобы запустить программу, выберете Run Module и придумайте название для вашего скрипта. Чтобы выйти из программы, закольцованной в бесконечный цикл, нажмите Ctrl-C. Также вы можете организовать не бесконечный цикл, а, скажем, цикл со счетом до 100. Для этого используйте код, приведенный ниже.



Для более функционального программирования на Python вам стоит научиться пользоваться функциями. Функции в Python определяются через оператор def. В примере, приведенном ниже, мы организуем функцию настройки setup() и функцию бесконечного цикла loop(), а затем вызовем их в основном теле нашей программы.



Как вы теперь видите, программировать на Python очень просто. Изучите этот язык программирования лучше и сможете создавать потрясающие программы на Raspberry Pi.

Программирование Raspberry Pi 3 - это как раз то, для чего большинство людей и берет этот одноплатный компьютер. Здесь сразу же следует отметить, что в этом материале не будет изложено инструкций, подробно раскрывающих, как и что нужно делать - таких в «сети» полно. Однако, рекомендуется читать официальную документацию и специализированные формы. Вместо этого в статье будут рассмотрены основные моменты, из которых станет понятно, что на Raspberry Pi программирование не отличается сложностью.

Python - это основной язык Raspberry Pi

Почти все владельцы Raspberry Pi понимают, что означает первое слово в названии одноплатника - "малина". Однако второе многие интерпретируют неверно.

Некоторые считают, что оно означает "Пи" (3,14…), другие думают, что это первые две буквы слова Pie (пирог, и в этом есть смысл - "малиновый пирог"). Однако на деле все иначе.

Pi - это сокращение от Python, только с заменой y на i. Так часто делают в программировании. Взять, например, хотя бы KDE, где во многих программах вместо С написано K (в угоду стилю): Konsole (правильно - Console), Konqueror (Conqueror) и т. д.

То есть, как не трудно догадаться, в Raspberry основным языком является "Пайтон". Поэтому владельцу "Малины", который пока не знает никакого ЯП, рекомендуется изучать именно этот. Причин, почему Raspberry Pi 3 программирование на Python наиболее лучшее решение, существует множество.

Вот лишь некоторые из них:

  • работа из коробки в Raspbian;
  • наличие обширной, хорошо документированной официальной библиотеки, которая уже включена в пакет;
  • простота языка и т. д.

Здесь по понятным причинам не будем рассказывать о языке и особенностях программирования на нем - это можно и нужно делать на официальных ресурсах (или, если не позволяет плохое знание английского - на специализированных).

Вместо этого будет рассмотрено, насколько легко можно программировать "Малину". Для примера возьмем Raspberry Pi 3 GPIO программирование. Сделаем предположение, что в наличии имеется все необходимое: провода, светодиод, резистор и прочее, а также присутствует понимание распиновки - нумерации пинов. Также предположим, что светодиод подключен к 11 порту.

Написанный ниже код включает лампочку на 5 секунд, а затем выключает ее:

# вначале подключим необходимую библиотеку

import RPi.GPIO as GPIO

# также понадобится библиотека, которая отвечает за ожидание (она нужна, чтобы установить интервал включения и выключения лампочки)

# чтобы запустить GPIO, понадобится выполнить следующую функцию

GPIO.setmode(GPIO.BOARD)

# теперь Python знает о GPIO, и ему можно указать на то, с каким портом нужно будет работать и что он должен делать (в данном случае - 11-м и он будет работать на выход)

GPIO.output(11, 1)

# теперь выключим (0 - значит false)

GPIO.output(11, 0)

Указанный код можно скопировать, вставить в документ и сохранить его с расширением.py, расположив, например, в домашней директории. Затем его нужно запустить командой: python ~./имя_файла.py.

Если все работает, то оборудование исправно.

Следует отметить, что, если вы плохо понимаете вышеуказанный код, обратитесь к документации и изучите основы программирования на Python, а также библиотеку GPIO. А если у вас есть хотя бы базовое понимание любого ЯП, то осознаете, что приведенный пример предельно прост.

Программирование на других языках под Raspberry

Программирование на C для Raspberry Pi или на других языках программирования почти ничем не отличается от того, что предполагает написание кода под другими платформами. Единственное - необходимы специальные библиотеки.

Библиотека WiringPi для работы с GPIO

Если интересует Raspberry Pi программирование на C/С++ и работа с GPIO, то требуется установить в систему непосредственно сам gcc, а затем библиотеку wiringPi - ее можно найти на GitHub. В описании к ней присутствует мануал по использованию.

Следует отметить, что для установки библиотек из GitHub, требуется утилита GIT. Если в системе ее нет, понадобится поставить из репозитория (полное имя: git-core).

Программирование "Малины" при помощи Java

Желающие программировать Raspberry Pi на Java, должны обратить внимание на Pi4J - библиотеку, которая предназначена специально для работы с "Малиной". Загрузить и узнать о ее особенностях можно на официальном сайте проекта.

Интересно то, что изначально "Малина" разрабатывалась непосредственно для обучения детей программированию. Создатель этого устройства заметил, что уровень понимания функционирования компьютеров у современных студентов значительно ниже, чем у тех, кто учился в 90-х. Он связал это с тем, что вычислительные устройства стали предельно просты: если раньше увлеченным электроникой детям и подросткам приходилось разбираться в командах терминала и даже самостоятельно писать код, теперь все делается посредством нажатия на пару кнопок.

Поэтому, естественно, предусмотрено визуальное программирование Raspberry Pi. В частности, для этого применяется язык Scratch со специальным сервером - GPIOSERVER. В Сети существует множество мануалов, которые помогают освоиться с соответствующими программами, поэтому рассматривать их смысла нет.

Перечисленными языками не ограничиваются возможности "Малинки". С ней можно взаимодействовать в том числе и при помощи PHP, Ruby, Perl и прочих ЯП. Почти под каждый популярный язык существуют хоть и не официальные, но зато рабочие и достаточно функциональные библиотеки. Однако опять следует упомянуть, что лучше для программирования Raspberry использовать именно "Пайтон".

Вычислительных возможностей платы Raspberry Pi 3(далее по тексту Rpi3) более чем достаточно для разработки программ сразу в целевой системе. Однако процесс разработки можно ускорить и сделать более комфортным, если разрабатывать программное обеспечение для Rpi3 на своем персональном компьютере.

В данной статье я собираюсь описать процесс настройки кросс-компиляции в Eclipse под Windows. Также будет описана настройка Eclipse для работы с удаленной системой Raspbian на Rpi3.

Если вы впервые сталкиваетесь с Eclipse, то установить последнюю версию можно по ссылке Eclipse CDT .
Виртуальную машину Java, необходимую для работы Eclipse, можно загрузить по ссылке JRE .

После установки указанных выше компонентов интегрированная среда разработки Eclipse CDT сможет быть запущена на вашем компьютере. В качестве вспомогательных утилит будем использовать msys из пакета MinGW, поэтому необходимо также загрузить MinGW .

Осталось установить инструментальные средства для кросс-компиляции программ.
Для этого необходимо их загрузить по следующей ссылке toolchain .
На указанном сайте также имеется инструкция на английском языке по установке инструментария tutorial .

После установки инструментария в указанном вами каталоге будут находится также дополнительные утилиты в подкаталоге TOOLS:

  • – утилита для записи образа операционной системы Rpi3 на карту памяти.
  • SmarTTY – консольный SSH – клиент, позволяющий установить соединение с платой по протоколу SSH. Помимо стандартных функций имеет возможность загрузки файлов на плату из меню утилиты.
  • UpdateSysroot командный файл Windows , запускающий процесс синхронизации файловой системы sysroot платы и инструментария.

Если вы только что приобрели плату Rpi3 и еще не успели установить операционную систему на карту памяти, то утилита WinFlashTool поможет вам это сделать.
Необходимо загрузить с официального источника образ операционной системы Raspbian .
Дальше распакуйте загруженный образ, установите карту памяти в кард-ридер и запишите на нее с помощью WinFlashTool образ операционной системы.

Настройка беспроводной сети WLAN на плате RPi3 описана в моей предыдущей статье.

С помощью утилиты SmarTTY установите соединение с платой. Это необходимо для исключения проблем во время настройки удаленного соединения в Eclipse.
Создайте новое соединение, указав IP -адрес платы, логин и пароль для входа (значения по-умолчанию для логина и пароля pi и raspberry соответственно).



Теперь нужно провести синхронизацию файловой системы sysroot. Для чего это нужно?
Представьте ситуацию, когда вы установили самую последнюю версию образа Raspbian и не выполнили синхронизацию.
В новой версии были добавлены или изменены заголовочные файлы и файлы библиотек. Работая с кросс-компилятором вы используете старые, не идентичные с последней версией системы, заголовочные и библиотечные файлы из каталога sysroot. Поэтому нет никакой гарантии, что успешно собранная на компьютере программа будет работать внутри платы RPi3.
Запускаем скрипт UpdateSysroot на выполнение и наблюдаем за обновлением файлов на компьютере (это может занять несколько десятков минут).

Настало время настроить удаленное соединение с платой Rpi3 в Eclipse . Запускаем Eclipse CDT , выбираем в главном меню пункт Window->Show View->Other… В открывшемся окне выбираем «remote systems».

После этого в нижней части экрана появиться новая вкладка «Remote Systems». В этой вкладке необходимо определить новое соединение, нажав на первую кнопку справа.

В открывшемся окне выбираем тип соединения «Linux».

После проделанных манипуляций в закладке «Remote Systems» появится новое соединение, которое имеет подразделы:

  • Sftp Files – в этом разделе можно просматривать содержимое удаленной файловой системы. Также возможно выполнять копирование файлов с помощью перетаскивания (Drag and Drop) из локального проекта на удаленную машину и обратно.
  • Shell Processes – раздел позволяет просмотреть запущенные на удаленной машине процессы.
  • Ssh Shells – в этом разделе можно открыть новый SSH -терминал и вводить команды прямо из Eclipse. Надобность в отдельной утилите при этом отпадает.






Таким образом с помощью закладки «Remote Systems» мы сможем копировать собранные на компьютере программы в файловую систему Rpi3 , запускать их на выполнение через Ssh Shells и удалять ненужный процесс в разделе Shell Processes .
Настало время создать новый проект в Eclipse и написать простую демонстрационную программу.
Создаем новый проект из главного меню File->New->C Project.

Для сборки я использую собственный , поэтому тип проекта нужно выбрать Makefile project->Empty Project

Далее вы можете просто скопировать мой Makefile в буфер клавиатуры (Ctrl+C) и вставить его в пустой проект Rpi3_Project (Ctrl+V).

Открыв Makefile в первой его строке после комментария вы увидите список используемых целей:

.PHONY: test project all clean

  • test – проверяет установлен ли в системе кросс-компилятор arm-linux-gnueabi-gcc и утилита make.
  • project - создает структуру каталогов внутри проекта.
  • all — производит сборку проекта.
  • clean — производит очистку проекта от временных файлов(в том числе исполняемого).

Теперь нужно убедиться в наличии инструментальных средств. Для этого необходимо выполнить команду make test.
Но сначала нужно добавить все четыре цели в закладку Make Target в правой части экрана.

Двойным щелчком мыши по цели test запускаем ее на исполнение и видим в окне Console примерно следующее:

Если сообщение не было выведено в консоль не смотря на то, что инструментарии arm-linux-gnueabihf и MinGW были ранее установлены, то это может означать только то, что не прописаны пути к инструментам в системной переменной Path . Необходимо добавить в Path путь к каталогу MinGW/msys/1.0/bin и каталогу bin пакета arm-linux-gnueabihf.

Теперь создадим структуру каталогов внутри проекта двойным щелчком на цели project (make project).

Makefile организован таким образом, что для компиляции исходных файлов их названия должны быть добавлены в переменную SRC, все остальные исходники не будут компилироваться даже если они расположены внутри каталога /src.

Структура каталогов проекта такова:

  • bin – каталог, содержащий исполняемый файл после сборки.
  • Debug – каталог с отладочной версией программы, которая не содержит оптимизации кода и содержит отладочную информацию.
  • Release – каталог с финальной версией программы, которая содержит оптимизированный код и не содержит отладочной информации.
  • inc – каталог для заголовочных файлов.
  • obj – содержит временные файлы сборки проекта, имеет подкаталоги Debug и Release.
  • src – исходные файлы проекта.

С помощью данного Makefile можно компилировать исходные файлы, написанные на таких языках программирования как C , C++, Assembler. При этом можно использовать все доступные языки программирования для создания одной программы.

В каталоге /src создадим новый исходный файл main.c, добавим в него следующие строки:

#include int main(int argc, char **argv); int main(int argc, char **argv) { printf("Welcome to the Raspberry Pi 3 programming\n"); return 0; }/* main */

#include

int main (int argc , char * * argv ) ;

int main (int argc , char * * argv )

printf ("Welcome to the Raspberry Pi 3 programming\n" ) ;

return 0 ;

} /* main */

Проверим, чтобы переменная SRC содержала название исходного файла main.c .
Дальше выполним сборку проекта, запустив цель all .
Теперь можно скопировать полученный исполняемый файл в домашний каталог на целевой плате используя перетаскивание файла мышью.

Сделаем правый клик мышью на разделе Ssh Shells для открытия контекстного меню, в котором необходимо выбрать Launch Shell . Откроется новая вкладка Remote Shell , в поле Command которой можно вводить команды оболочки.

Установим права доступа для скопированного файла Rpi3_Project с помощью команды:

sudo chmod 777 Rpi3_Project

Появление в 2012 году миникомпьютера Raspberry Pi пробудило творческую жилку у многих людей, что породило множество новаторских подходов к вычислительным системам, не виданных со времен восьмибитников.


Действительно, можно сказать, что вновь наступил золотой век компьютерной техники. В связи с этим ниже будут представлены 25 проектов, которые можно сделать с Raspberry Pi.




Предоставляет огромный выбор корпусов различных оттенков, выполненных по современной технологии литья пластмасс. И цена у них вполне приемлемая.


2. Сделай свой собственный корпус для Pi




Хотите сделать собственный корпус? В хранится чертеж корпуса, который можно распечатать. Этот шаблон можно вырезать и склеить.

3. Смотрим видео с Raspberry Pi




Теперь, когда ваш Pi находится в красивом корпусе, самое время подключить его к телевизору и смотреть медиа-контент с помощью ОС OpenELEC. Изучив инструкцию , вы сможете настроить всё в кратчайшие сроки.


4. Мини веб-браузер




Поскольку ваш Raspberry Pi подключен к телевизору, то почему бы не посерфить в сети на большом экране? Для этих целей вам нужно что-нибудь получше Midori, поэтому попробуйте Chromium. Просто зайдите в терминал, наберите sudo apt- get install chromium-browser и нажмите Enter.


5. ZX Spectrum Pi




ZX Spectrum получил вторую жизнь внутри Raspberry Pi. Для эмуляции этой 8-битной прелести напечатайте в терминале sudo apt-get install fuse-emulator-common и нажмите Enter. Введите «y» для подстверждения скачивания и установки.


После того, как Fuse будет установлен, и вы вернетесь к командной строке, напишите sudo apt-get install spectrum-roms fuse-emulator-utils и нажмите Enter. И затем, снова вернувшись к командной строке, напечатайте sudo amixer cset numid=3 2 и щелкнитеEnter.





Если Spectrum пробудил ваш аппетит к олдскулу, то оцените проект RetroPie. С помощью него вы можете эмулировать сокровища таких старых консолей, как SNES, Mega Drive и других подобных. Установка выполняется не слишком быстро, но результат того стоит. Следуйте этим инструкциям , и у вас все получится. можно бесплатно скачать классические игры.






8. Windows 3.0 на Pi




Раз уж мы начали говорить о ретро, то можно попробовать запустить DOS 6.22 и Windows 3.0 с помощью QEMU. Для начала посетите Kirsle и извлеките образ VirtualBox (VDI), затем, воспользовавшись VirtualBox, конвертируйте VDI в IMG, напечатав vboxmanage clonehd "image.vdi" "image.img" --format RAW (вместо image введите название вашего образа).


Далее инсталлируйте QEMU, прописав sudo apt-get install qemu . Затем конвертируйте исходный образ в образ QEMU qcow, напечатав qemu- img convert -f raw image.img -O qcow2 image.qcow . Наконец запустите образ, введя qemu image.qcow . Все это, конечно, далеко от совершенства и имеет тенденцию к подвисанию, но все же забавная штука!


9. Робототехника



Роботы — это прикольно, за исключением, наверно, тех, которые пытаются убить всех человеков. Существует множество проектов, связанных с робототехникой. В электронном журнале MagPi (со стр. 9) приводится описание, как сделать роборуку, приводимую в движение с помощью Raspberry Pi.


10. Еще про роботов



Поскольку мы затронули тему про роботов, то есть еще один замечательный проект , предполагающий совместное использование платформы Big Track и Raspberry Pi.


11. Обучение программированию


Raspberry Pi являет собой прекрасную основу для программирования с большим выбором языков программирования. Почитайте о некоторых из них на eLinux wiki .





Scratch — это язык программирования, который легко освоить и с которым достаточно просто работать. Он хорошо подходит для детей, начинающих изучать программирование, а также для создания серьезных проектов. Познакомьтесь с этим .





Хотя вы с помощью эмулятора можете играть в игры, предназначенные для Spectrum, программирование на языке BASIC через эмулятор не представляет собой то же самое. В таком случае воспользуйтесь SpecBAS , являющегося ремейком Sinclair BASIC.





Raspberry Pi мал да удал! Он представляет собой превосходный хакерский инструмент. Попробуйте запустить на нем проверочную систему обхода безопасности .


15. Firefox OS на Pi





16. RISC OS для Pi




Если вы тоскуете по прошлому, тогда попробуйте запустить RISC OS на своемRaspberry Pi. Файлы и полная инструкция находятся .


17. Клавиатура из алюминиевых банок




Клавиатура из пивных банок? Есть и такая! Команда Robofun подключила плату Arduinoвместе 40 алюминиевыми банками к Raspberry Pi. Посмотреть на это можно .


18. Сервер BitTorrent




Если вы частый гость различных торрент-сайтов, так почему бы не создать специальную торрент-машину? Просто подключите ее к своему роутеру и оставьте ее делать свое дело. Документацию, скрипты и файлы можно найти на snapdragon:IT blog .


19. Облачный сервер




Хотите организовать свой облачный сервер? Благодаря OwnCloud вы сможете это сделать. Следуйте инструкциям и настройте скрипт с petRockBlog . И в кратчайшие сроки вы станете облачным провайдером.


20. Беспилотник на Raspberry Pi




Это блестящая концепция — БПЛА на Raspberry Pi. Только подумайте о возможностях! Данное творение Maggie представляет собой, возможно, первый квадрокоптер на основеRaspberry Pi.


21. Погодная станция




Позволит создать прекрасный школьный проект — погодную станцию на Raspberry Pi. Используя погодную станцию с USB компании Maplin этот миникомпьютер может регистрировать всю необходимую информацию.


22. 10-дюймовый сенсорный экран




Используя 10-дюймовый сенсорный экран и преобразователь HDMI-LVDS, вы можете сделать тачскрин с Raspberry Pi. Полный набор может быть куплен на Chalkboard Electronics и затем собран, как в ролике ниже.



23. Домашняя автоматика








Любители игры Minecraft, ликуйте! Она доступна и на Raspberry Pi .





Обычные платы Raspberry Pi предназначены для простой вычислительной работы. Но, ознакомившись с инструкцией ребят из Университета Саутгемптона, вы сможете сделать из своего миникомпьютера суперкомпьютер.


Перевод сайт





   Благодарим Вас за интерес к информационному проекту сайт.
   Если Вы хотите, чтобы интересные и полезные материалы выходили чаще, и было меньше рекламы,
   Вы можее поддержать наш проект, пожертвовав любую сумму на его развитие.

Что делать, когда нечего делать?
Попробовать что-нибудь новое!

Если вы приобрели Raspberry Pi просто ради любопытства, не отдавая себе отчёта в том, для чего он конкретно вам нужен, то наверняка с каждым днём вам становится всё труднее найти для него
применение. Вы уже с ним вдоволь наигрались. Попробовали установку разных операционных систем, послушали музыку, посмотрели видео, попробовали поиграть и порисовать… И наверняка с огорчением для себя сделали вывод - «Всё ж таки Raspberry Pi мало годится для использования в качестве настольного компьютера». Слишком он уж медленный и задумчивый, по сравнению с обычным компьютером. И вроде бы ничего серьезного с ним сделать нельзя. Остаётся лишь найти ему применение в качестве либо медиацентра, либо простенького интернет-сервера, который не страшно
оставлять включённым круглые сутки…
Но всё ж таки Raspberry Pi может делать одну вещь гораздо более эффективнее, чем любой домашний компьютер- он может управлять внешними устройствами. Устройства могут быть абсолютно любыми, от обычной лампочки, до беспилотного летательного аппарата. В данном случае, область применения Raspberry ограничена лишь вашей фантазией и знаниями. И если вы никогда и ничего подобного не делали, но это вас заинтересовало, то эта статья для вас. И так, начнём.
Чтобы общаться с любыми внешними устройствами и управлять ими, Raspberry Pi имеет на борту интерфейс, называемый GPIO . Это аббревиатура от General Purpose Input Output . А по-русски, это низкоуровневый интерфейс ввода-вывода прямого управления. На плате Raspberry он находится в углу, в виде гребёнки из 26 штырьков, рядом с видеовыходом. Т.е.
через этот интерфейс Raspberry может слушать и отдавать команды любому внешнему устройству, например беспилотнику. Но сегодня мы беспилотник строить не будем, начнём с обычной лампочки, а точнее светодиода, который и исполнит роль подопытной лампочки. Наша задача- заставить светодиод, подключённый к Raspberry включаться и выключаться по его команде. Кроме того, дабы убедиться, что эти включения происходят вполне осознано и так, как мы этого хотим, а не благодаря каким-то глюкам в недрах процессора, мы привнесём в нашу программу элемент
общения с нами. Т.е. отстроим чёткую иерархию- Raspberry управляет светодиодом,
а самим Raspberry управляем мы. Теперь надо подготовиться и раздобыть где-то
несколько вещей. Во-первых, нужно найти светодиод :

Его можно достать из старой сломанной игрушки, из зажигалки с фонариком, попросить у знакомого радиоэлектронщика, в конце концов, просто купить.
Во-вторых, понадобятся проводочки любые и парочка коннекторов BLS :


Такие коннекторы можно вытащить из старого системного блока вместе с проводами, или попросить у знакомого компьютерщика, или тоже купить. Они прекрасно подходят для подключения к разъёму на Raspberry. Начнём с планирования используемых портов. Порт- это грубо говоря штырёк на разъёме. Так, как штырьков там много (26), то и портов тоже много. А чтобы в них не
запутаться, то каждому порту присвоен свой номер и обозначение. Следует заметить, что не все штырьки в этом разъёме являются портами. Некоторые штырьки
подключены к источникам напряжения, а некоторые вообще никуда не подключены (По секрету, на самом деле они всё-же подключены, но ими пользоваться нельзя, можно
убить свою Малинку. Поэтому лучше вобще их не трогайте).
Вот собственно как
эти порты расположены на плате:

Чтобы светодиод зажёгся, нам нужно его подключить к источнику питания. Выбираем для питания светодиода Р1-01 , верхний по рисунку штырёк, на котором присутствует
напряжение 3,3в. Для управления светодиодом нам понадобится один порт GPIO. Можно выбрать любой. Но если у вас есть разъём BLS, то удобнее в данном случае использовать порт, который выведен на штырёк P1-03 и называется GPIO 0 . В таком случае мы, воспользовавшись одним разъёмом, сможем подключить наш светодиод. И так, мы будем подключать светодиод между ножками разъёма P1-01 и Р1-03 . С вывода Р1-01 мы берём +3,3в для питания светодиода, а вывод Р1-03 будет тем самым управляющим выводом порта GPIO. Все эти порты физически находятся внутри центрального процессора Raspberry Pi, который называется BCM2835. Этот процессор может подключать любой порт к источнику напряжения 3,3в, а может подключить порт к 0 питания (а может вообще никуда не подключать, но об этом позже). Эти переключения он делает в соответствии с поданной командой. Значит, когда порт будет подключён к напряжению +3,3в, наш светодиод гореть не будет, т.к. току некуда идти. А когда процессор подключит порт к 0, то наш светодиод загорится, т.к. ток побежит от +3,3в к 0 через светодиод. Значит наша программа должна будет отдавать соответствующие команды процессору в соответствии с нашим желанием.
Маленькое, но важное
отступление.
На самом деле, мы не должны подключать светодиод напрямую между источником питания +3,3в и выводом порта. Это нельзя делать по двум причинам. Причина первая: любой светодиод нормально работает при определённом токе. Если через светодиод потечёт большой ток (а выход +3,3в способен отдать до 50мА), то светодиод сгорит. Если маленький ток, то светодиод будет гореть слишком слабо, либо вообще не будет светиться. Для большинства обычных светодиодов рабочий ток находится в пределах 10-20мА. Отсюда вытекает и вторая причина (хотя в данном случае она несущественна). Если мы пропустим большой ток через порт GPIO, то этим самым мы уничтожим процессор и Raspberry- умрёт. Поэтому, мы должны следить, чтобы через порт не протекал ток больше допустимого. Примем для себя ограничение в 16мА, так мы точно не сожжем процессор. Как этого добиться? Очень просто! Нам нужно последовательно со светодиодом
включить токоограничивающий резистор. И сейчас мы его рассчитаем.
Примем для светодиода рабочий ток в 10мА. Убеждаемся в том, что выбранный нами ток не превышает предельно допустимый ток для порта в 16мА. Теперь зная напряжение питания 3,3в и рабочий ток 10мА, мы можем по закону Ома рассчитать необходимое нам сопротивление. R=U/I=3,3/0,01=330Ом . Значит нам нужно найти резистор с сопротивлением 330Ом. А точнее- сопротивлением не менее 330Ом. Больше- можно. Светодиод будет заметно светиться и при сопротивлении 1000 Ом, или 1кОм. В общем наша задача- найти резистор с
сопротивлением от 330 Ом до 1кОм. Если вы его нашли, то можно собрать вот такую схему:


Схему лучше собрать на макетной плате. Лично мне, для экспериментов, мой сын дал на прокат свой конструктор «Знаток».
Так выглядит схема в сборе:

Так мы подключаемся к Raspberry:

А вот общий план всей конструкции:

В крайнем случае, можно просто скрутить выводы элементов. Но в этом случае нужно следить за тем, чтобы оголённые ножки элементов случайно не попали на контактные площадки Raspberry. Это может убить его. Так же стоит обратить внимание на то, что светодиод должен подключаться Анодом к + источника питания, т.е. в нашем случае это Р1-01 . Как найти на светодиоде Анод? Очень просто! Достаньте из любого ДУ батарейку на 1,5В и подключите к ней ваш светодиод. Если он не зажёгся, поменяйте выводы местами. Если зажёгся- то на + батарейки и будет Анод светодиода.

Если вы собрали схему, то отложите пока её в сторонку. Теперь мы займёмся второй частью задачи - написанием программы управления светодиодом. Писать эту программу мы будем на языке Си.
Почему на именно на Си? Просто по тому, что я других языков не знаю, а раз вы читаете эту статью, то скорее всего вы тоже немного знаете о программировании и радиоэлектронике, а значит, вам всё равно с какого языка начинать.
Обычно изучение языков программирования начинают с написания программы «Hello World!», но мы же круче «тех» чайников, поэтому мы начнём сразу с низкоуровневой работы с периферией. Тем более, что это не намного сложнее ХеллоуВорлда. ;) Что для этого нужно? Нужен любой текстовый редактор, в котором мы будем набирать программу. В Raspbian есть отлично подходящий для этого редактор “nano ”. Ещё нужен компилятор, это программа, которая осуществляет перевод написанной нами программы с человечески понятного языка на язык, понятный компьютеру. Т.е. делает из нашей программы исполняемый файл, который мы впоследствии и запустим на Raspberry. Эта штука тоже у нас есть, называется gcc . Этот компилятор поставляется в комплекте со всеми Линуксами и уже готов к работе.
Как видите,всё необходимое у нас уже есть. Хотя нет. Одной вещи все-таки у нас не хватает. Её мы возьмем из интернета. Речь идёт о библиотеке функций управления портами GPIO на Raspberry, специально написанно добрым человеком для того, чтобы наша программа по своей простоте могла бы соперничать с «Хеллоуворлдом» и нам самим бы не пришлось ломать голову, изучая техническую документацию на процессор и протоколы работы с его внутренностями. Сама библиотека состоит из заголовочного файла, в котором обозначены все имена функций со структурами переменных и файла библиотеки самих функций. Эту библиотеку нужно скачать и установить, чтобы компилятор мог с ней работать. Библиотека называется bcm2835-1.17 . Последние цифры в названии библиотеки, обозначают её версию. А так, как библиотека постоянно обновляется автором, то версии будут меняться. на сегодняшний день доступна версия 1.17. Узнать о номере последней версии можно по адресу: http://www.open.com.au/mikem/bcm2835/index.html По этой же ссылке вы можете ознакомиться со всеми функциями, которые присутствуют в этой библиотеке.
Мы же пока установим версию 1.17. Запускаем окно терминала и вводим
туда команду:
wget http://www.open.com.au/mikem/bcm2835/bcm2835-1.17.tar.gz Библиотека быстренько скачивается. Чтобы её установить, нужно сначала её разархивировать. Это делается следующей командой:
tar zxvf bcm2835-1.17.tar.gz
Теперь перейдём в директорию, куда эта библиотека развернулась:
cd bcm2835-1.17
Ну и инсталлируем её:
./configure make
sudo make check
sudo make install
Всё, теперь эта библиотека у нас есть в наличии, она установлена, и мы, и компилятор можем ей пользоваться в своих интересах. Начинаем писать программу. Возвращаемся в домашнюю директорию:cd ..
Тут можно создать папочку для наших экспериментов с любым именем, например myprog:
mkdir myprog
Перейдём в эту папку:
cd myprog И начинаем писать нашу программу:nanoGPIO-test.c
Эта команда запускает текстовый редактор nano , который создаёт текстовый файл GPIO-test.c .Теперь можете набрать в нём следующую программу
(можно просто скопировать и вставить):

//GPIO-test.c
// Программа включает на 1 секунду светодиод,
// подключённый к порту Р1_03
// Компиляция командой gcc -o GPIO-test GPIO-test.c -lrt -lbcm2835

#include

#define PIN RPI_GPIO_P1_03 // Для RPi ревизии v1
//#define PIN RPI_V2_GPIO_P1_03 // Для RPi ревизии v2

Int main()
{
if (!bcm2835_init()) // Инициализация GPIO
return 1; //Завершение программы, если инициализация не удалась

Bcm2835_gpio_fsel(PIN, BCM2835_GPIO_FSEL_OUTP); //Устанавливаем порт Р1_03 на вывод
bcm2835_gpio_write(PIN, LOW); // Устанавливаем порт в 0, светодиод горит
bcm2835_delay(1000); // Ждём 1000 милисекунд
bcm2835_gpio_write(PIN, HIGH); // Устанавливаем порт в 1, светодиод не горит
return 0; // Выход из программы
}

Обратите внимание на строки #define. Их в программе 2 и одна из них закомментирована. Одна строка для ревизии RPi v1, вторая для RPi v2.
Если у вас v1, то всё оставьте как есть. Если у вас RPi v2, то первую строку с #define удалите, а со второй уберите символ комментария //. В будущем, во всех остальных программах, просто добавляйте _V2_ между RPI и GPIO в определении портов, если ваша плата RPi v2.
Сохраняем нашу программу ctrl-o и выходим из текстового редактора ctrl-x . Теперь, если вы введёте команду ls , то увидите только что созданный файл GPIO-test.c. Чтобы этот файл превратился в работающую программу, его нужно скомпилировать. Пишем: gcc -o GPIO-test GPIO-test.c -lrt -lbcm2835 в этой строке: gcc- это имя компилятора; -o GPIO-test GPIO-test.c эта команда компилятору говорит о том, что требуется создать исполняемый файл с именем GPIO-test из текстового файла GPIO-test.c; -l (латинская л маленькая) bcm2835 говорит компилятору о том, что все неизвестные ему функции в нашей программе, он может найти в установленной библиотеке bcm2835. Если компилятор не выдал никаких сообщений, то значит, всё у нас получилось. Если сейчас дать команду ls , то мы увидим, что в директории появился ещё один файл GPIO-test, причём он отмечен зелёным цветом. Это говорит о том, что файл является
исполняемой программой. Осталось нам его запустить, но перед этим ещё раз проверяем нашу схему со светодиодом, чтобы всё было собрано правильно и подключено к контактам Р1_01 и Р1_03 разъёма GPIO. Если ошибок не обнаружено, запускаем программу: sudo ./GPIO-test После этого светодиод должен загореться
ровно на 1 секунду и погаснуть. Если всё так и произошло, то я вас поздравляю! Вы только что при помощи Raspberry Pi передали через порт GPIO команды светодиоду: включиться, гореть 1 секунду и выключиться.
Теперь о том, что делает каждая строка в нашей программе.
Все надписи после двойного слеша // являются коментариями и никак не влияют на выполнение программы.

#include -эта строка говорит компилятору, что в программе используется заголовочный файл bcm2835.h. В этом файле находятся все описания функций и идентификаторы портов GPIO.

>#define PIN RPI_GPIO_P1_03 - здесь мы говорим компилятору, что везде в программе, где он увидит идентификатор PIN, ему нужно выполнить замену его на идентификатор RPI_GPIO_P1_03 . Это сделано для того, чтобы мы могли при желании быстро изменить номер подключаемого порта. Для этого достаточно изменить только эту строку, а не выискивать по всей программе, где мы этот идентификатор использовали.

int main() это начало нашей программы, обозначение главной функции в Си.

if (!bcm2835_init()) - эта часть пытается инициализировать GPIO и если это не получилось,
return 1; то аварийно завершает программу и передаёт на выходе код 1.

bcm2835_gpio_fsel(PIN, BCM2835_GPIO_FSEL_OUTP); - Эта функция устанавливает для нашего порта Р1_03 режим на вывод. Т.е. говорит процессору, что этот порт будет использован для управления внешним устройством.
bcm2835_gpio_write(PIN, LOW); - устанавливаем порт Р1_03 в низкое состояние, т.е. процессор его подключает к 0. После этого светодиод загорается.

bcm2835_delay(1000); - Эта функция просто ждёт 1000 милисекунд, или ровно 1 секунду. Всё это время у нас горит светодиод.

bcm2835_gpio_write(PIN, HIGH); - устанавливаем порт Р1_03 в высокое состояние, т.е. процессор его подключает к +3,3в. При этом светодиод гаснет.

B>return 0; - Выход из программы с кодом 0.

Т.е. алгоритм работы с портом GPIO в режиме записи, т.е. вывода, выглядит следующим образом:
1. Инициализируем GPIO;2. Устанавливаем режим для выбранного порта на Вывод;
3. Теперь можем управлять этим портом, устанавливая его в высокое, или низкое состояние. Соответственно на этом порте будет пристутствовать либо +3,3В, либо 0В. Что соответствует логической 1 и логическому 0 соответственно.

На этом на сегодня закончим. В следующей части научим наш светодиод загораться более полезным образом, а так же научимся портами GPIO не только отдавать команды другим устройством, но и слушать их.А пока можете начинать изучать язык Си. А так же попробуйте изменить эту программу так, чтобы светдиод управлялся бы другим портом и испытайте её.



Загрузка...